cef/cef1/libcef/cef_thread.cc

285 lines
8.6 KiB
C++
Raw Normal View History

// Copyright (c) 2010 The Chromium Embedded Framework Authors.
// Portions copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "libcef/cef_thread.h"
#include "base/compiler_specific.h"
#include "base/lazy_instance.h"
#include "base/message_loop.h"
#include "base/message_loop_proxy.h"
#include "base/threading/sequenced_worker_pool.h"
#if defined(OS_WIN)
#include <Objbase.h> // NOLINT(build/include_order)
#endif
using base::MessageLoopProxy;
namespace {
// Friendly names for the well-known threads.
static const char* cef_thread_names[CefThread::ID_COUNT] = {
"Cef_UIThread", // UI
"Cef_FileThread", // FILE
"Cef_IOThread", // IO
};
struct CefThreadGlobals {
CefThreadGlobals() {
memset(threads, 0, CefThread::ID_COUNT * sizeof(threads[0]));
}
// This lock protects |threads|. Do not read or modify that array
// without holding this lock. Do not block while holding this lock.
base::Lock lock;
// This array is protected by |lock|. The threads are not owned by this
// array. Typically, the threads are owned on the UI thread by
// BrowserMainLoop. BrowserThreadImpl objects remove themselves from this
// array upon destruction.
CefThread* threads[CefThread::ID_COUNT];
scoped_refptr<base::SequencedWorkerPool> blocking_pool;
};
base::LazyInstance<CefThreadGlobals>::Leaky
g_globals = LAZY_INSTANCE_INITIALIZER;
// An implementation of MessageLoopProxy to be used in conjunction
// with CefThread.
class CefThreadMessageLoopProxy : public MessageLoopProxy {
public:
explicit CefThreadMessageLoopProxy(CefThread::ID identifier)
: id_(identifier) {
}
// TaskRunner implementation.
virtual bool PostDelayedTask(const tracked_objects::Location& from_here,
const base::Closure& task,
base::TimeDelta delay) OVERRIDE {
return CefThread::PostDelayedTask(id_, from_here, task, delay);
}
// SequencedTaskRunner implementation.
virtual bool PostNonNestableDelayedTask(
const tracked_objects::Location& from_here,
const base::Closure& task,
base::TimeDelta delay) OVERRIDE {
return CefThread::PostNonNestableDelayedTask(id_, from_here, task, delay);
}
virtual bool RunsTasksOnCurrentThread() const OVERRIDE {
return CefThread::CurrentlyOn(id_);
}
private:
CefThread::ID id_;
DISALLOW_COPY_AND_ASSIGN(CefThreadMessageLoopProxy);
};
} // namespace
CefThread::CefThread(CefThread::ID identifier)
: Thread(cef_thread_names[identifier]),
identifier_(identifier) {
Initialize();
}
CefThread::CefThread(ID identifier, MessageLoop* message_loop)
: Thread(cef_thread_names[identifier]),
identifier_(identifier) {
message_loop->set_thread_name(cef_thread_names[identifier]);
set_message_loop(message_loop);
Initialize();
}
// static
void CefThread::CreateThreadPool() {
CefThreadGlobals& globals = g_globals.Get();
DCHECK(!globals.blocking_pool.get());
globals.blocking_pool = new base::SequencedWorkerPool(3, "BrowserBlocking");
}
// static
void CefThread::ShutdownThreadPool() {
// The goal is to make it impossible for chrome to 'infinite loop' during
// shutdown, but to reasonably expect that all BLOCKING_SHUTDOWN tasks queued
// during shutdown get run. There's nothing particularly scientific about the
// number chosen.
const int kMaxNewShutdownBlockingTasks = 1000;
CefThreadGlobals& globals = g_globals.Get();
globals.blocking_pool->Shutdown(kMaxNewShutdownBlockingTasks);
globals.blocking_pool = NULL;
}
void CefThread::Init() {
#if defined(OS_WIN)
// Initializes the COM library on the current thread.
CoInitialize(NULL);
#endif
#if defined(OS_MACOSX)
autorelease_pool_.reset(new base::mac::ScopedNSAutoreleasePool);
#endif
}
void CefThread::Cleanup() {
#if defined(OS_WIN)
// Closes the COM library on the current thread. CoInitialize must
// be balanced by a corresponding call to CoUninitialize.
CoUninitialize();
#endif
#if defined(OS_MACOSX)
autorelease_pool_.reset(NULL);
#endif
}
void CefThread::Initialize() {
CefThreadGlobals& globals = g_globals.Get();
base::AutoLock lock(globals.lock);
DCHECK(identifier_ >= 0 && identifier_ < ID_COUNT);
DCHECK(globals.threads[identifier_] == NULL);
globals.threads[identifier_] = this;
}
CefThread::~CefThread() {
// Stop the thread here, instead of the parent's class destructor. This is so
// that if there are pending tasks that run, code that checks that it's on the
// correct CefThread succeeds.
Stop();
CefThreadGlobals& globals = g_globals.Get();
base::AutoLock lock(globals.lock);
globals.threads[identifier_] = NULL;
#ifndef NDEBUG
// Double check that the threads are ordererd correctly in the enumeration.
for (int i = identifier_ + 1; i < ID_COUNT; ++i) {
DCHECK(!globals.threads[i]) <<
"Threads must be listed in the reverse order that they die";
}
#endif
}
// static
base::SequencedWorkerPool* CefThread::GetBlockingPool() {
CefThreadGlobals& globals = g_globals.Get();
DCHECK(globals.blocking_pool.get());
return globals.blocking_pool;
}
// static
bool CefThread::IsWellKnownThread(ID identifier) {
CefThreadGlobals& globals = g_globals.Get();
base::AutoLock lock(globals.lock);
return (identifier >= 0 && identifier < ID_COUNT &&
globals.threads[identifier]);
}
// static
bool CefThread::CurrentlyOn(ID identifier) {
CefThreadGlobals& globals = g_globals.Get();
base::AutoLock lock(globals.lock);
DCHECK(identifier >= 0 && identifier < ID_COUNT);
return globals.threads[identifier] &&
globals.threads[identifier]->message_loop() ==
base::MessageLoop::current();
}
// static
bool CefThread::PostTask(ID identifier,
const tracked_objects::Location& from_here,
const base::Closure& task) {
return PostTaskHelper(identifier, from_here, task, base::TimeDelta(), true);
}
// static
bool CefThread::PostDelayedTask(ID identifier,
const tracked_objects::Location& from_here,
const base::Closure& task,
base::TimeDelta delay) {
return PostTaskHelper(identifier, from_here, task, delay, true);
}
// static
bool CefThread::PostNonNestableTask(
ID identifier,
const tracked_objects::Location& from_here,
const base::Closure& task) {
return PostTaskHelper(identifier, from_here, task, base::TimeDelta(), false);
}
// static
bool CefThread::PostNonNestableDelayedTask(
ID identifier,
const tracked_objects::Location& from_here,
const base::Closure& task,
base::TimeDelta delay) {
return PostTaskHelper(identifier, from_here, task, delay, false);
}
// static
bool CefThread::GetCurrentThreadIdentifier(ID* identifier) {
CefThreadGlobals& globals = g_globals.Get();
base::MessageLoop* cur_message_loop = base::MessageLoop::current();
for (int i = 0; i < ID_COUNT; ++i) {
if (globals.threads[i] &&
globals.threads[i]->message_loop() == cur_message_loop) {
*identifier = globals.threads[i]->identifier_;
return true;
}
}
return false;
}
// static
scoped_refptr<MessageLoopProxy> CefThread::GetMessageLoopProxyForThread(
ID identifier) {
scoped_refptr<MessageLoopProxy> proxy =
new CefThreadMessageLoopProxy(identifier);
return proxy;
}
// static
bool CefThread::PostTaskHelper(
ID identifier,
const tracked_objects::Location& from_here,
const base::Closure& task,
base::TimeDelta delay,
bool nestable) {
DCHECK(identifier >= 0 && identifier < ID_COUNT);
// Optimization: to avoid unnecessary locks, we listed the ID enumeration in
// order of lifetime. So no need to lock if we know that the other thread
// outlives this one.
// Note: since the array is so small, ok to loop instead of creating a map,
// which would require a lock because std::map isn't thread safe, defeating
// the whole purpose of this optimization.
ID current_thread;
bool guaranteed_to_outlive_target_thread =
GetCurrentThreadIdentifier(&current_thread) &&
current_thread >= identifier;
CefThreadGlobals& globals = g_globals.Get();
if (!guaranteed_to_outlive_target_thread)
globals.lock.Acquire();
base::MessageLoop* message_loop = globals.threads[identifier] ?
globals.threads[identifier]->message_loop() : NULL;
if (message_loop) {
if (nestable) {
message_loop->PostDelayedTask(from_here, task, delay);
} else {
message_loop->PostNonNestableDelayedTask(from_here, task, delay);
}
}
if (!guaranteed_to_outlive_target_thread)
globals.lock.Release();
return !!message_loop;
}