GoToSocial/vendor/modernc.org/cc/v3/ast2.go

1188 lines
33 KiB
Go

// Copyright 2019 The CC Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cc // import "modernc.org/cc/v3"
import (
"fmt"
"io"
"os"
"path/filepath"
"sort"
"strings"
)
// Source is a named part of a translation unit. If Value is empty, Name is
// interpreted as a path to file containing the source code.
type Source struct {
Name string
Value string
DoNotCache bool // Disable caching of this source
}
// Promote returns the type the operands of a binary operation are promoted to
// or the type and argument passed in a function call is promoted.
func (n *AssignmentExpression) Promote() Type { return n.promote }
type StructInfo struct {
Size uintptr
Align int
}
// AST represents a translation unit and its related data.
type AST struct {
Enums map[StringID]Operand // Enumeration constants declared in file scope.
Macros map[StringID]*Macro // Macros as defined after parsing.
PtrdiffType Type
Scope Scope // File scope.
SizeType Type
StructTypes map[StringID]Type // Tagged struct/union types declared in file scope.
// Alignment and size of every struct/union defined in the translation
// unit. Valid only after Translate.
Structs map[StructInfo]struct{}
// TLD contains pruned file scope declarators, ie. either the first one
// or the first one that has an initializer.
TLD map[*Declarator]struct{}
TrailingSeperator StringID // White space and/or comments preceding EOF.
TranslationUnit *TranslationUnit
WideCharType Type
cfg *Config
cpp *cpp
}
// Eval returns the operand that represents the value of m, if it expands to a
// valid constant expression other than an identifier, or an error, if any.
func (n *AST) Eval(m *Macro) (o Operand, err error) {
defer func() {
if e := recover(); e != nil {
o = nil
err = fmt.Errorf("%v", e)
}
}()
if m.IsFnLike() {
return nil, fmt.Errorf("cannot evaluate function-like macro")
}
n.cpp.ctx.cfg.ignoreErrors = true
n.cpp.ctx.evalIdentError = true
v := n.cpp.eval(m.repl)
switch x := v.(type) {
case int64:
return &operand{abi: &n.cfg.ABI, typ: n.cfg.ABI.Type(LongLong), value: Int64Value(x)}, nil
case uint64:
return &operand{abi: &n.cfg.ABI, typ: n.cfg.ABI.Type(ULongLong), value: Uint64Value(x)}, nil
default:
return nil, fmt.Errorf("unexpected value: %T", x)
}
}
// Parse preprocesses and parses a translation unit and returns an *AST or
// error, if any.
//
// Search paths listed in includePaths and sysIncludePaths are used to resolve
// #include "foo.h" and #include <foo.h> preprocessing directives respectively.
// A special search path "@" is interpreted as 'the same directory as where the
// file with the #include directive is'.
//
// The sources should typically provide, usually in this particular order:
//
// - predefined macros, eg.
//
// #define __SIZE_TYPE__ long unsigned int
//
// - built-in declarations, eg.
//
// int __builtin_printf(char *__format, ...);
//
// - command-line provided directives, eg.
//
// #define FOO
// #define BAR 42
// #undef QUX
//
// - normal C sources, eg.
//
// int main() {}
//
// All search and file paths should be absolute paths.
//
// If the preprocessed translation unit is empty, the function may return (nil,
// nil).
//
// The parser does only the minimum declarations/identifier resolving necessary
// for correct parsing. Redeclarations are not checked.
//
// Declarators (*Declarator) and StructDeclarators (*StructDeclarator) are
// inserted in the appropriate scopes.
//
// Tagged struct/union specifier definitions (*StructOrUnionSpecifier) are
// inserted in the appropriate scopes.
//
// Tagged enum specifier definitions (*EnumSpecifier) and enumeration constants
// (*Enumerator) are inserted in the appropriate scopes.
//
// Labels (*LabeledStatement) are inserted in the appropriate scopes.
func Parse(cfg *Config, includePaths, sysIncludePaths []string, sources []Source) (*AST, error) {
return parse(newContext(cfg), includePaths, sysIncludePaths, sources)
}
func parse(ctx *context, includePaths, sysIncludePaths []string, sources []Source) (*AST, error) {
if s := ctx.cfg.SharedFunctionDefinitions; s != nil {
if s.M == nil {
s.M = map[*FunctionDefinition]struct{}{}
}
if s.m == nil {
s.m = map[sharedFunctionDefinitionKey]*FunctionDefinition{}
}
}
if debugWorkingDir || ctx.cfg.DebugWorkingDir {
switch wd, err := os.Getwd(); err {
case nil:
fmt.Fprintf(os.Stderr, "OS working dir: %s\n", wd)
default:
fmt.Fprintf(os.Stderr, "OS working dir: error %s\n", err)
}
fmt.Fprintf(os.Stderr, "Config.WorkingDir: %s\n", ctx.cfg.WorkingDir)
}
if debugIncludePaths || ctx.cfg.DebugIncludePaths {
fmt.Fprintf(os.Stderr, "include paths: %v\n", includePaths)
fmt.Fprintf(os.Stderr, "system include paths: %v\n", sysIncludePaths)
}
ctx.includePaths = includePaths
ctx.sysIncludePaths = sysIncludePaths
var in []source
for _, v := range sources {
ts, err := cache.get(ctx, v)
if err != nil {
return nil, err
}
in = append(in, ts)
}
p := newParser(ctx, make(chan *[]Token, 5000)) //DONE benchmark tuned
var sep StringID
var ssep []byte
var seq int32
cpp := newCPP(ctx)
go func() {
defer func() {
close(p.in)
ctx.intMaxWidth = cpp.intMaxWidth()
}()
toks := tokenPool.Get().(*[]Token)
*toks = (*toks)[:0]
for pline := range cpp.translationPhase4(in) {
line := *pline
for _, tok := range line {
switch tok.char {
case ' ', '\n':
if ctx.cfg.PreserveOnlyLastNonBlankSeparator {
if strings.TrimSpace(tok.value.String()) != "" {
sep = tok.value
}
break
}
switch {
case sep != 0:
ssep = append(ssep, tok.String()...)
default:
sep = tok.value
ssep = append(ssep[:0], sep.String()...)
}
default:
var t Token
t.Rune = tok.char
switch {
case len(ssep) != 0:
t.Sep = dict.id(ssep)
default:
t.Sep = sep
}
t.Value = tok.value
t.Src = tok.src
t.file = tok.file
t.macro = tok.macro
t.pos = tok.pos
seq++
t.seq = seq
*toks = append(*toks, t)
sep = 0
ssep = ssep[:0]
}
}
token4Pool.Put(pline)
var c rune
if n := len(*toks); n != 0 {
c = (*toks)[n-1].Rune
}
switch c {
case STRINGLITERAL, LONGSTRINGLITERAL:
// nop
default:
if len(*toks) != 0 {
p.in <- translationPhase5(ctx, toks)
toks = tokenPool.Get().(*[]Token)
*toks = (*toks)[:0]
}
}
}
if len(*toks) != 0 {
p.in <- translationPhase5(ctx, toks)
}
}()
tu := p.translationUnit()
if p.errored { // Must drain
go func() {
for range p.in {
}
}()
}
if err := ctx.Err(); err != nil {
return nil, err
}
if p.errored && !ctx.cfg.ignoreErrors {
return nil, fmt.Errorf("%v: syntax error", p.tok.Position())
}
if p.scopes != 0 {
panic(internalErrorf("invalid scope nesting but no error reported"))
}
ts := sep
if len(ssep) != 0 {
ts = dict.id(ssep)
}
return &AST{
Macros: cpp.macros,
Scope: p.fileScope,
TLD: map[*Declarator]struct{}{},
TrailingSeperator: ts,
TranslationUnit: tu,
cfg: ctx.cfg,
cpp: cpp,
}, nil
}
func translationPhase5(ctx *context, toks *[]Token) *[]Token {
// [0], 5.1.1.2, 5
//
// Each source character set member and escape sequence in character
// constants and string literals is converted to the corresponding
// member of the execution character set; if there is no corresponding
// member, it is converted to an implementation- defined member other
// than the null (wide) character.
for i, tok := range *toks {
var cpt cppToken
switch tok.Rune {
case STRINGLITERAL, LONGSTRINGLITERAL:
cpt.char = tok.Rune
cpt.value = tok.Value
cpt.src = tok.Src
cpt.file = tok.file
cpt.pos = tok.pos
(*toks)[i].Value = dict.sid(stringConst(ctx, cpt))
case CHARCONST, LONGCHARCONST:
var cpt cppToken
cpt.char = tok.Rune
cpt.value = tok.Value
cpt.src = tok.Src
cpt.file = tok.file
cpt.pos = tok.pos
switch r := charConst(ctx, cpt); {
case r <= 255:
(*toks)[i].Value = dict.sid(string(r))
default:
switch cpt.char {
case CHARCONST:
ctx.err(tok.Position(), "invalid character constant: %s", tok.Value)
default:
(*toks)[i].Value = dict.sid(string(r))
}
}
}
}
return toks
}
// Preprocess preprocesses a translation unit and outputs the result to w.
//
// Please see Parse for the documentation of the other parameters.
func Preprocess(cfg *Config, includePaths, sysIncludePaths []string, sources []Source, w io.Writer) error {
ctx := newContext(cfg)
if debugWorkingDir || ctx.cfg.DebugWorkingDir {
switch wd, err := os.Getwd(); err {
case nil:
fmt.Fprintf(os.Stderr, "OS working dir: %s\n", wd)
default:
fmt.Fprintf(os.Stderr, "OS working dir: error %s\n", err)
}
fmt.Fprintf(os.Stderr, "Config.WorkingDir: %s\n", ctx.cfg.WorkingDir)
}
if debugIncludePaths || ctx.cfg.DebugIncludePaths {
fmt.Fprintf(os.Stderr, "include paths: %v\n", includePaths)
fmt.Fprintf(os.Stderr, "system include paths: %v\n", sysIncludePaths)
}
ctx.includePaths = includePaths
ctx.sysIncludePaths = sysIncludePaths
var in []source
for _, v := range sources {
ts, err := cache.get(ctx, v)
if err != nil {
return err
}
in = append(in, ts)
}
var sep StringID
cpp := newCPP(ctx)
toks := tokenPool.Get().(*[]Token)
*toks = (*toks)[:0]
for pline := range cpp.translationPhase4(in) {
line := *pline
for _, tok := range line {
switch tok.char {
case ' ', '\n':
if ctx.cfg.PreserveOnlyLastNonBlankSeparator {
if strings.TrimSpace(tok.value.String()) != "" {
sep = tok.value
}
break
}
switch {
case sep != 0:
sep = dict.sid(sep.String() + tok.String())
default:
sep = tok.value
}
default:
var t Token
t.Rune = tok.char
t.Sep = sep
t.Value = tok.value
t.Src = tok.src
t.file = tok.file
t.pos = tok.pos
*toks = append(*toks, t)
sep = 0
}
}
token4Pool.Put(pline)
var c rune
if n := len(*toks); n != 0 {
c = (*toks)[n-1].Rune
}
switch c {
case STRINGLITERAL, LONGSTRINGLITERAL:
// nop
default:
if len(*toks) != 0 {
for _, v := range *translationPhase5(ctx, toks) {
if err := wTok(w, v); err != nil {
return err
}
}
toks = tokenPool.Get().(*[]Token)
*toks = (*toks)[:0]
}
}
}
if len(*toks) != 0 {
for _, v := range *translationPhase5(ctx, toks) {
if err := wTok(w, v); err != nil {
return err
}
}
}
if _, err := fmt.Fprintln(w); err != nil {
return err
}
return ctx.Err()
}
func wTok(w io.Writer, tok Token) (err error) {
switch tok.Rune {
case STRINGLITERAL, LONGSTRINGLITERAL:
_, err = fmt.Fprintf(w, `%s"%s"`, tok.Sep, cQuotedString(tok.String(), true))
case CHARCONST, LONGCHARCONST:
_, err = fmt.Fprintf(w, `%s'%s'`, tok.Sep, cQuotedString(tok.String(), false))
default:
_, err = fmt.Fprintf(w, "%s%s", tok.Sep, tok)
}
return err
}
func cQuotedString(s string, isString bool) []byte {
var b []byte
for i := 0; i < len(s); i++ {
c := s[i]
switch c {
case '\b':
b = append(b, '\\', 'b')
continue
case '\f':
b = append(b, '\\', 'f')
continue
case '\n':
b = append(b, '\\', 'n')
continue
case '\r':
b = append(b, '\\', 'r')
continue
case '\t':
b = append(b, '\\', 't')
continue
case '\\':
b = append(b, '\\', '\\')
continue
case '"':
switch {
case isString:
b = append(b, '\\', '"')
default:
b = append(b, '"')
}
continue
case '\'':
switch {
case isString:
b = append(b, '\'')
default:
b = append(b, '\\', '\'')
}
continue
}
switch {
case c < ' ' || c >= 0x7f:
b = append(b, '\\', octal(c>>6), octal(c>>3), octal(c))
default:
b = append(b, c)
}
}
return b
}
func octal(b byte) byte { return '0' + b&7 }
var trcSource = Source{"<builtin-trc>", `
extern void *stderr;
int fflush(void *stream);
int fprintf(void *stream, const char *format, ...);
`, false}
// Translate parses and typechecks a translation unit and returns an *AST or
// error, if any.
//
// Please see Parse for the documentation of the parameters.
func Translate(cfg *Config, includePaths, sysIncludePaths []string, sources []Source) (*AST, error) {
if cfg.InjectTracingCode {
for i, v := range sources {
if filepath.Ext(v.Name) == ".c" {
sources = append(append(append([]Source(nil), sources[:i]...), trcSource), sources[i:]...)
}
}
}
return translate(newContext(cfg), includePaths, sysIncludePaths, sources)
}
func translate(ctx *context, includePaths, sysIncludePaths []string, sources []Source) (*AST, error) {
ast, err := parse(ctx, includePaths, sysIncludePaths, sources)
if err != nil {
return nil, err
}
if ctx, err = ast.typecheck(); err != nil {
return nil, err
}
ast.PtrdiffType = ptrdiffT(ctx, ast.Scope, Token{})
ast.SizeType = sizeT(ctx, ast.Scope, Token{})
ast.WideCharType = wcharT(ctx, ast.Scope, Token{})
return ast, nil
}
// Typecheck determines types of objects and expressions and verifies types are
// valid in the context they are used.
func (n *AST) Typecheck() error {
_, err := n.typecheck()
return err
}
func (n *AST) typecheck() (*context, error) {
ctx := newContext(n.cfg)
if err := ctx.cfg.ABI.sanityCheck(ctx, int(ctx.intMaxWidth), n.Scope); err != nil {
return nil, err
}
ctx.intBits = int(ctx.cfg.ABI.Types[Int].Size) * 8
ctx.ast = n
n.TranslationUnit.check(ctx)
n.Structs = ctx.structs
var a []int
for k := range n.Scope {
a = append(a, int(k))
}
sort.Ints(a)
for _, v := range a {
nm := StringID(v)
defs := n.Scope[nm]
var r, w int
for _, v := range defs {
switch x := v.(type) {
case *Declarator:
r += x.Read
w += x.Write
}
}
for _, v := range defs {
switch x := v.(type) {
case *Declarator:
x.Read = r
x.Write = w
}
}
var pruned *Declarator
for _, v := range defs {
switch x := v.(type) {
case *Declarator:
//TODO check compatible types
switch {
case x.IsExtern() && !x.fnDef:
// nop
case pruned == nil:
pruned = x
case pruned.hasInitializer && x.hasInitializer:
ctx.errNode(x, "multiple initializers for the same symbol")
continue
case pruned.fnDef && x.fnDef:
ctx.errNode(x, "multiple function definitions")
continue
case x.hasInitializer || x.fnDef:
pruned = x
}
}
}
if pruned == nil {
continue
}
n.TLD[pruned] = struct{}{}
}
n.Enums = ctx.enums
n.StructTypes = ctx.structTypes
return ctx, ctx.Err()
}
func (n *AlignmentSpecifier) align() int {
switch n.Case {
case AlignmentSpecifierAlignasType: // "_Alignas" '(' TypeName ')'
return n.TypeName.Type().Align()
case AlignmentSpecifierAlignasExpr: // "_Alignas" '(' ConstantExpression ')'
return n.ConstantExpression.Operand.Type().Align()
default:
panic(internalError())
}
}
// Closure reports the variables closed over by a nested function (case
// BlockItemFuncDef).
func (n *BlockItem) Closure() map[StringID]struct{} { return n.closure }
// FunctionDefinition returns the nested function (case BlockItemFuncDef).
func (n *BlockItem) FunctionDefinition() *FunctionDefinition { return n.fn }
func (n *Declarator) IsStatic() bool { return n.td != nil && n.td.static() }
// IsImplicit reports whether n was not declared nor defined, only inferred.
func (n *Declarator) IsImplicit() bool { return n.implicit }
func (n *Declarator) isVisible(at int32) bool { return at == 0 || n.DirectDeclarator.ends() < at }
func (n *Declarator) setLHS(lhs *Declarator) {
if n == nil {
return
}
if n.lhs == nil {
n.lhs = map[*Declarator]struct{}{}
}
n.lhs[lhs] = struct{}{}
}
// LHS reports which declarators n is used in assignment RHS or which function
// declarators n is used in a function argument. To collect this information,
// TrackAssignments in Config must be set during type checking.
// The returned map may contain a nil key. That means that n is assigned to a
// declarator not known at typechecking time.
func (n *Declarator) LHS() map[*Declarator]struct{} { return n.lhs }
// Called reports whether n is involved in expr in expr(callArgs).
func (n *Declarator) Called() bool { return n.called }
// FunctionDefinition returns the function definition associated with n, if any.
func (n *Declarator) FunctionDefinition() *FunctionDefinition {
return n.funcDefinition
}
// NameTok returns n's declaring name token.
func (n *Declarator) NameTok() (r Token) {
if n == nil || n.DirectDeclarator == nil {
return r
}
return n.DirectDeclarator.NameTok()
}
// LexicalScope returns the lexical scope of n.
func (n *Declarator) LexicalScope() Scope { return n.DirectDeclarator.lexicalScope }
// Name returns n's declared name.
func (n *Declarator) Name() StringID {
if n == nil || n.DirectDeclarator == nil {
return 0
}
return n.DirectDeclarator.Name()
}
// ParamScope returns the scope in which n's function parameters are declared
// if the underlying type of n is a function or nil otherwise. If n is part of
// a function definition the scope is the same as the scope of the function
// body.
func (n *Declarator) ParamScope() Scope {
if n == nil {
return nil
}
return n.DirectDeclarator.ParamScope()
}
// Type returns the type of n.
func (n *Declarator) Type() Type { return n.typ }
// IsExtern reports whether n was declared with storage class specifier 'extern'.
func (n *Declarator) IsExtern() bool { return n.td != nil && n.td.extern() }
func (n *DeclarationSpecifiers) auto() bool { return n != nil && n.class&fAuto != 0 }
func (n *DeclarationSpecifiers) extern() bool { return n != nil && n.class&fExtern != 0 }
func (n *DeclarationSpecifiers) register() bool { return n != nil && n.class&fRegister != 0 }
func (n *DeclarationSpecifiers) static() bool { return n != nil && n.class&fStatic != 0 }
func (n *DeclarationSpecifiers) threadLocal() bool { return n != nil && n.class&fThreadLocal != 0 }
func (n *DeclarationSpecifiers) typedef() bool { return n != nil && n.class&fTypedef != 0 }
func (n *DirectAbstractDeclarator) TypeQualifier() Type { return n.typeQualifiers }
func (n *DirectDeclarator) ends() int32 {
switch n.Case {
case DirectDeclaratorIdent: // IDENTIFIER
return n.Token.seq
case DirectDeclaratorDecl: // '(' Declarator ')'
return n.Token2.seq
case DirectDeclaratorArr: // DirectDeclarator '[' TypeQualifierList AssignmentExpression ']'
return n.Token2.seq
case DirectDeclaratorStaticArr: // DirectDeclarator '[' "static" TypeQualifierList AssignmentExpression ']'
return n.Token3.seq
case DirectDeclaratorArrStatic: // DirectDeclarator '[' TypeQualifierList "static" AssignmentExpression ']'
return n.Token3.seq
case DirectDeclaratorStar: // DirectDeclarator '[' TypeQualifierList '*' ']'
return n.Token3.seq
case DirectDeclaratorFuncParam: // DirectDeclarator '(' ParameterTypeList ')'
return n.Token2.seq
case DirectDeclaratorFuncIdent: // DirectDeclarator '(' IdentifierList ')'
return n.Token2.seq
default:
panic(internalError())
}
}
func (n *DirectDeclarator) TypeQualifier() Type { return n.typeQualifiers }
// NameTok returns n's declarin name token.
func (n *DirectDeclarator) NameTok() (r Token) {
for {
if n == nil {
return r
}
switch n.Case {
case DirectDeclaratorIdent: // IDENTIFIER
return n.Token
case DirectDeclaratorDecl: // '(' Declarator ')'
return n.Declarator.NameTok()
default:
n = n.DirectDeclarator
}
}
}
// Name returns n's declared name.
func (n *DirectDeclarator) Name() StringID {
for {
if n == nil {
return 0
}
switch n.Case {
case DirectDeclaratorIdent: // IDENTIFIER
return n.Token.Value
case DirectDeclaratorDecl: // '(' Declarator ')'
return n.Declarator.Name()
default:
n = n.DirectDeclarator
}
}
}
// ParamScope returns the innermost scope in which function parameters are
// declared for Case DirectDeclaratorFuncParam or DirectDeclaratorFuncIdent or
// nil otherwise.
func (n *DirectDeclarator) ParamScope() Scope {
if n == nil {
return nil
}
switch n.Case {
case DirectDeclaratorIdent: // IDENTIFIER
return nil
case DirectDeclaratorDecl: // '(' Declarator ')'
return n.Declarator.ParamScope()
case DirectDeclaratorArr: // DirectDeclarator '[' TypeQualifierList AssignmentExpression ']'
return n.DirectDeclarator.ParamScope()
case DirectDeclaratorStaticArr: // DirectDeclarator '[' "static" TypeQualifierList AssignmentExpression ']'
return n.DirectDeclarator.ParamScope()
case DirectDeclaratorArrStatic: // DirectDeclarator '[' TypeQualifierList "static" AssignmentExpression ']'
return n.DirectDeclarator.ParamScope()
case DirectDeclaratorStar: // DirectDeclarator '[' TypeQualifierList '*' ']'
return n.DirectDeclarator.ParamScope()
case DirectDeclaratorFuncParam: // DirectDeclarator '(' ParameterTypeList ')'
if s := n.DirectDeclarator.ParamScope(); s != nil {
return s
}
return n.paramScope
case DirectDeclaratorFuncIdent: // DirectDeclarator '(' IdentifierList ')'
if s := n.DirectDeclarator.ParamScope(); s != nil {
return s
}
return n.paramScope
default:
panic(internalError())
}
}
func (n *Enumerator) isVisible(at int32) bool { return n.Token.seq < at }
func (n *EnumSpecifier) Type() Type { return n.typ }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *EqualityExpression) Promote() Type { return n.promote }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *AdditiveExpression) Promote() Type { return n.promote }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *MultiplicativeExpression) Promote() Type { return n.promote }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *InclusiveOrExpression) Promote() Type { return n.promote }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *ExclusiveOrExpression) Promote() Type { return n.promote }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *AndExpression) Promote() Type { return n.promote }
func (n *InitDeclarator) Value() *InitializerValue { return n.initializer }
// FirstDesignatorField returns the first field a designator of an union type
// denotes, if any.
func (n *Initializer) FirstDesignatorField() Field { return n.field0 }
// TrailingComma returns the comma token following n, if any.
func (n *Initializer) TrailingComma() *Token { return n.trailingComma }
// IsConst reports whether n is constant.
func (n *Initializer) IsConst() bool { return n == nil || n.isConst }
// IsZero reports whether n is a zero value.
func (n *Initializer) IsZero() bool { return n == nil || n.isZero }
// List returns n as a flattened list of all items that are case
// InitializerExpr.
func (n *Initializer) List() []*Initializer { return n.list }
// Parent returns the parent of n, if any.
func (n *Initializer) Parent() *Initializer { return n.parent }
// Type returns the type this initializer initializes.
func (n *Initializer) Type() Type { return n.typ }
// IsConst reports whether n is constant.
func (n *InitializerList) IsConst() bool { return n == nil || n.isConst }
// IsZero reports whether n is a zero value.
func (n *InitializerList) IsZero() bool { return n == nil || n.isZero }
// List returns n as a flattened list of all items that are case
// InitializerExpr.
func (n *InitializerList) List() []*Initializer {
if n == nil {
return nil
}
return n.list
}
// IsEmpty reprts whether n is an empty list.
func (n *InitializerList) IsEmpty() bool { return len(n.list) == 0 }
// LexicalScope returns the lexical scope of n.
func (n *JumpStatement) LexicalScope() Scope { return n.lexicalScope }
// LexicalScope returns the lexical scope of n.
func (n *LabeledStatement) LexicalScope() Scope { return n.lexicalScope }
func (n *ParameterDeclaration) Type() Type { return n.typ }
func (n *Pointer) TypeQualifier() Type { return n.typeQualifiers }
// ResolvedIn reports which scope the identifier of cases
// PrimaryExpressionIdent, PrimaryExpressionEnum were resolved in, if any.
func (n *PrimaryExpression) ResolvedIn() Scope { return n.resolvedIn }
// ResolvedTo reports which Node the identifier of cases
// PrimaryExpressionIdent, PrimaryExpressionEnum resolved to, if any.
func (n *PrimaryExpression) ResolvedTo() Node { return n.resolvedTo }
// Promote returns the type the operands of the binary operation are promoted to.
func (n *RelationalExpression) Promote() Type { return n.promote }
// Cases returns the cases a switch statement consist of, in source order.
func (n *SelectionStatement) Cases() []*LabeledStatement { return n.cases }
// Promote returns the type the shift count operand is promoted to.
func (n *ShiftExpression) Promote() Type { return n.promote }
func (n *StructOrUnionSpecifier) Type() Type { return n.typ }
// Promote returns the type the type the switch expression is promoted to.
func (n *SelectionStatement) Promote() Type { return n.promote }
// Type returns the type of n.
func (n *TypeName) Type() Type { return n.typ }
// // LexicalScope returns the lexical scope of n.
// func (n *AttributeValue) LexicalScope() Scope { return n.lexicalScope }
// // Scope returns n's scope.
// func (n *CompoundStatement) Scope() Scope { return n.scope }
// // LexicalScope returns the lexical scope of n.
// func (n *Designator) LexicalScope() Scope { return n.lexicalScope }
// // LexicalScope returns the lexical scope of n.
// func (n *DirectDeclarator) LexicalScope() Scope { return n.lexicalScope }
// LexicalScope returns the lexical scope of n.
func (n *EnumSpecifier) LexicalScope() Scope { return n.lexicalScope }
// // LexicalScope returns the lexical scope of n.
// func (n *IdentifierList) LexicalScope() Scope { return n.lexicalScope }
// // LexicalScope returns the lexical scope of n.
// func (n *PrimaryExpression) LexicalScope() Scope { return n.lexicalScope }
// // LexicalScope returns the lexical scope of n.
// func (n *StructOrUnionSpecifier) LexicalScope() Scope { return n.lexicalScope }
// // ResolvedIn reports which scope the identifier of case
// // TypeSpecifierTypedefName was resolved in, if any.
// func (n *TypeSpecifier) ResolvedIn() Scope { return n.resolvedIn }
func (n *TypeSpecifier) list() (r []*TypeSpecifier) {
switch n.Case {
case TypeSpecifierAtomic:
return n.AtomicTypeSpecifier.list
default:
return []*TypeSpecifier{n}
}
}
// // LexicalScope returns the lexical scope of n.
// func (n *UnaryExpression) LexicalScope() Scope { return n.lexicalScope }
func (n *UnaryExpression) Declarator() *Declarator {
switch n.Case {
case UnaryExpressionPostfix: // PostfixExpression
return n.PostfixExpression.Declarator()
default:
return nil
}
}
func (n *PostfixExpression) Declarator() *Declarator {
switch n.Case {
case PostfixExpressionPrimary: // PrimaryExpression
return n.PrimaryExpression.Declarator()
default:
return nil
}
}
func (n *PrimaryExpression) Declarator() *Declarator {
switch n.Case {
case PrimaryExpressionIdent: // IDENTIFIER
if n.Operand != nil {
return n.Operand.Declarator()
}
return nil
case PrimaryExpressionExpr: // '(' Expression ')'
return n.Expression.Declarator()
default:
return nil
}
}
func (n *Expression) Declarator() *Declarator {
switch n.Case {
case ExpressionAssign: // AssignmentExpression
return n.AssignmentExpression.Declarator()
default:
return nil
}
}
func (n *AssignmentExpression) Declarator() *Declarator {
switch n.Case {
case AssignmentExpressionCond: // ConditionalExpression
return n.ConditionalExpression.Declarator()
default:
return nil
}
}
func (n *ConditionalExpression) Declarator() *Declarator {
switch n.Case {
case ConditionalExpressionLOr: // LogicalOrExpression
return n.LogicalOrExpression.Declarator()
default:
return nil
}
}
func (n *LogicalOrExpression) Declarator() *Declarator {
switch n.Case {
case LogicalOrExpressionLAnd: // LogicalAndExpression
return n.LogicalAndExpression.Declarator()
default:
return nil
}
}
func (n *LogicalAndExpression) Declarator() *Declarator {
switch n.Case {
case LogicalAndExpressionOr: // InclusiveOrExpression
return n.InclusiveOrExpression.Declarator()
default:
return nil
}
}
func (n *InclusiveOrExpression) Declarator() *Declarator {
switch n.Case {
case InclusiveOrExpressionXor: // ExclusiveOrExpression
return n.ExclusiveOrExpression.Declarator()
default:
return nil
}
}
func (n *ExclusiveOrExpression) Declarator() *Declarator {
switch n.Case {
case ExclusiveOrExpressionAnd: // AndExpression
return n.AndExpression.Declarator()
default:
return nil
}
}
func (n *AndExpression) Declarator() *Declarator {
switch n.Case {
case AndExpressionEq: // EqualityExpression
return n.EqualityExpression.Declarator()
default:
return nil
}
}
func (n *EqualityExpression) Declarator() *Declarator {
switch n.Case {
case EqualityExpressionRel: // RelationalExpression
return n.RelationalExpression.Declarator()
default:
return nil
}
}
func (n *RelationalExpression) Declarator() *Declarator {
switch n.Case {
case RelationalExpressionShift: // ShiftExpression
return n.ShiftExpression.Declarator()
default:
return nil
}
}
func (n *ShiftExpression) Declarator() *Declarator {
switch n.Case {
case ShiftExpressionAdd: // AdditiveExpression
return n.AdditiveExpression.Declarator()
default:
return nil
}
}
func (n *AdditiveExpression) Declarator() *Declarator {
switch n.Case {
case AdditiveExpressionMul: // MultiplicativeExpression
return n.MultiplicativeExpression.Declarator()
default:
return nil
}
}
func (n *MultiplicativeExpression) Declarator() *Declarator {
switch n.Case {
case MultiplicativeExpressionCast: // CastExpression
return n.CastExpression.Declarator()
default:
return nil
}
}
func (n *CastExpression) Declarator() *Declarator {
switch n.Case {
case CastExpressionUnary: // UnaryExpression
return n.UnaryExpression.Declarator()
default:
return nil
}
}
// Has reports whether n has any of attributes in key.
func (n *AttributeSpecifier) Has(key ...StringID) (*ExpressionList, bool) {
if n == nil {
return nil, false
}
for list := n.AttributeValueList; list != nil; list = list.AttributeValueList {
av := list.AttributeValue
for _, k := range key {
if av.Token.Value == k {
switch av.Case {
case AttributeValueIdent: // IDENTIFIER
return nil, true
case AttributeValueExpr: // IDENTIFIER '(' ExpressionList ')'
return av.ExpressionList, true
}
}
}
}
return nil, false
}
// Has reports whether n has any of attributes in key.
func (n *AttributeSpecifierList) Has(key ...StringID) (*ExpressionList, bool) {
for ; n != nil; n = n.AttributeSpecifierList {
if exprList, ok := n.AttributeSpecifier.Has(key...); ok {
return exprList, ok
}
}
return nil, false
}
// Parent returns the CompoundStatement that contains n, if any.
func (n *CompoundStatement) Parent() *CompoundStatement { return n.parent }
// IsJumpTarget returns whether n or any of its children contain a named
// labeled statement.
func (n *CompoundStatement) IsJumpTarget() bool { return n.isJumpTarget }
func (n *CompoundStatement) hasLabel() {
for ; n != nil; n = n.parent {
n.isJumpTarget = true
}
}
// Declarations returns the list of declarations in n.
func (n *CompoundStatement) Declarations() []*Declaration { return n.declarations }
// Children returns the list of n's children.
func (n *CompoundStatement) Children() []*CompoundStatement { return n.children }
// CompoundStatements returns the list of compound statements in n.
func (n *FunctionDefinition) CompoundStatements() []*CompoundStatement { return n.compoundStatements }
// CompoundStatement returns the block containing n.
func (n *LabeledStatement) CompoundStatement() *CompoundStatement { return n.block }
// LabeledStatements returns labeled statements of n.
func (n *CompoundStatement) LabeledStatements() []*LabeledStatement { return n.labeledStmts }
// HasInitializer reports whether d has an initializator.
func (n *Declarator) HasInitializer() bool { return n.hasInitializer }
// Context reports the statement, if any, a break or continue belongs to. Valid
// only after typecheck and for n.Case == JumpStatementBreak or
// JumpStatementContinue.
func (n *JumpStatement) Context() Node { return n.context }
// IsFunctionPrototype reports whether n is a function prototype.
func (n *Declarator) IsFunctionPrototype() bool {
return n != nil && n.Type() != nil && n.Type().Kind() == Function && !n.fnDef && !n.IsParameter
}
// DeclarationSpecifiers returns the declaration specifiers associated with n or nil.
func (n *Declarator) DeclarationSpecifiers() *DeclarationSpecifiers {
if x, ok := n.td.(*DeclarationSpecifiers); ok {
return x
}
return nil
}
// SpecifierQualifierList returns the specifier qualifer list associated with n or nil.
func (n *Declarator) SpecifierQualifierList() *SpecifierQualifierList {
if x, ok := n.td.(*SpecifierQualifierList); ok {
return x
}
return nil
}
// TypeQualifier returns the type qualifiers associated with n or nil.
func (n *Declarator) TypeQualifiers() *TypeQualifiers {
if x, ok := n.td.(*TypeQualifiers); ok {
return x
}
return nil
}
// StructDeclaration returns the struct declaration associated with n.
func (n *StructDeclarator) StructDeclaration() *StructDeclaration { return n.decl }