All file dialogs irrespective of source, platform and runtime will now be
routed through CefFileDialogManager and trigger CefDialogHandler callbacks
(see issue #3293).
Adds Chrome runtime support for CefBrowserHost::RunFileDialog and
CefDialogHandler callbacks.
Adds Alloy runtime support for internal GTK file and print dialogs on Linux
subject to the following limitations:
1. Internal GTK implementation:
- Cannot be used with multi-threaded-message-loop because Chromium's
internal GTK implementation is not thread-safe (does not use GDK threads).
- Dialogs will not be modal to application windows when used with off-screen
rendering due to lack of access to the client's top-level GtkWindow.
2. Cefclient CefDialogHandler implementation:
- Cannot be used with Views because it requires a top-level GtkWindow.
Due to the above limitations no dialog implementation is currently provided for
Views + multi-threaded-message-loop on Linux. In cases where both
implementations are supported the cefclient version is now behind an optional
`--use-client-dialogs` command-line flag.
Expressly forbids multiple simultaneous file dialogs with the internal platform
implementation which uses modal dialogs. CefDialogHandler will still be notified
and can optionally handle each request without a modal dialog (see issue #3154).
Removes some RunFileDialog parameters that are not supported by the Chrome file
dialog implementation (selected_accept_filter parameter, cef_file_dialog_mode_t
overwrite/read-only flags).
This change provides a generic solution for active (key) window tracking that
works with both Views-hosted and native windows on MacOS. With this new approach
we can now successfully route top menu actions to the currently active window.
Prior to this change CEF's Views API was using focus notifications as a proxy
for window activation notifications. That doesn't work on MacOS where NSWindow
activation (key status) is independent of NSView focus (first responder) status,
and changes in activation don't necessarily generate focus notifications (see
NativeWidgetMac::OnWindowKeyStatusChanged). To make this work reliably on all
platforms we now expose a CefWindowDelegate::OnWindowActivationChanged callback.
This change also fixes an uninitialized variable
(RootWindowMacImpl::with_extension_) that was causing flaky behavior in
RootWindowManager::OnRootWindowActivated.
To test:
1. Run `cefclient [--use-views]`
2. Select Popup Window from the Tests menu. Do not explicitly activate the popup
window (e.g. don't click on it).
3. Verify that further Tests menu actions go to the popup window.
4. Change activation to a first window by clicking on it. Verify that Test
menu actions go to that window.
5. Close the currently active window. Do not explicitly activate the remaining
window (e.g. don't click on it).
6. Verify that Test menu actions go to the only remaining window.
Popup windows will be created on the display that best matches the requested
coordinates. The requested size will apply to the content area (as required by
JS documentation) and window size will be reduced if necessary to fit within the
target display. The requested origin will apply to the window (including frame)
and will be modified if necessary so that the window is fully visible on the
target display.
This change adds a `--use-default-popup` command-line option to cefclient. When
specified, popup windows will be created with default styling (e.g. without an
application-provided native parent window).
This change also adds some reasonable default window bounds in cases where they
are not specified by the client.
This change adds Chrome runtime support on Windows and Linux for creating a
browser parented to a native window supplied by the client application.
Expected API usage and window behavior is similar to what already exists with
the Alloy runtime. The parent window handle should be specified by using
CefWindowInfo::SetAsChild in combination with the CefBrowserHost::CreateBrowser
and CefLifeSpanHandler::OnBeforePopup callbacks.
The previously existing behavior of creating a fully-featured Chrome browser
window when empty CefWindowInfo is used with CreateBrowser remains unchanged
and Views is still the preferred API for creating top-level Chrome windows
with custom styling (e.g. title bar only, frameless, etc).
The cefclient Popup Window test with a native parent window continues to crash
on Linux with both the Alloy and Chrome runtimes (see issue #3165).
Also adds Chrome runtime support for CefDisplayHandler::OnCursorChange.
To test:
- Run `cefclient --enable-chrome-runtime [--use-views]` for the default (and
previously existing) Views-based behavior.
- Run `cefclient --enable-chrome-runtime --use-native` for the new native
parent window behavior.
- Run `cefclient --enable-chrome-runtime --use-native --no-activate` and the
window will not be activated (take input focus) on launch (Windows only).
- Run `cefclient --enable-chrome-runtime [--use-views|--use-native]
--mouse-cursor-change-disabled` and the mouse cursor will not change on
mouseover of DOM elements.
This change adds a CefDownloadHandler::CanDownload callback for optionally
blocking user-initiated downloads (e.g. alt + link click or link click that
returns a `Content-Disposition: attachment` response from the server).
To test:
- Run `ceftests --gtest_filter=DownloadTest.*`.
- Run `cefclient --hide-controls`. User-initiated downloads will be blocked.
This change adds a CefCommandHandler::OnChromeCommand callback for optionally
handling Chrome commands triggered via menus or keyboard shortcuts. Supported
command IDs are listed in a new cef_command_ids.h header file.
To test: Run `cefclient --enable-chrome-runtime --hide-controls`. Most commands
will blocked and removed from context menus.
This change adds `CefBrowserSettings.chrome_status_bubble` for controlling
whether the Chrome status bubble will be used.
Testable in cefclient by passing the `--hide-chrome-status-bubble`
command-line flag.
This functionality stopped being relevant after the removal of Flash support
in January 2021. The last remaining PPAPI plugin (PDF viewer) will switch to
a non-plugin implementation (PdfUnseasoned) in M100.
- Remove CefRequestContextHandler::OnBeforePluginLoad and
CefRequestContext::PurgePluginListCache (fixes issue #3047). These methods
stopped being relevant after the removal of Flash support in January 2021.
The last remaining PPAPI plugin (PDF viewer) will switch to a non-plugin
implementation in the near future (see https://crbug.com/702993#c58) and
functionality related to plugin filtering has already been removed in
https://crrev.com/343ae351c9.
To test:
Run `cefclient.exe --use-views --hide-frame --hide-controls`
Add `--enable-chrome-runtime` for the same behavior using the Chrome location
bar instead of a text field.
Widevine CDM binaries will be downloaded on supported platforms shortly after
application startup. Widevine support will then become available within a few
seconds after successful installation on Windows or after the next application
restart on other platforms. The CDM files will be downloaded to a "WidevineCdm"
directory inside the `CefSettings.user_data_path` directory.
Pass the `--disable-component-update` command-line flag to disable Widevine
download and installation. Pass the `--component-updater=fast-update` command-
line flag to force Widevine download immediately after application startup.
See the related issue for additional usage details.
- Convert scoped_ptr to std::unique_ptr from <memory>
- Convert arraysize to base::size from include/base/cef_cxx17_backports.h
- Convert NULL to nullptr
- Include include/base/cef_callback.h instead of include/base/cef_bind.h
- Implicit conversion of CefRefPtr<T> or scoped_refptr<T> to T* is gone;
use .get() instead
See the issue for additional details.
This change adds support for CEF settings configuration of accept_language_list.
If specified, this value will take precedence over the "intl.accept_languages"
preference which is controlled by chrome://settings/languages.
With the Chrome runtime, Profile initialization may be asynchronous. Code that
waited on CefBrowserContext creation now needs to wait on CefBrowserContext
initialization instead.
The Chrome runtime requires that cookieable scheme information be available
at Profile initialization time because it also triggers NetworkContext creation
at the same time. To make this possible, and to avoid various race conditions
when setting state, the cookieable scheme configuration has been added as
|cookieable_schemes_list| and |cookieable_schemes_exclude_defaults| in
CefSettings and CefBrowserContextSettings. The CefCookieManager::
SetSupportedSchemes and CefBrowserProcessHandler::GetCookieableSchemes methods
are no longer required and have been removed.
This change also modifies chrome to delay OffTheRecordProfileImpl initialization
so that |ChromeBrowserContext::profile_| can be set before
ChromeContentBrowserClientCef::ConfigureNetworkContextParams calls
CefBrowserContext::FromBrowserContext to retrieve the ChromeBrowserContext
and associated cookieable scheme information. Otherwise, the
ChromeBrowserContext will not be matched and the NetworkContext will not be
configured correctly.
The CookieTest suite now passes with the Chrome runtime enabled.
GTK3 is required by the Chrome runtime. The cefclient off-screen rendering
example no longer works with Ubuntu 16.04. With end-of-life in April 2021
we are dropping support for 16.04 in the near future in any case.
The Chrome browser can now be hosted in a Views-based application on Mac
(see issue #2969).
To launch a fully-featured Chrome window using cefsimple:
$ open cefsimple.app --args --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ open cefsimple.app --args --use-views [--enable-chrome-runtime]
To launch a fully-styled Views-hosted window using cefclient:
$ open cefclient.app --args --use-views [--enable-chrome-runtime]
Known issues:
- Some Views unit tests are currently failing on Mac.
The Chrome browser can now be hosted in a Views-based application on Windows
and Linux.
To launch a fully-featured Chrome window using cefsimple:
$ cefsimple --enable-chrome-runtime
To launch a minimally-styled Views-hosted window using cefsimple:
$ cefsimple --enable-chrome-runtime --use-views
To launch a fully-styled Views-hosted window using cefclient:
$ cefclient --enable-chrome-runtime --use-views
Views unit tests also now pass with the Chrome runtime enabled:
$ ceftests --gtest_filter=Views* --enable-chrome-runtime
Known issues:
- Popup browsers cannot be intercepted and reparented.
Switch to using g_main_context_default() in MainMessageLoopMultithreadedGtk. As of M86
(https://crrev.com/b960daf4e6) Chromium now creates its own context in MessagePumpGlib so
we can use the default context in cefclient. This is also more "correct" from a GTK usage
perspective. As part of this change all GTK dialogs and callbacks are now executed on the
main thread instead of the UI thread (note that these are the same thread when not using
multi-threaded-message-loop).
The cursor change can now be handled by the client with both windowed and
off-screen rendering.
Returning true from OnCursorChange will disable the default cursor change
behavior. This is functionally equivalent to the
CefBrowserHost::SetMouseCursorChangeDisabled method, so that method has been
removed.
- CefURLRequest::Create is no longer supported in the renderer process
(see https://crbug.com/891872). Use CefFrame::CreateURLRequest instead.
- Mac platform definitions have been changed from `MACOSX` to `MAC`
(see https://crbug.com/1105907) and related CMake macro names have
been updated. The old `OS_MACOSX` define is still set in code and CMake
for backwards compatibility.
- Linux ARM build is currently broken (see https://crbug.com/1123214).