This is no longer required now that we have implicit exclusion
of certain frame types including guest view frames.
Rename GuestView to ExcludedView in the renderer process.
Split the Alloy runtime into bootstrap and style components. Support
creation of Alloy style browsers and windows with the Chrome runtime.
Chrome runtime (`--enable-chrome-runtime`) + Alloy style
(`--use-alloy-style`) supports Views (`--use-views`), native parent
(`--use-native`) and windowless rendering
(`--off-screen-rendering-enabled`).
Print preview is supported in all cases except with windowless rendering
on all platforms and native parent on MacOS. It is disabled by default
with Alloy style for legacy compatibility. Where supported it can be
enabled or disabled globally using `--[enable|disable]-print-preview` or
configured on a per-RequestContext basis using the
`printing.print_preview_disabled` preference. It also behaves as
expected when triggered via the PDF viewer print button.
Chrome runtime + Alloy style behavior differs from Alloy runtime in the
following significant ways:
- Supports Chrome error pages by default.
- DevTools popups are Chrome style only (cannot be windowless).
- The Alloy extension API will not supported.
Chrome runtime + Alloy style passes all expected Alloy ceftests except
the following:
- `DisplayTest.AutoResize` (Alloy extension API not supported)
- `DownloadTest.*` (Download API not yet supported)
- `ExtensionTest.*` (Alloy extension API not supported)
This change also adds Chrome runtime support for
CefContextMenuHandler::RunContextMenu (see #3293).
This change also explicitly blocks (and doesn't retry) FrameAttached
requests from PDF viewer and print preview excluded frames (see #3664).
Known issues specific to Chrome runtime + Alloy style:
- DevTools popup with windowless rendering doesn't load successfully.
Use windowed rendering or remote debugging as a workaround.
- Chrome style Window with Alloy style BrowserView (`--use-alloy-style
--use-chrome-style-window`) does not show Chrome theme changes.
To test:
- Run `ceftests --enable-chrome-runtime --use-alloy-style
[--use-chrome-style-window] [--use-views|--use-native]
--gtest_filter=...`
- Run `cefclient --enable-chrome-runtime --use-alloy-style
[--use-chrome-style-window]
[--use-views|--use-native|--off-screen-rendering-enabled]`
- Run `cefsimple --enable-chrome-runtime --use-alloy-style [--use-views]`
Frame identifiers have changed from int64_t to string type. This is due
to https://crbug.com/1502660 which removes access to frame routing IDs
in the renderer process. New cross-process frame identifiers are 160-bit
values (32-bit child process ID + 128-bit local frame token) and most
easily represented as strings. All other frame-related expectations and
behaviors remain the same.
URLLoaderNetworkServiceObserver is used for routing certificate and
authentication callbacks from the NetworkService to the associated
StoragePartition instance. With request interception enabled this object was
previously only assigned for the initial request. This change adds assignment
for restarted/redirected requests as well.
With the introduction of prerendering in Chromium it is now possible for
RenderFrameHosts (RFH) to move between FrameTrees. As a consequence we can no
longer rely on FrameTreeNode IDs to uniquely identify a RFH over its lifespan.
We must now switch to using GlobalRenderFrameHostId (child_id, frame_routing_id)
instead for that purpose. Additionally, we simplify existing code by using the
GlobalRenderFrameHostId struct in all places that previously used a
(render_process_id, render_frame_id) pair, since these concepts are equivalent.
See https://crbug.com/1179502#c8 for additional background.
This change adds support for CEF settings configuration of accept_language_list.
If specified, this value will take precedence over the "intl.accept_languages"
preference which is controlled by chrome://settings/languages.
- Only install network intercepts for Profiles that have an associated
CefBrowserContext. For incognito windows the CefBrowserContext is
associated with the OffTheRecordProfileImpl's original Profile.
- cefsimple: Return the default CefClient instance for browser windows
created via the Chrome UI, and allow Chrome to show error pages.
This change adds support for:
- Protocol and request handling.
- Loading and navigation events.
- Display and focus events.
- Mouse/keyboard events.
- Popup browsers.
- Callbacks in the renderer process.
- Misc. functionality required for ceftests.
This change also adds a new CefBrowserProcessHandler::GetCookieableSchemes
callback for configuring global state that will be applied to all
CefCookieManagers by default. This global callback is currently required by the
chrome runtime because the primary ProfileImpl is created via
ChromeBrowserMainParts::PreMainMessageLoopRun (CreatePrimaryProfile) before
OnContextCreated can be called.
ProfileImpl will use the "C:\Users\[user]\AppData\Local\CEF\User Data\Default"
directory by default (on Windows). Cookies may persist in this directory when
running ceftests and may need to be manually deleted if those tests fail.
Remaining work includes:
- Support for client-created request contexts.
- Embedding the browser in a Views hierarchy (cefclient support).
- TryCloseBrowser and DoClose support.
- Most of the CefSettings configuration.
- DevTools protocol and window control (ShowDevTools, ExecuteDevToolsMethod).
- CEF-specific WebUI pages (about, license, webui-hosts).
- Context menu customization (CefContextMenuHandler).
- Auto resize (SetAutoResizeEnabled).
- Zoom settings (SetZoomLevel).
- File dialog runner (RunFileDialog).
- File and JS dialog handlers (CefDialogHandler, CefJSDialogHandler).
- Extension loading (LoadExtension, etc).
- Plugin loading (OnBeforePluginLoad).
- Widevine loading (CefRegisterWidevineCdm).
- PDF and print preview does not display.
- Crash reporting is untested.
- Mac: Web content loads but does not display.
The following ceftests are now passing when run with the
"--enable-chrome-runtime" command-line flag:
CorsTest.*
DisplayTest.*:-DisplayTest.AutoResize
DOMTest.*
DraggableRegionsTest.*
ImageTest.*
MessageRouterTest.*
NavigationTest.*
ParserTest.*
RequestContextTest.*Global*
RequestTest.*
ResourceManagerTest.*
ResourceRequestHandlerTest.*
ResponseTest.*
SchemeHandlerTest.*
ServerTest.*
StreamResourceHandlerTest.*
StreamTest.*
StringTest.*
TaskTest.*
TestServerTest.*
ThreadTest.*
URLRequestTest.*Global*
V8Test.*:-V8Test.OnUncaughtExceptionDevTools
ValuesTest.*
WaitableEventTest.*
XmlReaderTest.*
ZipReaderTest.*
The Browser object represents the top-level Chrome browser window. One or more
tabs (WebContents) are then owned by the Browser object via TabStripModel. A
new Browser object can be created programmatically using "new Browser" or
Browser::Create, or as a result of user action such as dragging a tab out of an
existing window. New or existing tabs can also be added to an already existing
Browser object.
The Browser object acts as the WebContentsDelegate for all attached tabs. CEF
integration requires WebContentsDelegate callbacks and notification of tab
attach/detach. To support this integration we add a cef::BrowserDelegate
(ChromeBrowserDelegate) member that is created in the Browser constructor and
receives delegation for the Browser callbacks. ChromeBrowserDelegate creates a
new ChromeBrowserHostImpl when a tab is added to a Browser for the first time,
and that ChromeBrowserHostImpl continues to exist until the tab's WebContents
is destroyed. The associated WebContents object does not change, but the
Browser object will change when the tab is dragged between windows.
CEF callback logic is shared between the chrome and alloy runtimes where
possible. This shared logic has been extracted from CefBrowserHostImpl to
create new CefBrowserHostBase and CefBrowserContentsDelegate classes. The
CefBrowserHostImpl class is now only used with the alloy runtime and will be
renamed to AlloyBrowserHostImpl in a future commit.
This fixes an IsCanonical() DCHECK failure triggered by calling
CanonicalCookie::Create for a non-cookieable URL.
This change also adds unit test coverage for cross-origin cookie
behavior with sub-resource requests (iframe, XHR, Fetch).
- Windows: 10.0.19041 SDK is now required.
- macOS: 10.15.1 SDK (at least Xcode 11.2) is now required.
- Remove CefMediaSource::IsValid and CefMediaSink::IsValid which would
always return true.
Existing CefBrowserContext functionality is now split between
CefBrowserContext and AlloyBrowserContext. Runtime implementations of
CefBrowserContext will provide access to the content::BrowserContext and
Profile types via different inheritance paths. For example, the Alloy
runtime uses ChromeProfileAlloy and the Chrome runtime uses ProfileImpl.
This change also renames CefResourceContext to CefIOThreadState to more
accurately represent its purpose as it no longer needs to extend
content::ResourceContext.
This is the first pass in removing direct dependencies on the Alloy
runtime from code that can potentially be shared between runtimes.
CefBrowserHost and CefRequestContext APIs (including CefCookieManager,
CefURLRequest, etc.) are not yet implemented for the Chrome runtime.
Assert early if these API methods are called while the Chrome runtime
is enabled.
As part of introducing the Chrome runtime we now need to distinguish
between the classes that implement the current CEF runtime and the
classes the implement the shared CEF library/runtime structure and
public API. We choose the name Alloy for the current CEF runtime
because it describes a combination of Chrome and other elements.
Shared CEF library/runtime classes will continue to use the Cef
prefix. Classes that implement the Alloy or Chrome runtime will use
the Alloy or Chrome prefixes respectively. Classes that extend an
existing Chrome-prefixed class will add the Cef or Alloy suffix,
thereby following the existing naming pattern of Chrome-derived
classes.
This change applies the new naming pattern to an initial set of
runtime-related classes. Additional classes/files will be renamed
and moved as the Chrome runtime implementation progresses.
Requests from the PDF viewer are not associated with a CefBrowser. Consequently,
the InterceptedRequestHandler for those requests will register as an observer of
CefContext destruction. When the browser is closed the InterceptedRequestHandler
is destroyed and an async task is posted to remove/delete the observer on the UI
thread. If CefShutdown is then called the task may execute after shutdown has
started, in which case CONTEXT_STATE_VALID() will return false. We still need to
remove the observer in this case to avoid a use-after-free in
FinishShutdownOnUIThread.
Initialization of request objects requires asynchronous hops between the UI and
IO threads. In some cases the browser may be destroyed, the mojo connection may
be aborted, or the ProxyURLLoaderFactory object may be deleted while
initialization is still in progress. This change fixes crashes and adds unit
tests that try to reproduce these conditions.
To test: Run `ceftests --gtest_repeat=50
--gtest_filter=ResourceRequestHandlerTest.Basic*Abort*`