Fix "error: use of result of assignment to object of volatile-
qualified type 'volatile gsize' (aka 'volatile unsigned long') is
deprecated [-Werror,-Wdeprecated-volatile]" when building with
use_sysroot=false on Ubuntu 18.04.
This service is required by the "PermissionOnDeviceNotificationPredictions"
feature which is enabled by default in https://crbug.com/1350956. It uses a
Google backend service as described at https://go.dev/solutions/google/chrome.
This change removes the usage of PredictionBasedPermissionUiSelector, which
triggered this dependency, along with related startup complexity that was added
to support the optimization/prediction service in the M106 update.
DesktopWindowTreeHostWin ("Chrome_WidgetWin_0") focus needs to be set before
the associated call to WebContents::Focus. In the case of mouse click events,
this means ::SetFocus needs to be called explicitly. See updated comments in
CefBrowserPlatformDelegateNativeWin::SetFocus.
- Windows: SDK version 10.0.20348.0 is now required.
- MacOS: SDK version 12.3 (Xcode 13.3) is now required.
- Legacy swiftshader binaries (`swiftshader/*` on Win/Linux and
`libswiftshader_*.dylib` on MacOS) have been removed (see issue #3176).
All file dialogs irrespective of source, platform and runtime will now be
routed through CefFileDialogManager and trigger CefDialogHandler callbacks
(see issue #3293).
Adds Chrome runtime support for CefBrowserHost::RunFileDialog and
CefDialogHandler callbacks.
Adds Alloy runtime support for internal GTK file and print dialogs on Linux
subject to the following limitations:
1. Internal GTK implementation:
- Cannot be used with multi-threaded-message-loop because Chromium's
internal GTK implementation is not thread-safe (does not use GDK threads).
- Dialogs will not be modal to application windows when used with off-screen
rendering due to lack of access to the client's top-level GtkWindow.
2. Cefclient CefDialogHandler implementation:
- Cannot be used with Views because it requires a top-level GtkWindow.
Due to the above limitations no dialog implementation is currently provided for
Views + multi-threaded-message-loop on Linux. In cases where both
implementations are supported the cefclient version is now behind an optional
`--use-client-dialogs` command-line flag.
Expressly forbids multiple simultaneous file dialogs with the internal platform
implementation which uses modal dialogs. CefDialogHandler will still be notified
and can optionally handle each request without a modal dialog (see issue #3154).
Removes some RunFileDialog parameters that are not supported by the Chrome file
dialog implementation (selected_accept_filter parameter, cef_file_dialog_mode_t
overwrite/read-only flags).
This change adds Chrome runtime support on Windows and Linux for creating a
browser parented to a native window supplied by the client application.
Expected API usage and window behavior is similar to what already exists with
the Alloy runtime. The parent window handle should be specified by using
CefWindowInfo::SetAsChild in combination with the CefBrowserHost::CreateBrowser
and CefLifeSpanHandler::OnBeforePopup callbacks.
The previously existing behavior of creating a fully-featured Chrome browser
window when empty CefWindowInfo is used with CreateBrowser remains unchanged
and Views is still the preferred API for creating top-level Chrome windows
with custom styling (e.g. title bar only, frameless, etc).
The cefclient Popup Window test with a native parent window continues to crash
on Linux with both the Alloy and Chrome runtimes (see issue #3165).
Also adds Chrome runtime support for CefDisplayHandler::OnCursorChange.
To test:
- Run `cefclient --enable-chrome-runtime [--use-views]` for the default (and
previously existing) Views-based behavior.
- Run `cefclient --enable-chrome-runtime --use-native` for the new native
parent window behavior.
- Run `cefclient --enable-chrome-runtime --use-native --no-activate` and the
window will not be activated (take input focus) on launch (Windows only).
- Run `cefclient --enable-chrome-runtime [--use-views|--use-native]
--mouse-cursor-change-disabled` and the mouse cursor will not change on
mouseover of DOM elements.
This change configures session restore behavior for the NEXT application
restart by setting the "session.restore_on_startup" preference based on the
[CefSettings|CefRequestContextSettings].persist_session_cookies value.
This change adds a CefDownloadHandler::CanDownload callback for optionally
blocking user-initiated downloads (e.g. alt + link click or link click that
returns a `Content-Disposition: attachment` response from the server).
To test:
- Run `ceftests --gtest_filter=DownloadTest.*`.
- Run `cefclient --hide-controls`. User-initiated downloads will be blocked.
This change adds a CefCommandHandler::OnChromeCommand callback for optionally
handling Chrome commands triggered via menus or keyboard shortcuts. Supported
command IDs are listed in a new cef_command_ids.h header file.
To test: Run `cefclient --enable-chrome-runtime --hide-controls`. Most commands
will blocked and removed from context menus.
This change adds `CefBrowserSettings.chrome_status_bubble` for controlling
whether the Chrome status bubble will be used.
Testable in cefclient by passing the `--hide-chrome-status-bubble`
command-line flag.
We need to override ChromeMimeHandlerViewGuestDelegate to handle
OnGuestAttached/Detached callbacks in order to account for the guest renderer
process hosting the PDF extension.
Additional work will be required to account for the renderer process hosting the
PDF viewer when using `--enable-features=PdfUnseasoned` (see issue #2969).
- Remove CefRequestContextHandler::OnBeforePluginLoad and
CefRequestContext::PurgePluginListCache (fixes issue #3047). These methods
stopped being relevant after the removal of Flash support in January 2021.
The last remaining PPAPI plugin (PDF viewer) will switch to a non-plugin
implementation in the near future (see https://crbug.com/702993#c58) and
functionality related to plugin filtering has already been removed in
https://crrev.com/343ae351c9.
To test:
Run `cefclient.exe --use-views --hide-frame --hide-controls`
Add `--enable-chrome-runtime` for the same behavior using the Chrome location
bar instead of a text field.
Widevine CDM binaries will be downloaded on supported platforms shortly after
application startup. Widevine support will then become available within a few
seconds after successful installation on Windows or after the next application
restart on other platforms. The CDM files will be downloaded to a "WidevineCdm"
directory inside the `CefSettings.user_data_path` directory.
Pass the `--disable-component-update` command-line flag to disable Widevine
download and installation. Pass the `--component-updater=fast-update` command-
line flag to force Widevine download immediately after application startup.
See the related issue for additional usage details.
This change adds a minimal implementation of the |tabs.update| extension API and
modifies StreamsPrivateAPI::SendExecuteMimeTypeHandlerEvent to return a valid
|streamInfo.tabId| value as required by the navigateInCurrentTab implementation
in chrome/browser/resources/pdf/browser_api.js.
This change introduces a few minor CEF API behavior changes:
- A CefProcessMessage object cannot be reused after being passed to
SendProcessMessage.
- The |extra_info| argument to CefRenderProcessHandler::OnBrowserCreated may
now be NULL.
Where appropriate, we now utilize the default UTF string encoding format and
shared memory to reduce copies and conversions for the cross-process
transfer of arbitrary-length strings. For example, CefFrame::GetSource/GetText
now involves zero UTF conversions and zero copies in the browser process for
the CefString delivered to CefStringVisitor::Visit().
The policy->CanAccessDataForOrigin CHECK in NavigationRequest::
GetOriginForURLLoaderFactory was failing because unregistered schemes
(which are already considered non-standard schemes) didn't trigger the
registered non-standard scheme allowance that we previously added in
ChildProcessSecurityPolicyImpl::CanAccessDataForOrigin. This change
modifies GetOriginForURLLoaderFactory to always return an opaque/unique
origin for non-standard schemes resulting in unregistered and non-standard
schemes receiving the same treatment.
New test coverage has been added for this condition, and can be run with:
ceftests --gtest_filter=CorsTest.*CustomUnregistered*
Profile::IsIncognitoProfile() currently returns false for CEF incognito profiles
because they are not the primary OTR profile. At the same time, we don't
necessarily want IsIncognitoProfile() to return true for CEF profiles because,
among other things, that causes the BrowserView to apply the dark toolbar theme.
Instead, this change updates ProfileMenu expectations to support the CEF
incognito profiles without otherwise modifying the incognito behavior.
Note that the IsIncognitoProfile() implementation has recently changed in
https://crrev.com/7bf6eb2497 and the conclusions in this commit will likely need
to be revisited in an upcoming Chromium update.
The Chrome runtime requires that cookieable scheme information be available
at Profile initialization time because it also triggers NetworkContext creation
at the same time. To make this possible, and to avoid various race conditions
when setting state, the cookieable scheme configuration has been added as
|cookieable_schemes_list| and |cookieable_schemes_exclude_defaults| in
CefSettings and CefBrowserContextSettings. The CefCookieManager::
SetSupportedSchemes and CefBrowserProcessHandler::GetCookieableSchemes methods
are no longer required and have been removed.
This change also modifies chrome to delay OffTheRecordProfileImpl initialization
so that |ChromeBrowserContext::profile_| can be set before
ChromeContentBrowserClientCef::ConfigureNetworkContextParams calls
CefBrowserContext::FromBrowserContext to retrieve the ChromeBrowserContext
and associated cookieable scheme information. Otherwise, the
ChromeBrowserContext will not be matched and the NetworkContext will not be
configured correctly.
The CookieTest suite now passes with the Chrome runtime enabled.
Chrome currently uses chrome_100_percent.pak, chrome_200_percent.pak,
resources.pak and locales/<locale>.pak files. This change adds CEF
resources to those existing pak files and updates the Alloy runtime to
use them instead of the previous CEF-specific pak files (cef.pak,
cef_100_percent.pak, cef_200_percent.pak, cef_extensions.pak,
devtools_resources.pak) which are no longer generated.
The addition of Chrome resources results in an ~16% (~4.1MB) increase in total
combined pak file size vs. the previous CEF-specific pak files. While a size
increase is not ideal for the Alloy runtime, it seems preferable to the
alternative of distributing separate (and partially duplicated) pak files for
each runtime, which would have added ~9.8MB to the total binary distribution
size.
This fixes an `Unhandled chrome.send("getApps");` error when creating a new tab.
Creating a new tab initially loads chrome://newtab which should then be
rewritten to chrome://new-tab-page for normal profiles in
HandleNewTabURLRewrite. Failure to rewrite the URL results in the loading of
NewTabUI instead of the expected NewTabPageUI. NewTabUI loads different
resources for normal vs incognito/guest profiles (new_tab.js vs
incognito_tab.js), and new_tab.js calls chrome.send("getApps") via
page_list_view.js. This then fails in WebUIImpl::ProcessWebUIMessage because
the message is unhandled.
The Chrome browser can now be hosted in a Views-based application on Mac
(see issue #2969).
To launch a fully-featured Chrome window using cefsimple:
$ open cefsimple.app --args --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ open cefsimple.app --args --use-views [--enable-chrome-runtime]
To launch a fully-styled Views-hosted window using cefclient:
$ open cefclient.app --args --use-views [--enable-chrome-runtime]
Known issues:
- Some Views unit tests are currently failing on Mac.
The Chrome browser can now be hosted in a Views-based application on Windows
and Linux.
To launch a fully-featured Chrome window using cefsimple:
$ cefsimple --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ cefsimple --enable-chrome-runtime --use-views
To launch a fully-styled Views-hosted window using cefclient:
$ cefclient --enable-chrome-runtime --use-views
Views unit tests also now pass with the Chrome runtime enabled:
$ ceftests --gtest_filter=Views* --enable-chrome-runtime
Known issues:
- Popup browsers cannot be intercepted and reparented.
To avoid conflicting IDs between Alloy (which uses cef.pak) and Chrome
(which uses chrome_100_percent.pak) the cef/LICENSE.txt file is now included
in both cef/libcef/resources/cef_resources.grd and
chrome/app/theme/chrome_unscaled_resources.grd with different ID values.
The cef.pak file currently contains both CEF-specific resources and Chrome
resources that are already included in the default *.pak files distributed
with Chrome. In the future we should remove this duplication and just
distribute the same *.pak files as Chrome for the majority of resources.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
This change moves shared resource initialization to a common location and
disables crash reporting initialization in chrome/ code via patch files.
When using the Chrome runtime on macOS the Chrome application window will
display, but web content is currently blank and the application does not
exit cleanly. This will need to be debugged further in the future.
This change adds basic Chrome runtime implementations for CefBrowserContext
and CefBrowserPlatformDelegate. A Chrome browser window with default frame
and styling can now be created using CefBrowserHost::CreateBrowser and some
CefClient callbacks will be triggered via the WebContentsObserver
implementation in CefBrowserHostImpl.
Any additional browser windows created via the Chrome UI will be unmanaged
by CEF. The application message loop will block until all browser windows
have been closed by the user.
Existing CefBrowserContext functionality is now split between
CefBrowserContext and AlloyBrowserContext. Runtime implementations of
CefBrowserContext will provide access to the content::BrowserContext and
Profile types via different inheritance paths. For example, the Alloy
runtime uses ChromeProfileAlloy and the Chrome runtime uses ProfileImpl.
This change also renames CefResourceContext to CefIOThreadState to more
accurately represent its purpose as it no longer needs to extend
content::ResourceContext.
As part of introducing the Chrome runtime we now need to distinguish
between the classes that implement the current CEF runtime and the
classes the implement the shared CEF library/runtime structure and
public API. We choose the name Alloy for the current CEF runtime
because it describes a combination of Chrome and other elements.
Shared CEF library/runtime classes will continue to use the Cef
prefix. Classes that implement the Alloy or Chrome runtime will use
the Alloy or Chrome prefixes respectively. Classes that extend an
existing Chrome-prefixed class will add the Cef or Alloy suffix,
thereby following the existing naming pattern of Chrome-derived
classes.
This change applies the new naming pattern to an initial set of
runtime-related classes. Additional classes/files will be renamed
and moved as the Chrome runtime implementation progresses.
Running `cefsimple --enable-chrome-runtime` will create and run a
Chrome browser window using the CEF app methods, and call
CefApp::OnContextInitialized as expected. CEF task methods also
work as expected in the main process. No browser-related methods or
callbacks are currently supported for the Chrome window, and the
application will exit when the last Chrome window closes.
The Chrome runtime requires resources.pak, chrome_100_percent.pak
and chrome_200_percent.pak files which were not previously built
with CEF. It shares the existing locales pak files which have been
updated to include additional Chrome-specific strings.
On Linux, the Chrome runtime requires GTK so use_gtk=true must be
specified via GN_DEFINES when building.
This change also refactors the CEF runtime, which can be tested in
the various supported modes by running:
$ cefclient
$ cefclient --multi-threaded-message-loop
$ cefclient --external-message-pump
Split `gclient sync` into separate `gclient sync --nohooks` and
`gclient runhooks` steps so that we can optionally apply patches
from `runhooks.patch` in-between. This is necessary because the
src/tools/clang/scripts/update.py script is run via a hook and has
dependencies on the VS toolchain scripts which must be patched to
properly consider the GYP_MSVS_VERSION environment variable.
This works around a bug in the Visual C++ standard library where the
std::is_integral templates are exported instead of inlined when building
with C++14. See also https://bugs.llvm.org/show_bug.cgi?id=42027.
The PDF loading documentation in extension_system.cc has be updated to
describe the new code paths.
To support delivery of input events to the mime handler renderer process it is
now necessary to route events via the correct RWHV interface. For Aura-based
platforms (Windows/Linux) this means RWHVAura::On*Event and for macOS this
means RWHVMac::RouteOrProcess*Event. Since Aura uses UI event types these have
become the source of truth on Aura-based platforms with conversion to Web event
types when needed (primarily for OSR).
This change also adds a timeout for CefProcessHostMsg_GetNewBrowserInfo to
avoid a hung renderer process if the guest WebContents route is not
registered via CefMimeHandlerViewGuestDelegate::OnGuestDetached as expected
prior to CefBrowserInfoManager::OnGetNewBrowserInfo being called. This
timeout can be disabled for testing purposes by passing the
`--disable-new-browser-info-timeout` command-line flag.
The `--disable-features=MimeHandlerViewInCrossProcessFrame` command-line
flag can be used for a limited time to restore the previous implementation
based on BrowserPlugin. That implementation will be deleted starting with
the 3897 branch update.
Known issues:
- ExecuteJavaScript calls on the frame hosting the PDF extension will not
be routed to the mime handler renderer process.
- The PDF extension will not load successfully if blocked by
ChromePluginPlaceholder and then manually continued via the "Run this
plugin" context menu option (see https://crbug.com/533069#c41).
This works around a bug in the Visual C++ standard library where the
std::is_integral templates are exported instead of inlined when building
with C++14. See also https://bugs.llvm.org/show_bug.cgi?id=42027.
Fixes the following error:
In file included from gen/chrome/browser/safe_browsing/safe_browsing_jumbo_1.cc:34:
In file included from ./../../chrome/browser/safe_browsing/download_protection/binary_fcm_service.cc:15:
../../components/gcm_driver/gcm_profile_service.h:18:10: fatal error: 'components/gcm_driver/gcm_buildflags.h' file not found