GoToSocial/vendor/modernc.org/libc/pthread_musl.go

509 lines
13 KiB
Go

// Copyright 2024 The Libc Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && (amd64 || loong64)
package libc // import "modernc.org/libc"
import (
"runtime"
"slices"
"sync"
"sync/atomic"
"time"
"unsafe"
)
type pthreadAttr struct {
detachState int32
}
type pthreadCleanupItem struct {
routine, arg uintptr
}
// C version is 40 bytes.
type pthreadMutex struct {
sync.Mutex // 0 8
count int32 // 8 4
mType uint32 // 12 4
outer sync.Mutex // 16 8
owner int32 // 20 4
// 24
}
type pthreadConds struct {
sync.Mutex
conds map[uintptr][]chan struct{}
}
var (
// Ensure there's enough space for unsafe type conversions.
_ [unsafe.Sizeof(sync.Mutex{}) - __CCGO_SIZEOF_GO_MUTEX]byte
_ [unsafe.Sizeof(Tpthread_mutex_t{}) - unsafe.Sizeof(pthreadMutex{})]byte
_ [unsafe.Sizeof(Tpthread_attr_t{}) - unsafe.Sizeof(pthreadAttr{})]byte
pthreadKeysMutex sync.Mutex
pthreadKeyDestructors []uintptr
pthreadKeysFree []Tpthread_key_t
conds = pthreadConds{conds: map[uintptr][]chan struct{}{}}
)
func _pthread_setcancelstate(tls *TLS, new int32, old uintptr) int32 {
//TODO actually respect cancel state
if uint32(new) > 2 {
return EINVAL
}
p := tls.pthread + unsafe.Offsetof(t__pthread{}.Fcanceldisable)
if old != 0 {
r := *(*int32)(unsafe.Pointer(p))
*(*int32)(unsafe.Pointer(old)) = int32(byte(r))
}
*(*int32)(unsafe.Pointer(p)) = new
return 0
}
func Xpthread_getspecific(tls *TLS, k Tpthread_key_t) uintptr {
return tls.pthreadKeyValues[k]
}
func Xpthread_setspecific(tls *TLS, k Tpthread_key_t, x uintptr) int32 {
if tls.pthreadKeyValues == nil {
tls.pthreadKeyValues = map[Tpthread_key_t]uintptr{}
}
tls.pthreadKeyValues[k] = x
return 0
}
func Xpthread_key_create(tls *TLS, k uintptr, dtor uintptr) int32 {
pthreadKeysMutex.Lock()
defer pthreadKeysMutex.Unlock()
var key Tpthread_key_t
switch l := Tpthread_key_t(len(pthreadKeysFree)); {
case l == 0:
key = Tpthread_key_t(len(pthreadKeyDestructors))
pthreadKeyDestructors = append(pthreadKeyDestructors, dtor)
default:
key = pthreadKeysFree[l-1]
pthreadKeysFree = pthreadKeysFree[:l-1]
pthreadKeyDestructors[key] = dtor
}
*(*Tpthread_key_t)(unsafe.Pointer(k)) = key
return 0
}
func Xpthread_key_delete(tls *TLS, k Tpthread_key_t) int32 {
pthreadKeysMutex.Lock()
defer pthreadKeysMutex.Unlock()
pthreadKeysFree = append(pthreadKeysFree, k)
return 0
}
func Xpthread_create(tls *TLS, res, attrp, entry, arg uintptr) int32 {
var attr pthreadAttr
if attrp != 0 {
attr = *(*pthreadAttr)(unsafe.Pointer(attrp))
}
detachState := int32(_DT_JOINABLE)
if attr.detachState != 0 {
detachState = _DT_DETACHED
}
tls2 := NewTLS()
tls2.ownsPthread = false
*(*Tpthread_t)(unsafe.Pointer(res)) = tls2.pthread
(*t__pthread)(unsafe.Pointer(tls2.pthread)).Fdetach_state = detachState
if detachState == _DT_JOINABLE {
(*sync.Mutex)(unsafe.Pointer(tls2.pthread + unsafe.Offsetof(t__pthread{}.F__ccgo_join_mutex))).Lock()
}
go func() {
Xpthread_exit(tls2, (*(*func(*TLS, uintptr) uintptr)(unsafe.Pointer(&struct{ uintptr }{entry})))(tls2, arg))
}()
return 0
}
func Xpthread_exit(tls *TLS, result uintptr) {
state := atomic.LoadInt32((*int32)(unsafe.Pointer(tls.pthread + unsafe.Offsetof(t__pthread{}.Fdetach_state))))
(*t__pthread)(unsafe.Pointer(tls.pthread)).Fresult = result
switch state {
case _DT_JOINABLE, _DT_DETACHED:
// ok
default:
panic(todo("", state))
}
for len(tls.pthreadCleanupItems) != 0 {
Xpthread_cleanup_pop(tls, 1)
}
for {
done := true
for k, v := range tls.pthreadKeyValues {
if v != 0 {
delete(tls.pthreadKeyValues, k)
pthreadKeysMutex.Lock()
d := pthreadKeyDestructors[k]
pthreadKeysMutex.Unlock()
if d != 0 {
done = false
(*(*func(*TLS, uintptr))(unsafe.Pointer(&struct{ uintptr }{d})))(tls, v)
}
}
}
if done {
break
}
}
if state == _DT_JOINABLE {
(*sync.Mutex)(unsafe.Pointer(tls.pthread + unsafe.Offsetof(t__pthread{}.F__ccgo_join_mutex))).Unlock()
}
atomic.StoreInt32((*int32)(unsafe.Pointer(tls.pthread+unsafe.Offsetof(t__pthread{}.Fdetach_state))), _DT_EXITED)
tls.Close()
runtime.Goexit()
}
func Xpthread_join(tls *TLS, t Tpthread_t, res uintptr) (r int32) {
if (*t__pthread)(unsafe.Pointer(t)).Fdetach_state > _DT_JOINABLE {
return EINVAL
}
(*sync.Mutex)(unsafe.Pointer(t + unsafe.Offsetof(t__pthread{}.F__ccgo_join_mutex))).Lock()
if res != 0 {
*(*uintptr)(unsafe.Pointer(res)) = (*t__pthread)(unsafe.Pointer(tls.pthread)).Fresult
}
return 0
}
func Xpthread_cleanup_push(tls *TLS, f, x uintptr) {
X_pthread_cleanup_push(tls, 0, f, x)
}
func __pthread_cleanup_push(tls *TLS, _, f, x uintptr) {
tls.pthreadCleanupItems = append(tls.pthreadCleanupItems, pthreadCleanupItem{f, x})
}
func X_pthread_cleanup_push(tls *TLS, _, f, x uintptr) {
tls.pthreadCleanupItems = append(tls.pthreadCleanupItems, pthreadCleanupItem{f, x})
}
func Xpthread_cleanup_pop(tls *TLS, run int32) {
X_pthread_cleanup_pop(tls, 0, run)
}
func __pthread_cleanup_pop(tls *TLS, _ uintptr, run int32) {
X_pthread_cleanup_pop(tls, 0, run)
}
func X_pthread_cleanup_pop(tls *TLS, _ uintptr, run int32) {
l := len(tls.pthreadCleanupItems)
item := tls.pthreadCleanupItems[l-1]
tls.pthreadCleanupItems = tls.pthreadCleanupItems[:l-1]
if run != 0 {
(*(*func(*TLS, uintptr))(unsafe.Pointer(&struct{ uintptr }{item.routine})))(tls, item.arg)
}
}
func Xpthread_attr_init(tls *TLS, a uintptr) int32 {
*(*Tpthread_attr_t)(unsafe.Pointer(a)) = Tpthread_attr_t{}
return 0
}
func Xpthread_attr_setscope(tls *TLS, a uintptr, scope int32) int32 {
switch scope {
case PTHREAD_SCOPE_SYSTEM:
return 0
case PTHREAD_SCOPE_PROCESS:
return ENOTSUP
default:
return EINVAL
}
}
func Xpthread_attr_setstacksize(tls *TLS, a uintptr, stacksite Tsize_t) int32 {
return 0
}
func Xpthread_attr_setdetachstate(tls *TLS, a uintptr, state int32) (r int32) {
if uint32(state) > 1 {
return EINVAL
}
(*pthreadAttr)(unsafe.Pointer(a)).detachState = state
return 0
}
func Xpthread_attr_getdetachstate(tls *TLS, a uintptr, state uintptr) int32 {
*(*int32)(unsafe.Pointer(state)) = (*pthreadAttr)(unsafe.Pointer(a)).detachState
return 0
}
func Xpthread_attr_destroy(tls *TLS, a uintptr) int32 {
return 0
}
func Xpthread_self(tls *TLS) uintptr {
return tls.pthread
}
func Xpthread_mutex_init(tls *TLS, m, a uintptr) int32 {
*(*Tpthread_mutex_t)(unsafe.Pointer(m)) = Tpthread_mutex_t{}
if a != 0 {
(*pthreadMutex)(unsafe.Pointer(m)).mType = (*Tpthread_mutexattr_t)(unsafe.Pointer(a)).F__attr
}
return 0
}
func Xpthread_mutex_destroy(tls *TLS, mutex uintptr) int32 {
return 0
}
func Xpthread_mutex_lock(tls *TLS, m uintptr) int32 {
(*pthreadMutex)(unsafe.Pointer(m)).outer.Lock()
owner := (*pthreadMutex)(unsafe.Pointer(m)).owner
typ := (*pthreadMutex)(unsafe.Pointer(m)).mType
switch typ {
case PTHREAD_MUTEX_NORMAL:
(*pthreadMutex)(unsafe.Pointer(m)).owner = tls.ID
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
(*pthreadMutex)(unsafe.Pointer(m)).Lock()
case PTHREAD_MUTEX_RECURSIVE:
switch owner {
case 0:
(*pthreadMutex)(unsafe.Pointer(m)).count = 1
(*pthreadMutex)(unsafe.Pointer(m)).owner = tls.ID
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
(*pthreadMutex)(unsafe.Pointer(m)).Lock()
return 0
case tls.ID:
(*pthreadMutex)(unsafe.Pointer(m)).count++
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
return 0
default:
wait:
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
(*pthreadMutex)(unsafe.Pointer(m)).Lock()
(*pthreadMutex)(unsafe.Pointer(m)).outer.Lock()
if (*pthreadMutex)(unsafe.Pointer(m)).owner != 0 {
goto wait
}
(*pthreadMutex)(unsafe.Pointer(m)).count = 1
(*pthreadMutex)(unsafe.Pointer(m)).owner = tls.ID
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
return 0
}
default:
panic(todo("typ=%v", typ))
}
return 0
}
func Xpthread_mutex_trylock(tls *TLS, m uintptr) int32 {
(*pthreadMutex)(unsafe.Pointer(m)).outer.Lock()
owner := (*pthreadMutex)(unsafe.Pointer(m)).owner
typ := (*pthreadMutex)(unsafe.Pointer(m)).mType
switch typ {
case PTHREAD_MUTEX_NORMAL:
if owner != 0 {
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
return EBUSY
}
(*pthreadMutex)(unsafe.Pointer(m)).owner = tls.ID
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
(*pthreadMutex)(unsafe.Pointer(m)).Lock()
return 0
default:
panic(todo("typ=%v", typ))
}
}
func Xpthread_mutex_unlock(tls *TLS, m uintptr) int32 {
(*pthreadMutex)(unsafe.Pointer(m)).outer.Lock()
count := (*pthreadMutex)(unsafe.Pointer(m)).count
owner := (*pthreadMutex)(unsafe.Pointer(m)).owner
typ := (*pthreadMutex)(unsafe.Pointer(m)).mType
switch typ {
case PTHREAD_MUTEX_NORMAL:
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
(*pthreadMutex)(unsafe.Pointer(m)).Unlock()
return 0
case PTHREAD_MUTEX_RECURSIVE:
switch owner {
case tls.ID:
switch count {
case 1:
(*pthreadMutex)(unsafe.Pointer(m)).owner = 0
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
(*pthreadMutex)(unsafe.Pointer(m)).Unlock()
return 0
default:
(*pthreadMutex)(unsafe.Pointer(m)).count--
(*pthreadMutex)(unsafe.Pointer(m)).outer.Unlock()
return 0
}
default:
panic(todo("", owner, tls.ID))
}
default:
panic(todo("", typ))
}
}
func Xpthread_cond_init(tls *TLS, c, a uintptr) int32 {
*(*Tpthread_cond_t)(unsafe.Pointer(c)) = Tpthread_cond_t{}
if a != 0 {
panic(todo(""))
}
conds.Lock()
delete(conds.conds, c)
conds.Unlock()
return 0
}
func Xpthread_cond_timedwait(tls *TLS, c, m, ts uintptr) (r int32) {
var to <-chan time.Time
if ts != 0 {
deadlineSecs := (*Ttimespec)(unsafe.Pointer(ts)).Ftv_sec
deadlineNsecs := (*Ttimespec)(unsafe.Pointer(ts)).Ftv_nsec
deadline := time.Unix(deadlineSecs, deadlineNsecs)
d := deadline.Sub(time.Now())
if d <= 0 {
return ETIMEDOUT
}
to = time.After(d)
}
conds.Lock()
waiters := conds.conds[c]
ch := make(chan struct{}, 1)
waiters = append(waiters, ch)
conds.conds[c] = waiters
conds.Unlock()
defer func() {
conds.Lock()
defer conds.Unlock()
waiters = conds.conds[c]
for i, v := range waiters {
if v == ch {
conds.conds[c] = slices.Delete(waiters, i, i+1)
return
}
}
}()
switch typ := (*pthreadMutex)(unsafe.Pointer(m)).mType; typ {
case PTHREAD_MUTEX_NORMAL:
(*pthreadMutex)(unsafe.Pointer(m)).owner = 0
(*pthreadMutex)(unsafe.Pointer(m)).Unlock()
select {
case <-ch:
// ok
case <-to:
r = ETIMEDOUT
}
(*pthreadMutex)(unsafe.Pointer(m)).owner = tls.ID
(*pthreadMutex)(unsafe.Pointer(m)).Lock()
return r
default:
panic(todo("", typ))
}
}
func Xpthread_cond_wait(tls *TLS, c, m uintptr) int32 {
return Xpthread_cond_timedwait(tls, c, m, 0)
}
func Xpthread_cond_signal(tls *TLS, c uintptr) int32 {
return pthreadSignalN(tls, c, false)
}
func pthreadSignalN(tls *TLS, c uintptr, all bool) int32 {
conds.Lock()
waiters := conds.conds[c]
handle := waiters
if len(waiters) != 0 {
switch {
case all:
delete(conds.conds, c)
default:
handle = handle[:1]
conds.conds[c] = waiters[1:]
}
}
conds.Unlock()
for _, v := range handle {
close(v)
}
return 0
}
func Xpthread_cond_broadcast(tls *TLS, c uintptr) int32 {
return pthreadSignalN(tls, c, true)
}
func Xpthread_cond_destroy(tls *TLS, c uintptr) int32 {
return Xpthread_cond_broadcast(tls, c)
}
func Xpthread_atfork(tls *TLS, prepare, parent, child uintptr) int32 {
// fork(2) not supported.
return 0
}
func Xpthread_mutexattr_init(tls *TLS, a uintptr) int32 {
*(*Tpthread_mutexattr_t)(unsafe.Pointer(a)) = Tpthread_mutexattr_t{}
return 0
}
func Xpthread_mutexattr_destroy(tls *TLS, a uintptr) int32 {
return 0
}
func Xpthread_mutexattr_settype(tls *TLS, a uintptr, typ int32) int32 {
if uint32(typ) > 2 {
return EINVAL
}
(*Tpthread_mutexattr_t)(unsafe.Pointer(a)).F__attr = uint32(typ) & 3
return 0
}
func Xpthread_detach(tls *TLS, t uintptr) int32 {
state := atomic.SwapInt32((*int32)(unsafe.Pointer(tls.pthread+unsafe.Offsetof(t__pthread{}.Fdetach_state))), _DT_DETACHED)
switch state {
case _DT_EXITED, _DT_DETACHED:
return 0
default:
panic(todo("", tls.ID, state))
}
}
// int pthread_equal(pthread_t, pthread_t);
func Xpthread_equal(tls *TLS, t, u uintptr) int32 {
return Bool32(t == u)
}
// int pthread_sigmask(int how, const sigset_t *restrict set, sigset_t *restrict old)
func _pthread_sigmask(tls *TLS, now int32, set, old uintptr) int32 {
// ignored
return 0
}
// 202402251838 all_test.go:589: files=36 buildFails=30 execFails=2 pass=4
// 202402262246 all_test.go:589: files=36 buildFails=26 execFails=2 pass=8
// 202403041858 all_musl_test.go:640: files=36 buildFails=22 execFails=4 pass=10