Adds support for the OnAcceleratedPaint callback. Verified to work
on macOS and Windows. Linux support is present but not implemented
for cefclient, so it is not verified to work.
To test:
Run `cefclient --off-screen-rendering-enabled --shared-texture-enabled`
Split the Alloy runtime into bootstrap and style components. Support
creation of Alloy style browsers and windows with the Chrome runtime.
Chrome runtime (`--enable-chrome-runtime`) + Alloy style
(`--use-alloy-style`) supports Views (`--use-views`), native parent
(`--use-native`) and windowless rendering
(`--off-screen-rendering-enabled`).
Print preview is supported in all cases except with windowless rendering
on all platforms and native parent on MacOS. It is disabled by default
with Alloy style for legacy compatibility. Where supported it can be
enabled or disabled globally using `--[enable|disable]-print-preview` or
configured on a per-RequestContext basis using the
`printing.print_preview_disabled` preference. It also behaves as
expected when triggered via the PDF viewer print button.
Chrome runtime + Alloy style behavior differs from Alloy runtime in the
following significant ways:
- Supports Chrome error pages by default.
- DevTools popups are Chrome style only (cannot be windowless).
- The Alloy extension API will not supported.
Chrome runtime + Alloy style passes all expected Alloy ceftests except
the following:
- `DisplayTest.AutoResize` (Alloy extension API not supported)
- `DownloadTest.*` (Download API not yet supported)
- `ExtensionTest.*` (Alloy extension API not supported)
This change also adds Chrome runtime support for
CefContextMenuHandler::RunContextMenu (see #3293).
This change also explicitly blocks (and doesn't retry) FrameAttached
requests from PDF viewer and print preview excluded frames (see #3664).
Known issues specific to Chrome runtime + Alloy style:
- DevTools popup with windowless rendering doesn't load successfully.
Use windowed rendering or remote debugging as a workaround.
- Chrome style Window with Alloy style BrowserView (`--use-alloy-style
--use-chrome-style-window`) does not show Chrome theme changes.
To test:
- Run `ceftests --enable-chrome-runtime --use-alloy-style
[--use-chrome-style-window] [--use-views|--use-native]
--gtest_filter=...`
- Run `cefclient --enable-chrome-runtime --use-alloy-style
[--use-chrome-style-window]
[--use-views|--use-native|--off-screen-rendering-enabled]`
- Run `cefsimple --enable-chrome-runtime --use-alloy-style [--use-views]`
Controls now respect OS and Chrome themes by default for both Alloy
and Chrome runtimes. Chrome themes (mode and colors) can be configured
using the new CefRequestContext::SetChromeColorScheme method. Individual
theme colors can be overridden using the new CefWindowDelegate::
OnThemeColorsChanged and CefWindow::SetThemeColor methods.
The `--force-light-mode` and `--force-dark-mode` command-line flags are
now respected on all platforms as an override for the OS theme.
The current Chrome theme, if any, will take precedence over the OS theme
when determining light/dark status. On Windows and MacOS the titlebar
color will also be updated to match the light/dark theme.
Testable as follows:
- Run: `cefclient --enable-chrome-runtime` OR
`cefclient --use-views --persist-user-preferences --cache-path=...`
- App launches with default OS light/dark theme colors.
- Change OS dark/light theme under system settings. Notice that theme
colors change as expected.
- Right click, select items from the new Theme sub-menu. Notice that
theme colors behave as expected.
- Exit and relaunch the app. Notice that the last-used theme colors are
applied on app restart.
- Add `--background-color=green` to above command-line.
- Perform the same actions as above. Notice that all controls start
and remain green throughout (except some icons with Chrome runtime).
- Add `--force-light-mode` or `--force-dark-mode` to above command-line.
- Perform the same actions as above. Notice that OS dark/light theme
changes are ignored, but Chrome theme changes work as expected.
The client can optionally wait or terminate the render process.
Expose process exit codes via OnRenderProcessTerminated and
CefGetExitCode (fixes#2126).
cefclient: Add a new https://tests/hang page for testing hang behavior.
cefclient: Move message and resource handling to a new BaseClientHandler
class to support loading of test pages in default Chrome UI windows.
Adds a new CefBrowserProcessHandler::OnAlreadyRunningAppRelaunch
callback for when an already running app is relaunched with the
same CefSettings.root_cache_path.
Client apps should check the CefInitialize() return value for early
exit of the relaunch source process.
A modal dialog is a child CefWindow that implements some special behaviors
relative to a parent CefWindow. Like any CefWindow it can be framed with
titlebar or frameless, and optionally contain draggable regions (subject to
platform limitations described below). Modal dialogs are shown centered on
the parent window (inside a single display) and always stay on top of the
parent window in z-order. Sizing behavior and available window buttons are
controlled via the usual CefWindowDelegate callbacks. For example, the dialog
can have a preferred size with resize, minimize and maximize disabled (via
GetPreferredSize, CanResize, CanMinimize and CanMaximize respectively).
This change adds support for two modality modes. With window modality all
controls in the parent window are disabled. With browser modality only the
browser view in the parent window is disabled.
Both modality modes require that a valid parent window be returned via
GetParentWindow. For window modality return true from IsWindowModalDialog
and call CefWindow::Show. For browser modality return false from
IsWindowModalDialog (the default value) and call
CefWindow::ShowAsBrowserModalDialog with a reference to the parent window's
browser view.
Window modal dialog behavior depends on the platform. On Windows and
Linux these dialogs have a titlebar and can be moved independent of the
parent window. On macOS these dialogs do not have a titlebar, move with
the parent window, and do not support draggable regions (because they are
implemented using sheets). On Linux disabling the parent window controls
requires a window manager the supports _NET_WM_STATE_MODAL.
Browser modal dialog behavior is similar on all platforms. The dialog will
be automatically sized and positioned relative to the parent window's
browser view. Closing the parent window or navigating the parent browser
view will dismiss the dialog. The dialog can also be moved independent of
the parent window though it will be recentered when the parent window
itself is resized or redisplayed. On MacOS the dialog will move along with
the parent window while on Windows and Linux the parent window can be moved
independently.
To test: Use the Tests > Dialog Window menu option in cefclient with Views
enabled (`--use-views` or `--enable-chrome-runtime` command-line flag).
Browser modal dialog is the default behavior. For window modal dialog add
the `--use-window-modal-dialog` command-line flag.
The CefFrame::CreateURLRequest method is no longer supported in the renderer
process. Usage of this method was already limited to same-origin requests due
to renderer process CORS restrictions, and the underlying Blink API has now
been removed in https://crbug.com/1413912 (M112+).
Existing alternatives include CefURLRequest usage in the browser process, or
JavaScript XMLHttpRequest/fetch API usage in the renderer process.
Frameless windows now display as expected. Default traffic light buttons can
optionally be shown at configurable vertical position. Layout respects text
direction.
- mac: Xcode 14.0 with macOS SDK 13.0 is now required.
- Remove CefRequestHandler::OnQuotaRequest because persistent quota is no
longer supported (see https://crbug.com/1208141)
Custom global and request context preferences can now be registered via
CefBrowserProcessHandler::OnRegisterCustomPreferences. CefRequestContext
now extends CefPreferenceManager and global preferences can be accessed
via CefPreferenceManager::GetGlobalPreferenceManager.
Change the default stack size to 8 MiB for 64-bit and 0.5 MiB for 32-bit.
CEF's main thread needs at least a 1.5 MiB stack size in order to avoid
stack overflow crashes. However, if this is set in the PE file then other
threads get this size as well, leading to address-space exhaustion in 32-bit
CEF. A new CefRunWinMainWithPreferredStackSize function uses fibers to switch
the main thread to a 4 MiB stack (roughly the same effective size as the
64-bit build's 8 MiB stack) before running any other code.
This change additionally moves the existing Windows-only functions
CefSetOSModalLoop and CefEnableHighDPISupport from cef_app.h to cef_win.h.
This fixes official build linker errors like:
lld-link: error: Output data is larger than 4 GiB. File size 4,341,682,176 too large for current PDB page size 4096
lld-link: error: failed to write PDB file ./libcef.dll.pdb
See https://crbug.com/1245726 for background.
Using a source_set here keeps the linker on Windows from discarding exported
compilation units that are not directly called from inside libcef_static.
This may also fix linker errors on Linux due to CEF's use of an intermediate
static library (see https://crbug.com/1319006#c2).
CefSharedProcessMessageBuilder supports creation of a CefProcessMessage
backed by a CefSharedMemoryRegion.
Performance tests comparing the existing ArgumentList approach and the new
SharedMemoryRegion approach have been added to cefclient at
http://tests/ipc_performance.
CefMessageRouter has been updated to use SharedMemoryRegion as transport
for larger message payloads. The threshold is configurable via
|CefMessageRouterConfig.message_size_threshold|.
To test:
run `ceftests --gtest_filter=SendSharedProcessMessageTest.*:SharedProcessMessageTest.*:MessageRouterTest.Threshold*`
Popup windows will be created on the display that best matches the requested
coordinates. The requested size will apply to the content area (as required by
JS documentation) and window size will be reduced if necessary to fit within the
target display. The requested origin will apply to the window (including frame)
and will be modified if necessary so that the window is fully visible on the
target display.
This change does not implement popup positioning for cefclient which uses an
application-created parent window.
This change grants access to the getScreenDetails JS API without user prompt.
- Windows: SDK version 10.0.20348.0 is now required.
- MacOS: SDK version 12.3 (Xcode 13.3) is now required.
- Legacy swiftshader binaries (`swiftshader/*` on Win/Linux and
`libswiftshader_*.dylib` on MacOS) have been removed (see issue #3176).
All file dialogs irrespective of source, platform and runtime will now be
routed through CefFileDialogManager and trigger CefDialogHandler callbacks
(see issue #3293).
Adds Chrome runtime support for CefBrowserHost::RunFileDialog and
CefDialogHandler callbacks.
Adds Alloy runtime support for internal GTK file and print dialogs on Linux
subject to the following limitations:
1. Internal GTK implementation:
- Cannot be used with multi-threaded-message-loop because Chromium's
internal GTK implementation is not thread-safe (does not use GDK threads).
- Dialogs will not be modal to application windows when used with off-screen
rendering due to lack of access to the client's top-level GtkWindow.
2. Cefclient CefDialogHandler implementation:
- Cannot be used with Views because it requires a top-level GtkWindow.
Due to the above limitations no dialog implementation is currently provided for
Views + multi-threaded-message-loop on Linux. In cases where both
implementations are supported the cefclient version is now behind an optional
`--use-client-dialogs` command-line flag.
Expressly forbids multiple simultaneous file dialogs with the internal platform
implementation which uses modal dialogs. CefDialogHandler will still be notified
and can optionally handle each request without a modal dialog (see issue #3154).
Removes some RunFileDialog parameters that are not supported by the Chrome file
dialog implementation (selected_accept_filter parameter, cef_file_dialog_mode_t
overwrite/read-only flags).