Chromium supports communication with media devices on the local network via
the Cast and DIAL protocols. This takes two primary forms:
1. Messaging, where strings representing state information are passed between
the client and a dedicated receiver app on the media device. The receiver
app communicates directly with an app-specific backend service to retrieve
and possibly control media playback.
2. Tab/desktop mirroring, where the media contents are streamed directly from
the browser to a generic streaming app on the media device and playback is
controlled by the browser.
This change adds support for device discovery and messaging (but not
mirroring) with functionality exposed via the new CefMediaRouter interface.
To test: Navigate to http://tests/media_router in cefclient and follow the
on-screen instructions.
When NetworkService is enabled requests created using CefFrame::CreateURLRequest
will call CefRequestHandler::GetAuthCredentials for the associated browser after
calling CefURLRequestClient::GetAuthCredentials if that call returns false.
The behavior has changed as follows with NetworkService enabled:
- All pending and in-progress requests will now be aborted when the CEF context
or associated browser is destroyed. The OnResourceLoadComplete callback will
now also be called in this case for in-progress requests that have a handler.
- The CefResourceHandler::Cancel method will now always be called when resource
handling is complete, irrespective of whether handling completed successfully.
- Request callbacks that arrive after the OnBeforeClose callback for the
associated browser (which may happen for in-progress requests that are aborted
on browser destruction) will now always have a non-nullptr CefBrowser
parameter.
- Allow empty parameters to CefRequest and CefResponse methods where it makes
sense (e.g. resetting default response state, or clearing a referrer value).
- Fixed a reference loop that was keeping CefResourceHandler objects from being
destroyed if they were holding a callback reference (from ProcessRequest,
ReadResponse, etc.) during CEF context or associated browser destruction.
- Fixed an issue where the main frame was not detached on browser destruction
which could cause a crash due to RFH use-after-free (see issue #2498).
To test: All unit tests pass as expected.
This change moves the SendProcessMessage method from CefBrowser to CefFrame and
adds CefBrowser parameters to OnProcessMessageReceived and
OnDraggableRegionsChanged.
The internal implementation has changed as follows:
- Frame IDs are now a 64-bit combination of the 32-bit render_process_id and
render_routing_id values that uniquely identify a RenderFrameHost (RFH).
- CefFrameHostImpl objects are now managed by CefBrowserInfo with life span tied
to RFH expectations. Specifically, a CefFrameHostImpl object representing a
sub-frame will be created when a RenderFrame is created in the renderer
process and detached when the associated RenderFrame is deleted or the
renderer process in which it runs has died.
- The CefFrameHostImpl object representing the main frame will always be valid
but the underlying RFH (and associated frame ID) may change over time as a
result of cross-origin navigations. Despite these changes calling LoadURL on
the main frame object in the browser process will always navigate as expected.
- Speculative RFHs, which may be created as a result of a cross-origin
navigation and discarded if that navigation is not committed, are now handled
correctly (e.g. ignored in most cases until they're committed).
- It is less likely, but still possible, to receive a CefFrame object with an
invalid frame ID (ID < 0). This can happen in cases where a RFH has not yet
been created for a sub-frame. For example, when OnBeforeBrowse is called
before initiating navigation in a previously nonexisting sub-frame.
To test: All tests pass with NetworkService enabled and disabled.
Pending requests that are associated with a browser will be canceled when that
browser is destroyed. Pending requests that are not associated with a browser
(e.g. created using CefURLRequest::Create), and that use the global context, may
still be pending when CefShutdown is called. For this reason the
no_debugct_check attribute has been added for CefResourceRequestHandler and
CefCookieAccessFilter interfaces.
To test: Load a YouTube video or other long-loading content in cefclient and
close the application. No assertions trigger for leaked CefFrame objects.
Requests created using CefURLRequest::Create are not associated with a
browser/frame. When originating from the render process these requests cannot be
intercepted and consequently only http(s) and blob requests are supported. To
work around this limitation a new CefFrame::CreateURLRequest method has been
added that allows the request to be associated with that browser/frame for
interception purposes.
This change also fixes an issue with the NetworkService implementation where
redirected requests could result in two parallel requests being sent to the
target server.
To test: URLRequestTest.* tests pass with NetworkService enabled.
The optional |extra_info| parameter provides an opportunity to specify extra
information specific to the created browser that will be passed to
CefRenderProcessHandler::OnBrowserCreated() in the render process.
With this change the CefCookieManager::SetSupportedSchemes method can be used
to disable all loading and saving of cookies for the associated request context.
This matches functionality that was previously available via GetBlockingManager.
This change also fixes a bug where Set-Cookie headers returned for a request
handled via CefSchemeHandlerFactory would be ignored if there was not also a
CefResourceRequestHandler returned for the request.
To test: All CookieTest.* tests pass.
This change allows the NetworkService to handle cookie load/save in cases where
cookies will not be filtered (CefResourceRequestHandler::GetCookieAccessFilter
returns null) and the request will be handled by the default network loader.
This represents a minor performance improvement by reducing the volume of cross-
process messaging in the default (no filtering or custom handing) case. Cookie
load/save still needs to be routed through the browser process if a filter is
returned, or if a CefResourceHandler is used for the request.
To test: Test expectations are unchanged.
Implementation notes:
- Chromium change: CookieMonster::SetCookieableSchemes needs to be called
immediately after the CookieMonster is created in NetworkContext::
ApplyContextParamsToBuilder. Add a Profile::GetCookieableSchemes method and
NetworkContextParams.cookieable_schemes member (set from
ProfileNetworkContextService::CreateNetworkContextParams) to support that.
- Chromium change: Add a ContentBrowserClient::HandleExternalProtocol variant
that exposes additional NetworkService request information.
- GetResourceResponseFilter is not yet implemented.
API changes:
- Resource-related callbacks have been moved from CefRequestHandler to a new
CefResourceRequestHandler interface which is returned via the
GetResourceRequestHandler method. If the CefRequestHandler declines to handle
a resource it can optionally be handled by the CefRequestContextHandler, if
any, associated with the loading context.
- The OnProtocolExecution callback has been moved from CefRequestHandler to
CefResourceRequestHandler and will be called if a custom scheme request is
unhandled.
- Cookie send/save permission callbacks have been moved from CefRequestHandler
and CefResourceHandler to CefResourceRequestHandler.
- New methods added to CefResourceHandler that better match NetworkService
execution sequence expectations. The old methods are now deprecated.
- New methods added to CefRequest and CefResponse.
Known behavior changes with the NetworkService implementation:
- Modifying the |new_url| parameter in OnResourceRedirect will no longer result
in the method being called an additional time (likely a bug in the old
implementation).
- Modifying the request URL in OnResourceResponse would previously cause a
redirect. This behavior is now deprecated because the NetworkService does not
support this functionality when using default network loaders. Temporary
support has been added in combination with CefResourceHandler usage only.
- Other changes to the request object in OnResourceResponse will now cause the
request to be restarted. This means that OnBeforeResourceLoad, etc, will be
called an additional time with the new request information.
- CefResponse::GetMimeType will now be empty for non-200 responses.
- Requests using custom schemes can now be handled via CefResourceRequestHandler
with the same callback behavior as builtin schemes.
- Redirects of custom scheme requests will now be followed as expected.
- Default handling of builtin schemes can now be disabled by setting
|disable_default_handling| to true in GetResourceRequestHandler.
- Unhandled requests (custom scheme or builtin scheme with default handling
disabled) will fail with an CefResponse::GetError value of
ERR_UNKNOWN_URL_SCHEME.
- The CefSchemeHandlerFactory::Create callback will now include cookie headers.
To test:
- Run `cefclient --enable-network-service`. All resources should load
successfully (this tests the transparent proxy capability).
- All tests pass with NetworkService disabled.
- The following tests pass with NetworkService enabled:
- CookieTest.*
- FrameTest.* (excluding .*Nav)
- NavigationTest.* (excluding .Redirect*)
- RequestHandlerTest.*
- RequestContextTest.Basic*
- RequestContextTest.Popup*
- RequestTest.*
- ResourceManagerTest.*
- ResourceRequestHandlerTest.* (excluding .Filter*)
- SchemeHandlerTest.*
- StreamResourceHandlerTest.*
Under ARC (Automatic Reference Counting), assigning to an Objective-C
pointer has different semantics than assigning to a void* pointer.
This makes it dangerous to treat the same memory address as an
Objective-C pointer in some cases and as a "regular C pointer" in
other cases.
This change removes the conditional type defines and instead uses
void* everywhere. Explicit type casting in combination with ARC
annotations makes it safe to get typed Objective-C pointers from the
void* pointers.
This change enables ARC by default in the CEF binary distribution CMake
configuration for the cefclient and cefsimple sample applications. It can be
disabled by adding `-DOPTION_USE_ARC=Off` to the CMake command line.
ARC is not supported when building Chromium due to the substantial
number of changes that would be required in the Chromium code base.
Ozone builds can run with different platform backends (Wayland, X11, etc). Usage of the Views framework is required, and the cefclient sample application is not supported.
Example usage:
$ export GN_DEFINES="use_ozone=true"
$ cd /path/to/chromium/src/cef
$ ./cef_create_projects.sh
$ cd /path/to/chromium/src
$ ninja -C out/Release_GN_x64 cefsimple
$ ./out/Release_GN_x64/cefsimple --use-views --ozone-platform=wayland
Binary distributions can be created by passing the `--ozone` flag to make_distrib.py.
The Chromium content layer (which also exposes the NetworkService interface)
generally runs on the UI thread. Previous use of the IO thread for CookieManager
callbacks is an implementation detail of the old network stack that shouldn't be
exposed to clients.
To test: Run ceftests. They should pass as expected.
This change adds a new CefSettings.root_cache_path value that must be either
equal to or a parent directory of all CefSettings.cache_path and
CefRequestContextSettings.cache_path values. The sandbox may block read/write
access from the NetworkService to directories that do not meet this requirement.
To test: Run cefclient with a combination of the following flags:
--cache-path=c:\temp\cache
Cache data should be persisted to the specified directory.
--request-context-per-browser
A separate numbered cache directory should be created underneath the
cache-path directory for each new browser instance.
--enable-network-service --disable-extensions
Same tests, but with NetworkService enabled.
Known issues:
- When NetworkService is enabled a C:\temp\cache\cache\Cache directory is
created (should be C:\temp\cache\Cache).
This change removes cookie and request handler functionality that will not
supported by the NetworkService. Specifically, it is no longer possible to
change cookie storage locations at runime by returning a different
CefCookieManager for an already initialized CefRequestContext. After this change
you will need to use a separate CefRequestContext when creating a CefBrowser if
you require separate cookie storage.
The following methods have been removed:
- CefCookieManager::CreateManager
- CefCookieManager::GetBlockingManager
- CefCookieManager::SetStoragePath
- CefRequestContextHandler::GetCookieManager
The following methods have been renamed:
- CefRequestContext::GetDefaultCookieManager to GetCookieManager.
This change substantially simplifies the network implementation in CEF because
it is no longer necessary to proxy objects that are normally owned by Chromium.
Chromium patches that are no longer necessary will be removed as a follow-up
commit.
To test: Verify that `ceftests --gtest_filter=-PluginTest.*` pass with
NetworkService disabled. Plugin tests will be fixed in a follow-up commit.
This splits out the API hashes from the cef_version.h file which is generated at
build time. Changes to the cef_api_hash.h file are committed to the repo and
represent potentially breaking API changes. This commit history will be used to
calculate the version number.
- Windows: 10.0.17763.0 SDK is now required.
- Mac: 10.13 SDK is now required.
- Removed CefRequestContext::ResolveHostCached which is no longer supported by Chromium.
- The |category| value for all TRACE calls from CEF client applications is now
"cef.client" due to https://crrev.com/331266377d.
- The |with_menu_marker| parameter to CreateMenuButton has been removed due to
https://crrev.com/7f7e382118.
- Add CefWindowInfo::shared_texture_enabled and
CefRenderHandler::OnAcceleratedPaint for shared texture support. Currently
only supported on Windows (D3D11).
- Add CefWindowInfo::external_begin_frame_enabled and
CefBrowserHost::SendExternalBeginFrame for external begin frame support.
- Add CefRequestContext::LoadExtension, CefExtension, CefExtensionHandler and
related methods/interfaces.
- Add chrome://extensions-support that lists supported Chrome APIs.
- Add CefBrowserHost::SetAutoResizeEnabled and CefDisplayHandler::OnAutoResize
to support browser resize based on preferred web contents size.
- views: Add support for custom CefMenuButton popups.
- cefclient: Run with `--load-extension=set_page_color` command-line flag for
an extension loading example. Add `--use-views` on Windows and Linux for an
even better example.
- Add new CefBrowserHost::SetAccessibilityState method for toggling
accessibility state when readers are detected by the client.
- Add new CefAccessibilityHandler interface for the delivery of
accessibility notifications to windowless (OSR) clients.
- Fix delivery of CefFocusHandler callbacks to windowless clients.
- cefclient: Add example windowless accessibility implementation on Windows and macOS.
- cefclient: Automatically detect screen readers on Windows and macOS.
- Crash reporting is enabled and configured using a "crash_reporter.cfg"
file. See comments in include/cef_crash_util.h and tools/crash_server.py
for usage.
- Net security (CT, HSTS) expiration based on build age is now
disabled by default.
- Add new enable_net_security_expiration option to CefSettings and
CefRequestContextSettings.
- Move all tests from the top-level directory to tests/.
- Move files shared by cefclient and unittests to tests/shared/.
- Add a fused (single header/source file) version of gtest in
tests/gtest/ with associated CMake configuration.
- Test-only headers are now exposed in include/test/. Unit test
targets must define UNIT_TEST in order to access them.
- Replace usage of USING_CEF_SHARED with WRAPPING_CEF_SHARED for
clarity (only the libcef_dll_wrapper target should define it).
- Remove the RENAME_DIRECTORY CMake macro which is no longer used.
- Remove C++11 usage from unittests sources for compatibility with
the binary distribution configuration.
- Windows: Fix build errors due to chrome_elf.dll and imm32.lib
missing from the CMake configuration.