GoToSocial/vendor/github.com/tetratelabs/wazero/internal/descriptor/table.go

165 lines
4.6 KiB
Go

package descriptor
import "math/bits"
// Table is a data structure mapping 32 bit descriptor to items.
//
// # Negative keys are invalid.
//
// Negative keys (e.g. -1) are invalid inputs and will return a corresponding
// not-found value. This matches POSIX behavior of file descriptors.
// See https://pubs.opengroup.org/onlinepubs/9699919799/functions/dirfd.html#tag_16_90
//
// # Data structure design
//
// The data structure optimizes for memory density and lookup performance,
// trading off compute at insertion time. This is a useful compromise for the
// use cases we employ it with: items are usually accessed a lot more often
// than they are inserted, each operation requires a table lookup, so we are
// better off spending extra compute to insert items in the table in order to
// get cheaper lookups. Memory efficiency is also crucial to support scaling
// with programs that maintain thousands of items: having a high or non-linear
// memory-to-item ratio could otherwise be used as an attack vector by
// malicious applications attempting to damage performance of the host.
type Table[Key ~int32, Item any] struct {
masks []uint64
items []Item
}
// Len returns the number of items stored in the table.
func (t *Table[Key, Item]) Len() (n int) {
// We could make this a O(1) operation if we cached the number of items in
// the table. More state usually means more problems, so until we have a
// clear need for this, the simple implementation may be a better trade off.
for _, mask := range t.masks {
n += bits.OnesCount64(mask)
}
return n
}
// grow ensures that t has enough room for n items, potentially reallocating the
// internal buffers if their capacity was too small to hold this many items.
func (t *Table[Key, Item]) grow(n int) {
// Round up to a multiple of 64 since this is the smallest increment due to
// using 64 bits masks.
n = (n*64 + 63) / 64
if n > len(t.masks) {
masks := make([]uint64, n)
copy(masks, t.masks)
items := make([]Item, n*64)
copy(items, t.items)
t.masks = masks
t.items = items
}
}
// Insert inserts the given item to the table, returning the key that it is
// mapped to or false if the table was full.
//
// The method does not perform deduplication, it is possible for the same item
// to be inserted multiple times, each insertion will return a different key.
func (t *Table[Key, Item]) Insert(item Item) (key Key, ok bool) {
offset := 0
insert:
// Note: this loop could be made a lot more efficient using vectorized
// operations: 256 bits vector registers would yield a theoretical 4x
// speed up (e.g. using AVX2).
for index, mask := range t.masks[offset:] {
if ^mask != 0 { // not full?
shift := bits.TrailingZeros64(^mask)
index += offset
key = Key(index)*64 + Key(shift)
t.items[key] = item
t.masks[index] = mask | uint64(1<<shift)
return key, key >= 0
}
}
offset = len(t.masks)
n := 2 * len(t.masks)
if n == 0 {
n = 1
}
t.grow(n)
goto insert
}
// Lookup returns the item associated with the given key (may be nil).
func (t *Table[Key, Item]) Lookup(key Key) (item Item, found bool) {
if key < 0 { // invalid key
return
}
if i := int(key); i >= 0 && i < len(t.items) {
index := uint(key) / 64
shift := uint(key) % 64
if (t.masks[index] & (1 << shift)) != 0 {
item, found = t.items[i], true
}
}
return
}
// InsertAt inserts the given `item` at the item descriptor `key`. This returns
// false if the insert was impossible due to negative key.
func (t *Table[Key, Item]) InsertAt(item Item, key Key) bool {
if key < 0 {
return false
}
if diff := int(key) - t.Len(); diff > 0 {
t.grow(diff)
}
index := uint(key) / 64
shift := uint(key) % 64
t.masks[index] |= 1 << shift
t.items[key] = item
return true
}
// Delete deletes the item stored at the given key from the table.
func (t *Table[Key, Item]) Delete(key Key) {
if key < 0 { // invalid key
return
}
if index, shift := key/64, key%64; int(index) < len(t.masks) {
mask := t.masks[index]
if (mask & (1 << shift)) != 0 {
var zero Item
t.items[key] = zero
t.masks[index] = mask & ^uint64(1<<shift)
}
}
}
// Range calls f for each item and its associated key in the table. The function
// f might return false to interupt the iteration.
func (t *Table[Key, Item]) Range(f func(Key, Item) bool) {
for i, mask := range t.masks {
if mask == 0 {
continue
}
for j := Key(0); j < 64; j++ {
if (mask & (1 << j)) == 0 {
continue
}
if key := Key(i)*64 + j; !f(key, t.items[key]) {
return
}
}
}
}
// Reset clears the content of the table.
func (t *Table[Key, Item]) Reset() {
for i := range t.masks {
t.masks[i] = 0
}
var zero Item
for i := range t.items {
t.items[i] = zero
}
}