// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. //go:build codecgen.exec // +build codecgen.exec package codec import ( "bytes" "encoding/base32" "errors" "fmt" "go/format" "io" "io/ioutil" "math/rand" "os" "reflect" "regexp" "sort" "strconv" "strings" "sync" "text/template" "time" // "ugorji.net/zz" "unicode" "unicode/utf8" ) // --------------------------------------------------- // codecgen supports the full cycle of reflection-based codec: // - RawExt // - Raw // - Extensions // - (Binary|Text|JSON)(Unm|M)arshal // - generic by-kind // // This means that, for dynamic things, we MUST use reflection to at least get the reflect.Type. // In those areas, we try to only do reflection or interface-conversion when NECESSARY: // - Extensions, only if Extensions are configured. // // However, note following codecgen caveats: // - Canonical option. // If Canonical=true, codecgen'ed code may delegate encoding maps to reflection-based code. // This is due to the runtime work needed to marshal a map in canonical mode. // However, if map key is a pre-defined/builtin numeric or string type, codecgen // will try to write it out itself // - CheckCircularRef option. // When encoding a struct, a circular reference can lead to a stack overflow. // If CheckCircularRef=true, codecgen'ed code will delegate encoding structs to reflection-based code. // - MissingFielder implementation. // If a type implements MissingFielder, a Selfer is not generated (with a warning message). // Statically reproducing the runtime work needed to extract the missing fields and marshal them // along with the struct fields, while handling the Canonical=true special case, was onerous to implement. // // During encode/decode, Selfer takes precedence. // A type implementing Selfer will know how to encode/decode itself statically. // // The following field types are supported: // array: [n]T // slice: []T // map: map[K]V // primitive: [u]int[n], float(32|64), bool, string // struct // // --------------------------------------------------- // Note that a Selfer cannot call (e|d).(En|De)code on itself, // as this will cause a circular reference, as (En|De)code will call Selfer methods. // Any type that implements Selfer must implement completely and not fallback to (En|De)code. // // In addition, code in this file manages the generation of fast-path implementations of // encode/decode of slices/maps of primitive keys/values. // // Users MUST re-generate their implementations whenever the code shape changes. // The generated code will panic if it was generated with a version older than the supporting library. // --------------------------------------------------- // // codec framework is very feature rich. // When encoding or decoding into an interface, it depends on the runtime type of the interface. // The type of the interface may be a named type, an extension, etc. // Consequently, we fallback to runtime codec for encoding/decoding interfaces. // In addition, we fallback for any value which cannot be guaranteed at runtime. // This allows us support ANY value, including any named types, specifically those which // do not implement our interfaces (e.g. Selfer). // // This explains some slowness compared to other code generation codecs (e.g. msgp). // This reduction in speed is only seen when your refers to interfaces, // e.g. type T struct { A interface{}; B []interface{}; C map[string]interface{} } // // codecgen will panic if the file was generated with an old version of the library in use. // // Note: // It was a conscious decision to have gen.go always explicitly call EncodeNil or TryDecodeAsNil. // This way, there isn't a function call overhead just to see that we should not enter a block of code. // // Note: // codecgen-generated code depends on the variables defined by fast-path.generated.go. // consequently, you cannot run with tags "codecgen codec.notfastpath". // // Note: // genInternalXXX functions are used for generating fast-path and other internally generated // files, and not for use in codecgen. // Size of a struct or value is not portable across machines, especially across 32-bit vs 64-bit // operating systems. This is due to types like int, uintptr, pointers, (and derived types like slice), etc // which use the natural word size on those machines, which may be 4 bytes (on 32-bit) or 8 bytes (on 64-bit). // // Within decInferLen calls, we may generate an explicit size of the entry. // We do this because decInferLen values are expected to be approximate, // and serve as a good hint on the size of the elements or key+value entry. // // Since development is done on 64-bit machines, the sizes will be roughly correctly // on 64-bit OS, and slightly larger than expected on 32-bit OS. // This is ok. // // For reference, look for 'Size' in fast-path.go.tmpl, gen-dec-(array|map).go.tmpl and gen.go (this file). // GenVersion is the current version of codecgen. // // MARKER: Increment this value each time codecgen changes fundamentally. // Also update codecgen/gen.go (minimumCodecVersion, genVersion, etc). // Fundamental changes are: // - helper methods change (signature change, new ones added, some removed, etc) // - codecgen command line changes // // v1: Initial Version // v2: - // v3: For Kubernetes: changes in signature of some unpublished helper methods and codecgen cmdline arguments. // v4: Removed separator support from (en|de)cDriver, and refactored codec(gen) // v5: changes to support faster json decoding. Let encoder/decoder maintain state of collections. // v6: removed unsafe from gen, and now uses codecgen.exec tag // v7: - // v8: current - we now maintain compatibility with old generated code. // v9: - skipped // v10: modified encDriver and decDriver interfaces. // v11: remove deprecated methods of encDriver and decDriver. // v12: removed deprecated methods from genHelper and changed container tracking logic // v13: 20190603 removed DecodeString - use DecodeStringAsBytes instead // v14: 20190611 refactored nil handling: TryDecodeAsNil -> selective TryNil, etc // v15: 20190626 encDriver.EncodeString handles StringToRaw flag inside handle // v16: 20190629 refactoring for v1.1.6 // v17: 20200911 reduce number of types for which we generate fast path functions (v1.1.8) // v18: 20201004 changed definition of genHelper...Extension (to take interface{}) and eliminated I2Rtid method // v19: 20201115 updated codecgen cmdline flags and optimized output // v20: 20201120 refactored GenHelper to one exported function // v21: 20210104 refactored generated code to honor ZeroCopy=true for more efficiency // v22: 20210118 fixed issue in generated code when encoding a type which is also a codec.Selfer // v23: 20210203 changed slice/map types for which we generate fast-path functions // v24: 20210226 robust handling for Canonical|CheckCircularRef flags and MissingFielder implementations // v25: 20210406 pass base reflect.Type to side(En|De)code and (En|De)codeExt calls // v26: 20230201 genHelper changes for more inlining and consequent performance // v27: 20230219 fix error decoding struct from array - due to misplaced counter increment // v28: 20230224 fix decoding missing fields of struct from array, due to double counter increment const genVersion = 28 const ( genCodecPkg = "codec1978" // MARKER: keep in sync with codecgen/gen.go genTempVarPfx = "yy" genTopLevelVarName = "x" // ignore canBeNil parameter, and always set to true. // This is because nil can appear anywhere, so we should always check. genAnythingCanBeNil = true // genStructCanonical configures whether we generate 2 paths based on Canonical flag // when encoding struct fields. genStructCanonical = true // genFastpathCanonical configures whether we support Canonical in fast path. // The savings is not much. // // MARKER: This MUST ALWAYS BE TRUE. fast-path.go.tmp doesn't handle it being false. genFastpathCanonical = true // genFastpathTrimTypes configures whether we trim uncommon fastpath types. genFastpathTrimTypes = true ) type genStringDecAsBytes string type genStringDecZC string var genStringDecAsBytesTyp = reflect.TypeOf(genStringDecAsBytes("")) var genStringDecZCTyp = reflect.TypeOf(genStringDecZC("")) var genFormats = []string{"Json", "Cbor", "Msgpack", "Binc", "Simple"} var ( errGenAllTypesSamePkg = errors.New("All types must be in the same package") errGenExpectArrayOrMap = errors.New("unexpected type - expecting array/map/slice") errGenUnexpectedTypeFastpath = errors.New("fast-path: unexpected type - requires map or slice") // don't use base64, only 63 characters allowed in valid go identifiers // ie ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_ // // don't use numbers, as a valid go identifer must start with a letter. genTypenameEnc = base32.NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef") genQNameRegex = regexp.MustCompile(`[A-Za-z_.]+`) ) type genBuf struct { buf []byte } func (x *genBuf) sIf(b bool, s, t string) *genBuf { if b { x.buf = append(x.buf, s...) } else { x.buf = append(x.buf, t...) } return x } func (x *genBuf) s(s string) *genBuf { x.buf = append(x.buf, s...); return x } func (x *genBuf) b(s []byte) *genBuf { x.buf = append(x.buf, s...); return x } func (x *genBuf) v() string { return string(x.buf) } func (x *genBuf) f(s string, args ...interface{}) { x.s(fmt.Sprintf(s, args...)) } func (x *genBuf) reset() { if x.buf != nil { x.buf = x.buf[:0] } } // genRunner holds some state used during a Gen run. type genRunner struct { w io.Writer // output c uint64 // counter used for generating varsfx f uint64 // counter used for saying false t []reflect.Type // list of types to run selfer on tc reflect.Type // currently running selfer on this type te map[uintptr]bool // types for which the encoder has been created td map[uintptr]bool // types for which the decoder has been created tz map[uintptr]bool // types for which GenIsZero has been created cp string // codec import path im map[string]reflect.Type // imports to add imn map[string]string // package names of imports to add imc uint64 // counter for import numbers is map[reflect.Type]struct{} // types seen during import search bp string // base PkgPath, for which we are generating for cpfx string // codec package prefix ty map[reflect.Type]struct{} // types for which GenIsZero *should* be created tm map[reflect.Type]struct{} // types for which enc/dec must be generated ts []reflect.Type // types for which enc/dec must be generated xs string // top level variable/constant suffix hn string // fn helper type name ti *TypeInfos // rr *rand.Rand // random generator for file-specific types jsonOnlyWhen, toArrayWhen, omitEmptyWhen *bool nx bool // no extensions } type genIfClause struct { hasIf bool } func (g *genIfClause) end(x *genRunner) { if g.hasIf { x.line("}") } } func (g *genIfClause) c(last bool) (v string) { if last { if g.hasIf { v = " } else { " } } else if g.hasIf { v = " } else if " } else { v = "if " g.hasIf = true } return } // Gen will write a complete go file containing Selfer implementations for each // type passed. All the types must be in the same package. // // Library users: DO NOT USE IT DIRECTLY. IT WILL CHANGE CONTINUOUSLY WITHOUT NOTICE. func Gen(w io.Writer, buildTags, pkgName, uid string, noExtensions bool, jsonOnlyWhen, toArrayWhen, omitEmptyWhen *bool, ti *TypeInfos, types ...reflect.Type) (warnings []string) { // All types passed to this method do not have a codec.Selfer method implemented directly. // codecgen already checks the AST and skips any types that define the codec.Selfer methods. // Consequently, there's no need to check and trim them if they implement codec.Selfer if len(types) == 0 { return } x := genRunner{ w: w, t: types, te: make(map[uintptr]bool), td: make(map[uintptr]bool), tz: make(map[uintptr]bool), im: make(map[string]reflect.Type), imn: make(map[string]string), is: make(map[reflect.Type]struct{}), tm: make(map[reflect.Type]struct{}), ty: make(map[reflect.Type]struct{}), ts: []reflect.Type{}, bp: genImportPath(types[0]), xs: uid, ti: ti, jsonOnlyWhen: jsonOnlyWhen, toArrayWhen: toArrayWhen, omitEmptyWhen: omitEmptyWhen, nx: noExtensions, } if x.ti == nil { x.ti = defTypeInfos } if x.xs == "" { rr := rand.New(rand.NewSource(time.Now().UnixNano())) x.xs = strconv.FormatInt(rr.Int63n(9999), 10) } // gather imports first: x.cp = genImportPath(reflect.TypeOf(x)) x.imn[x.cp] = genCodecPkg // iterate, check if all in same package, and remove any missingfielders for i := 0; i < len(x.t); { t := x.t[i] // xdebugf("###########: PkgPath: '%v', Name: '%s'\n", genImportPath(t), t.Name()) if genImportPath(t) != x.bp { halt.onerror(errGenAllTypesSamePkg) } ti1 := x.ti.get(rt2id(t), t) if ti1.flagMissingFielder || ti1.flagMissingFielderPtr { // output diagnostic message - that nothing generated for this type warnings = append(warnings, fmt.Sprintf("type: '%v' not generated; implements codec.MissingFielder", t)) copy(x.t[i:], x.t[i+1:]) x.t = x.t[:len(x.t)-1] continue } x.genRefPkgs(t) i++ } x.line("// +build go1.6") if buildTags != "" { x.line("// +build " + buildTags) } x.line(` // Code generated by codecgen - DO NOT EDIT. `) x.line("package " + pkgName) x.line("") x.line("import (") if x.cp != x.bp { x.cpfx = genCodecPkg + "." x.linef("%s \"%s\"", genCodecPkg, x.cp) } // use a sorted set of im keys, so that we can get consistent output imKeys := make([]string, 0, len(x.im)) for k := range x.im { imKeys = append(imKeys, k) } sort.Strings(imKeys) for _, k := range imKeys { // for k, _ := range x.im { if k == x.imn[k] { x.linef("\"%s\"", k) } else { x.linef("%s \"%s\"", x.imn[k], k) } } // add required packages for _, k := range [...]string{"runtime", "errors", "strconv", "sort"} { // "reflect", "fmt" if _, ok := x.im[k]; !ok { x.line("\"" + k + "\"") } } x.line(")") x.line("") x.line("const (") x.linef("// ----- content types ----") x.linef("codecSelferCcUTF8%s = %v", x.xs, int64(cUTF8)) x.linef("codecSelferCcRAW%s = %v", x.xs, int64(cRAW)) x.linef("// ----- value types used ----") for _, vt := range [...]valueType{ valueTypeArray, valueTypeMap, valueTypeString, valueTypeInt, valueTypeUint, valueTypeFloat, valueTypeNil, } { x.linef("codecSelferValueType%s%s = %v", vt.String(), x.xs, int64(vt)) } x.linef("codecSelferBitsize%s = uint8(32 << (^uint(0) >> 63))", x.xs) x.linef("codecSelferDecContainerLenNil%s = %d", x.xs, int64(containerLenNil)) x.line(")") x.line("var (") x.line("errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + " = " + "errors.New(`only encoded map or array can be decoded into a struct`)") x.line("_ sort.Interface = nil") x.line(")") x.line("") x.hn = "codecSelfer" + x.xs x.line("type " + x.hn + " struct{}") x.line("") x.linef("func %sFalse() bool { return false }", x.hn) x.linef("func %sTrue() bool { return true }", x.hn) x.line("") // add types for sorting canonical for _, s := range []string{"string", "uint64", "int64", "float64"} { x.linef("type %s%sSlice []%s", x.hn, s, s) x.linef("func (p %s%sSlice) Len() int { return len(p) }", x.hn, s) x.linef("func (p %s%sSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }", x.hn, s) x.linef("func (p %s%sSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }", x.hn, s) } x.line("") x.varsfxreset() x.line("func init() {") x.linef("if %sGenVersion != %v {", x.cpfx, genVersion) x.line("_, file, _, _ := runtime.Caller(0)") x.linef("ver := strconv.FormatInt(int64(%sGenVersion), 10)", x.cpfx) x.outf(`panic(errors.New("codecgen version mismatch: current: %v, need " + ver + ". Re-generate file: " + file))`, genVersion) x.linef("}") if len(imKeys) > 0 { x.line("if false { // reference the types, but skip this branch at build/run time") for _, k := range imKeys { t := x.im[k] x.linef("var _ %s.%s", x.imn[k], t.Name()) } x.line("} ") // close if false } x.line("}") // close init x.line("") // generate rest of type info for _, t := range x.t { x.tc = t x.linef("func (%s) codecSelferViaCodecgen() {}", x.genTypeName(t)) x.selfer(true) x.selfer(false) x.tryGenIsZero(t) } for _, t := range x.ts { rtid := rt2id(t) // generate enc functions for all these slice/map types. x.varsfxreset() x.linef("func (x %s) enc%s(v %s%s, e *%sEncoder) {", x.hn, x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), x.cpfx) x.genRequiredMethodVars(true) switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Chan: x.encListFallback("v", t) case reflect.Map: x.encMapFallback("v", t) default: halt.onerror(errGenExpectArrayOrMap) } x.line("}") x.line("") // generate dec functions for all these slice/map types. x.varsfxreset() x.linef("func (x %s) dec%s(v *%s, d *%sDecoder) {", x.hn, x.genMethodNameT(t), x.genTypeName(t), x.cpfx) x.genRequiredMethodVars(false) switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Chan: x.decListFallback("v", rtid, t) case reflect.Map: x.decMapFallback("v", rtid, t) default: halt.onerror(errGenExpectArrayOrMap) } x.line("}") x.line("") } for t := range x.ty { x.tryGenIsZero(t) x.line("") } x.line("") return } func (x *genRunner) checkForSelfer(t reflect.Type, varname string) bool { // return varname != genTopLevelVarName && t != x.tc // the only time we checkForSelfer is if we are not at the TOP of the generated code. return varname != genTopLevelVarName } func (x *genRunner) arr2str(t reflect.Type, s string) string { if t.Kind() == reflect.Array { return s } return "" } func (x *genRunner) genRequiredMethodVars(encode bool) { x.line("var h " + x.hn) if encode { x.line("z, r := " + x.cpfx + "GenHelper().Encoder(e)") } else { x.line("z, r := " + x.cpfx + "GenHelper().Decoder(d)") } x.line("_, _, _ = h, z, r") } func (x *genRunner) genRefPkgs(t reflect.Type) { if _, ok := x.is[t]; ok { return } x.is[t] = struct{}{} tpkg, tname := genImportPath(t), t.Name() if tpkg != "" && tpkg != x.bp && tpkg != x.cp && tname != "" && tname[0] >= 'A' && tname[0] <= 'Z' { if _, ok := x.im[tpkg]; !ok { x.im[tpkg] = t if idx := strings.LastIndex(tpkg, "/"); idx < 0 { x.imn[tpkg] = tpkg } else { x.imc++ x.imn[tpkg] = "pkg" + strconv.FormatUint(x.imc, 10) + "_" + genGoIdentifier(tpkg[idx+1:], false) } } } switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Ptr, reflect.Chan: x.genRefPkgs(t.Elem()) case reflect.Map: x.genRefPkgs(t.Elem()) x.genRefPkgs(t.Key()) case reflect.Struct: for i := 0; i < t.NumField(); i++ { if fname := t.Field(i).Name; fname != "" && fname[0] >= 'A' && fname[0] <= 'Z' { x.genRefPkgs(t.Field(i).Type) } } } } // sayFalse will either say "false" or use a function call that returns false. func (x *genRunner) sayFalse() string { x.f++ if x.f%2 == 0 { return x.hn + "False()" } return "false" } // sayFalse will either say "true" or use a function call that returns true. func (x *genRunner) sayTrue() string { x.f++ if x.f%2 == 0 { return x.hn + "True()" } return "true" } func (x *genRunner) varsfx() string { x.c++ return strconv.FormatUint(x.c, 10) } func (x *genRunner) varsfxreset() { x.c = 0 } func (x *genRunner) out(s string) { _, err := io.WriteString(x.w, s) genCheckErr(err) } func (x *genRunner) outf(s string, params ...interface{}) { _, err := fmt.Fprintf(x.w, s, params...) genCheckErr(err) } func (x *genRunner) line(s string) { x.out(s) if len(s) == 0 || s[len(s)-1] != '\n' { x.out("\n") } } func (x *genRunner) lineIf(s string) { if s != "" { x.line(s) } } func (x *genRunner) linef(s string, params ...interface{}) { x.outf(s, params...) if len(s) == 0 || s[len(s)-1] != '\n' { x.out("\n") } } func (x *genRunner) genTypeName(t reflect.Type) (n string) { // if the type has a PkgPath, which doesn't match the current package, // then include it. // We cannot depend on t.String() because it includes current package, // or t.PkgPath because it includes full import path, // var ptrPfx string for t.Kind() == reflect.Ptr { ptrPfx += "*" t = t.Elem() } if tn := t.Name(); tn != "" { return ptrPfx + x.genTypeNamePrim(t) } switch t.Kind() { case reflect.Map: return ptrPfx + "map[" + x.genTypeName(t.Key()) + "]" + x.genTypeName(t.Elem()) case reflect.Slice: return ptrPfx + "[]" + x.genTypeName(t.Elem()) case reflect.Array: return ptrPfx + "[" + strconv.FormatInt(int64(t.Len()), 10) + "]" + x.genTypeName(t.Elem()) case reflect.Chan: return ptrPfx + t.ChanDir().String() + " " + x.genTypeName(t.Elem()) default: if t == intfTyp { return ptrPfx + "interface{}" } else { return ptrPfx + x.genTypeNamePrim(t) } } } func (x *genRunner) genTypeNamePrim(t reflect.Type) (n string) { if t.Name() == "" { return t.String() } else if genImportPath(t) == "" || genImportPath(t) == genImportPath(x.tc) { return t.Name() } else { return x.imn[genImportPath(t)] + "." + t.Name() // return t.String() // best way to get the package name inclusive } } func (x *genRunner) genZeroValueR(t reflect.Type) string { // if t is a named type, w switch t.Kind() { case reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func, reflect.Slice, reflect.Map, reflect.Invalid: return "nil" case reflect.Bool: return "false" case reflect.String: return `""` case reflect.Struct, reflect.Array: return x.genTypeName(t) + "{}" default: // all numbers return "0" } } func (x *genRunner) genMethodNameT(t reflect.Type) (s string) { return genMethodNameT(t, x.tc) } func (x *genRunner) tryGenIsZero(t reflect.Type) (done bool) { if t.Kind() != reflect.Struct || t.Implements(isCodecEmptyerTyp) { return } rtid := rt2id(t) if _, ok := x.tz[rtid]; ok { delete(x.ty, t) return } x.tz[rtid] = true delete(x.ty, t) ti := x.ti.get(rtid, t) tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing. varname := genTopLevelVarName x.linef("func (%s *%s) IsCodecEmpty() bool {", varname, x.genTypeName(t)) anonSeen := make(map[reflect.Type]bool) var omitline genBuf for _, si := range tisfi { if si.path.parent != nil { root := si.path.root() if anonSeen[root.typ] { continue } anonSeen[root.typ] = true } t2 := genOmitEmptyLinePreChecks(varname, t, si, &omitline, true) // if Ptr, we already checked if nil above if t2.Type.Kind() != reflect.Ptr { x.doEncOmitEmptyLine(t2, varname, &omitline) omitline.s(" || ") } } omitline.s(" false") x.linef("return !(%s)", omitline.v()) x.line("}") x.line("") return true } func (x *genRunner) selfer(encode bool) { t := x.tc // ti := x.ti.get(rt2id(t), t) t0 := t // always make decode use a pointer receiver, // and structs/arrays always use a ptr receiver (encode|decode) isptr := !encode || t.Kind() == reflect.Array || (t.Kind() == reflect.Struct && t != timeTyp) x.varsfxreset() fnSigPfx := "func (" + genTopLevelVarName + " " if isptr { fnSigPfx += "*" } fnSigPfx += x.genTypeName(t) x.out(fnSigPfx) if isptr { t = reflect.PtrTo(t) } if encode { x.line(") CodecEncodeSelf(e *" + x.cpfx + "Encoder) {") x.genRequiredMethodVars(true) if t0.Kind() == reflect.Struct { x.linef("if z.EncBasicHandle().CheckCircularRef { z.EncEncode(%s); return }", genTopLevelVarName) } x.encVar(genTopLevelVarName, t) } else { x.line(") CodecDecodeSelf(d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) // do not use decVar, as there is no need to check TryDecodeAsNil // or way to elegantly handle that, and also setting it to a // non-nil value doesn't affect the pointer passed. // x.decVar(genTopLevelVarName, t, false) x.dec(genTopLevelVarName, t0, true) } x.line("}") x.line("") if encode || t0.Kind() != reflect.Struct { return } // write is containerMap x.out(fnSigPfx) x.line(") codecDecodeSelfFromMap(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0) x.line("}") x.line("") // write containerArray x.out(fnSigPfx) x.line(") codecDecodeSelfFromArray(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructArray(genTopLevelVarName, "l", "return", rt2id(t0), t0) x.line("}") x.line("") } // used for chan, array, slice, map func (x *genRunner) xtraSM(varname string, t reflect.Type, ti *typeInfo, encode, isptr bool) { var ptrPfx, addrPfx string if isptr { ptrPfx = "*" } else { addrPfx = "&" } if encode { x.linef("h.enc%s((%s%s)(%s), e)", x.genMethodNameT(t), ptrPfx, x.genTypeName(t), varname) } else { x.linef("h.dec%s((*%s)(%s%s), d)", x.genMethodNameT(t), x.genTypeName(t), addrPfx, varname) } x.registerXtraT(t, ti) } func (x *genRunner) registerXtraT(t reflect.Type, ti *typeInfo) { // recursively register the types tk := t.Kind() if tk == reflect.Ptr { x.registerXtraT(t.Elem(), nil) return } if _, ok := x.tm[t]; ok { return } switch tk { case reflect.Chan, reflect.Slice, reflect.Array, reflect.Map: default: return } // only register the type if it will not default to a fast-path if ti == nil { ti = x.ti.get(rt2id(t), t) } if _, rtidu := genFastpathUnderlying(t, ti.rtid, ti); fastpathAvIndex(rtidu) != -1 { return } x.tm[t] = struct{}{} x.ts = append(x.ts, t) // check if this refers to any xtra types eg. a slice of array: add the array x.registerXtraT(t.Elem(), nil) if tk == reflect.Map { x.registerXtraT(t.Key(), nil) } } // encVar will encode a variable. // The parameter, t, is the reflect.Type of the variable itself func (x *genRunner) encVar(varname string, t reflect.Type) { var checkNil bool // case reflect.Ptr, reflect.Interface, reflect.Slice, reflect.Map, reflect.Chan: // do not include checkNil for slice and maps, as we already checkNil below it switch t.Kind() { case reflect.Ptr, reflect.Interface, reflect.Chan: checkNil = true } x.encVarChkNil(varname, t, checkNil) } func (x *genRunner) encVarChkNil(varname string, t reflect.Type, checkNil bool) { if checkNil { x.linef("if %s == nil { r.EncodeNil() } else {", varname) } switch t.Kind() { case reflect.Ptr: telem := t.Elem() tek := telem.Kind() if tek == reflect.Array || (tek == reflect.Struct && telem != timeTyp) { x.enc(varname, genNonPtr(t), true) break } i := x.varsfx() x.line(genTempVarPfx + i + " := *" + varname) x.enc(genTempVarPfx+i, genNonPtr(t), false) case reflect.Struct, reflect.Array: if t == timeTyp { x.enc(varname, t, false) break } i := x.varsfx() x.line(genTempVarPfx + i + " := &" + varname) x.enc(genTempVarPfx+i, t, true) default: x.enc(varname, t, false) } if checkNil { x.line("}") } } // enc will encode a variable (varname) of type t, where t represents T. // if t is !time.Time and t is of kind reflect.Struct or reflect.Array, varname is of type *T // (to prevent copying), // else t is of type T func (x *genRunner) enc(varname string, t reflect.Type, isptr bool) { rtid := rt2id(t) ti2 := x.ti.get(rtid, t) // We call CodecEncodeSelf if one of the following are honored: // - the type already implements Selfer, call that // - the type has a Selfer implementation just created, use that // - the type is in the list of the ones we will generate for, but it is not currently being generated mi := x.varsfx() // tptr := reflect.PtrTo(t) // tk := t.Kind() // check if // - type is time.Time, RawExt, Raw // - the type implements (Text|JSON|Binary)(Unm|M)arshal var hasIf genIfClause defer hasIf.end(x) // end if block (if necessary) var ptrPfx, addrPfx string if isptr { ptrPfx = "*" } else { addrPfx = "&" } if t == timeTyp { x.linef("%s z.EncBasicHandle().TimeBuiltin() { r.EncodeTime(%s%s)", hasIf.c(false), ptrPfx, varname) // return } if t == rawTyp { x.linef("%s z.EncRaw(%s%s)", hasIf.c(true), ptrPfx, varname) return } if t == rawExtTyp { x.linef("%s r.EncodeRawExt(%s%s)", hasIf.c(true), addrPfx, varname) return } // only check for extensions if extensions are configured, // and the type is named, and has a packagePath, // and this is not the CodecEncodeSelf or CodecDecodeSelf method (i.e. it is not a Selfer) if !x.nx && varname != genTopLevelVarName && t != genStringDecAsBytesTyp && t != genStringDecZCTyp && genImportPath(t) != "" && t.Name() != "" { yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi) x.linef("%s %s := z.Extension(%s); %s != nil { z.EncExtension(%s, %s) ", hasIf.c(false), yy, varname, yy, varname, yy) } if x.checkForSelfer(t, varname) { if ti2.flagSelfer { x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname) return } if ti2.flagSelferPtr { if isptr { x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname) } else { x.linef("%s %ssf%s := &%s", hasIf.c(true), genTempVarPfx, mi, varname) x.linef("%ssf%s.CodecEncodeSelf(e)", genTempVarPfx, mi) } return } if _, ok := x.te[rtid]; ok { x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname) return } } inlist := false for _, t0 := range x.t { if t == t0 { inlist = true if x.checkForSelfer(t, varname) { x.linef("%s %s.CodecEncodeSelf(e)", hasIf.c(true), varname) return } break } } var rtidAdded bool if t == x.tc { x.te[rtid] = true rtidAdded = true } if ti2.flagBinaryMarshaler { x.linef("%s z.EncBinary() { z.EncBinaryMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname) } else if ti2.flagBinaryMarshalerPtr { x.linef("%s z.EncBinary() { z.EncBinaryMarshal(%s%v) ", hasIf.c(false), addrPfx, varname) } if ti2.flagJsonMarshaler { x.linef("%s !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname) } else if ti2.flagJsonMarshalerPtr { x.linef("%s !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%s%v) ", hasIf.c(false), addrPfx, varname) } else if ti2.flagTextMarshaler { x.linef("%s !z.EncBinary() { z.EncTextMarshal(%s%v) ", hasIf.c(false), ptrPfx, varname) } else if ti2.flagTextMarshalerPtr { x.linef("%s !z.EncBinary() { z.EncTextMarshal(%s%v) ", hasIf.c(false), addrPfx, varname) } x.lineIf(hasIf.c(true)) switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: x.line("r.EncodeInt(int64(" + varname + "))") case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: x.line("r.EncodeUint(uint64(" + varname + "))") case reflect.Float32: x.line("r.EncodeFloat32(float32(" + varname + "))") case reflect.Float64: x.line("r.EncodeFloat64(float64(" + varname + "))") case reflect.Complex64: x.linef("z.EncEncodeComplex64(complex64(%s))", varname) case reflect.Complex128: x.linef("z.EncEncodeComplex128(complex128(%s))", varname) case reflect.Bool: x.line("r.EncodeBool(bool(" + varname + "))") case reflect.String: x.linef("r.EncodeString(string(%s))", varname) case reflect.Chan: x.xtraSM(varname, t, ti2, true, false) // x.encListFallback(varname, rtid, t) case reflect.Array: _, rtidu := genFastpathUnderlying(t, rtid, ti2) if fastpathAvIndex(rtidu) != -1 { g := x.newFastpathGenV(ti2.key) x.linef("z.F.%sV((%s)(%s[:]), e)", g.MethodNamePfx("Enc", false), x.genTypeName(ti2.key), varname) } else { x.xtraSM(varname, t, ti2, true, true) } case reflect.Slice: // if nil, call dedicated function // if a []byte, call dedicated function // if a known fastpath slice, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. x.linef("if %s == nil { r.EncodeNil() } else {", varname) if rtid == uint8SliceTypId { x.line("r.EncodeStringBytesRaw([]byte(" + varname + "))") } else { tu, rtidu := genFastpathUnderlying(t, rtid, ti2) if fastpathAvIndex(rtidu) != -1 { g := x.newFastpathGenV(tu) if rtid == rtidu { x.linef("z.F.%sV(%s, e)", g.MethodNamePfx("Enc", false), varname) } else { x.linef("z.F.%sV((%s)(%s), e)", g.MethodNamePfx("Enc", false), x.genTypeName(tu), varname) } } else { x.xtraSM(varname, t, ti2, true, false) } } x.linef("} // end block: if %s slice == nil", varname) case reflect.Map: // if nil, call dedicated function // if a known fastpath map, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. x.linef("if %s == nil { r.EncodeNil() } else {", varname) tu, rtidu := genFastpathUnderlying(t, rtid, ti2) if fastpathAvIndex(rtidu) != -1 { g := x.newFastpathGenV(tu) if rtid == rtidu { x.linef("z.F.%sV(%s, e)", g.MethodNamePfx("Enc", false), varname) } else { x.linef("z.F.%sV((%s)(%s), e)", g.MethodNamePfx("Enc", false), x.genTypeName(tu), varname) } } else { x.xtraSM(varname, t, ti2, true, false) } x.linef("} // end block: if %s map == nil", varname) case reflect.Struct: if !inlist { delete(x.te, rtid) x.line("z.EncFallback(" + varname + ")") break } x.encStruct(varname, rtid, t) default: if rtidAdded { delete(x.te, rtid) } x.line("z.EncFallback(" + varname + ")") } } func (x *genRunner) encZero(t reflect.Type) { switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: x.line("r.EncodeInt(0)") case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: x.line("r.EncodeUint(0)") case reflect.Float32: x.line("r.EncodeFloat32(0)") case reflect.Float64: x.line("r.EncodeFloat64(0)") case reflect.Complex64: x.line("z.EncEncodeComplex64(0)") case reflect.Complex128: x.line("z.EncEncodeComplex128(0)") case reflect.Bool: x.line("r.EncodeBool(false)") case reflect.String: x.linef(`r.EncodeString("")`) default: x.line("r.EncodeNil()") } } func genOmitEmptyLinePreChecks(varname string, t reflect.Type, si *structFieldInfo, omitline *genBuf, oneLevel bool) (t2 reflect.StructField) { // xdebug2f("calling genOmitEmptyLinePreChecks on: %v", t) t2typ := t varname3 := varname // go through the loop, record the t2 field explicitly, // and gather the omit line if embedded in pointers. fullpath := si.path.fullpath() for i, path := range fullpath { for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(int(path.index)) t2typ = t2.Type varname3 = varname3 + "." + t2.Name // do not include actual field in the omit line. // that is done subsequently (right after - below). if i+1 < len(fullpath) && t2typ.Kind() == reflect.Ptr { omitline.s(varname3).s(" != nil && ") } if oneLevel { break } } return } func (x *genRunner) doEncOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) { x.f = 0 x.encOmitEmptyLine(t2, varname, buf) } func (x *genRunner) encOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) { // xdebugf("calling encOmitEmptyLine on: %v", t2.Type) // smartly check omitEmpty on a struct type, as it may contain uncomparable map/slice/etc. // also, for maps/slices, check if len ! 0 (not if == zero value) varname2 := varname + "." + t2.Name switch t2.Type.Kind() { case reflect.Struct: rtid2 := rt2id(t2.Type) ti2 := x.ti.get(rtid2, t2.Type) // xdebugf(">>>> structfield: omitempty: type: %s, field: %s\n", t2.Type.Name(), t2.Name) if ti2.rtid == timeTypId { buf.s("!(").s(varname2).s(".IsZero())") break } if ti2.flagIsZeroerPtr || ti2.flagIsZeroer { buf.s("!(").s(varname2).s(".IsZero())") break } if t2.Type.Implements(isCodecEmptyerTyp) { buf.s("!(").s(varname2).s(".IsCodecEmpty())") break } _, ok := x.tz[rtid2] if ok { buf.s("!(").s(varname2).s(".IsCodecEmpty())") break } // if we *should* create a IsCodecEmpty for it, but haven't yet, add it here // _, ok = x.ty[rtid2] if genImportPath(t2.Type) == x.bp { x.ty[t2.Type] = struct{}{} buf.s("!(").s(varname2).s(".IsCodecEmpty())") break } if ti2.flagComparable { buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type)) break } // buf.s("(") buf.s(x.sayFalse()) // buf.s("false") var wrote bool for i, n := 0, t2.Type.NumField(); i < n; i++ { f := t2.Type.Field(i) if f.PkgPath != "" { // unexported continue } buf.s(" || ") x.encOmitEmptyLine(f, varname2, buf) wrote = true } if !wrote { buf.s(" || ").s(x.sayTrue()) } //buf.s(")") case reflect.Bool: buf.s("bool(").s(varname2).s(")") case reflect.Map, reflect.Slice, reflect.Chan: buf.s("len(").s(varname2).s(") != 0") case reflect.Array: tlen := t2.Type.Len() if tlen == 0 { buf.s(x.sayFalse()) } else if t2.Type.Comparable() { buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type)) } else { // then we cannot even compare the individual values // TODO use playground to check if you can compare to a // zero value of an array, even if array not comparable. buf.s(x.sayTrue()) } default: buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type)) } } func (x *genRunner) encStruct(varname string, rtid uintptr, t reflect.Type) { // Use knowledge from structfieldinfo (mbs, encodable fields. Ignore omitempty. ) // replicate code in kStruct i.e. for each field, deref type to non-pointer, and call x.enc on it // if t === type currently running selfer on, do for all ti := x.ti.get(rtid, t) i := x.varsfx() // sepVarname := genTempVarPfx + "sep" + i numfieldsvar := genTempVarPfx + "q" + i ti2arrayvar := genTempVarPfx + "r" + i struct2arrvar := genTempVarPfx + "2arr" + i tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing. type genFQN struct { i string fqname string nilLine genBuf nilVar string canNil bool sf reflect.StructField } genFQNs := make([]genFQN, len(tisfi)) si2Pos := make(map[*structFieldInfo]int) // stores position in sorted structFieldInfos for j, si := range tisfi { si2Pos[si] = j q := &genFQNs[j] q.i = x.varsfx() q.nilVar = genTempVarPfx + "n" + q.i q.canNil = false q.fqname = varname { t2typ := t fullpath := si.path.fullpath() for _, path := range fullpath { for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } q.sf = t2typ.Field(int(path.index)) t2typ = q.sf.Type q.fqname += "." + q.sf.Name if t2typ.Kind() == reflect.Ptr { if !q.canNil { q.nilLine.f("%s == nil", q.fqname) q.canNil = true } else { q.nilLine.f(" || %s == nil", q.fqname) } } } } } // x.line(sepVarname + " := !z.EncBinary()") x.linef("%s := z.EncBasicHandle().StructToArray", struct2arrvar) // x.linef("_, _ = %s, %s", sepVarname, struct2arrvar) x.linef("_ = %s", struct2arrvar) x.linef("const %s bool = %v // struct tag has 'toArray'", ti2arrayvar, ti.toArray) for j := range genFQNs { q := &genFQNs[j] if q.canNil { x.linef("var %s bool = %s", q.nilVar, q.nilLine.v()) } } // var nn int // due to omitEmpty, we need to calculate the // number of non-empty things we write out first. // This is required as we need to pre-determine the size of the container, // to support length-prefixing. omitEmptySometimes := x.omitEmptyWhen == nil omitEmptyAlways := (x.omitEmptyWhen != nil && *(x.omitEmptyWhen)) // omitEmptyNever := (x.omitEmptyWhen != nil && !*(x.omitEmptyWhen)) toArraySometimes := x.toArrayWhen == nil toArrayAlways := (x.toArrayWhen != nil && *(x.toArrayWhen)) toArrayNever := (x.toArrayWhen != nil && !(*(x.toArrayWhen))) if (omitEmptySometimes && ti.anyOmitEmpty) || omitEmptyAlways { x.linef("var %s = [%v]bool{ // should field at this index be written?", numfieldsvar, len(tisfi)) for _, si := range tisfi { if omitEmptySometimes && !si.path.omitEmpty { x.linef("true, // %s", si.encName) // si.fieldName) continue } var omitline genBuf t2 := genOmitEmptyLinePreChecks(varname, t, si, &omitline, false) x.doEncOmitEmptyLine(t2, varname, &omitline) x.linef("%s, // %s", omitline.v(), si.encName) // si.fieldName) } x.line("}") x.linef("_ = %s", numfieldsvar) } if toArraySometimes { x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray } if toArraySometimes || toArrayAlways { x.linef("z.EncWriteArrayStart(%d)", len(tisfi)) for j, si := range tisfi { doOmitEmptyCheck := (omitEmptySometimes && si.path.omitEmpty) || omitEmptyAlways q := &genFQNs[j] // if the type of the field is a Selfer, or one of the ones if q.canNil { x.linef("if %s { z.EncWriteArrayElem(); r.EncodeNil() } else { ", q.nilVar) } x.linef("z.EncWriteArrayElem()") if doOmitEmptyCheck { x.linef("if %s[%v] {", numfieldsvar, j) } x.encVarChkNil(q.fqname, q.sf.Type, false) if doOmitEmptyCheck { x.linef("} else {") x.encZero(q.sf.Type) x.linef("}") } if q.canNil { x.line("}") } } x.line("z.EncWriteArrayEnd()") } if toArraySometimes { x.linef("} else {") // if not ti.toArray } if toArraySometimes || toArrayNever { if (omitEmptySometimes && ti.anyOmitEmpty) || omitEmptyAlways { x.linef("var %snn%s int", genTempVarPfx, i) x.linef("for _, b := range %s { if b { %snn%s++ } }", numfieldsvar, genTempVarPfx, i) x.linef("z.EncWriteMapStart(%snn%s)", genTempVarPfx, i) x.linef("%snn%s = %v", genTempVarPfx, i, 0) } else { x.linef("z.EncWriteMapStart(%d)", len(tisfi)) } fn := func(tisfi []*structFieldInfo) { // tisfi here may be source or sorted, so use the src position stored elsewhere for _, si := range tisfi { pos := si2Pos[si] q := &genFQNs[pos] doOmitEmptyCheck := (omitEmptySometimes && si.path.omitEmpty) || omitEmptyAlways if doOmitEmptyCheck { x.linef("if %s[%v] {", numfieldsvar, pos) } x.linef("z.EncWriteMapElemKey()") // emulate EncStructFieldKey switch ti.keyType { case valueTypeInt: x.linef("r.EncodeInt(z.M.Int(strconv.ParseInt(`%s`, 10, 64)))", si.encName) case valueTypeUint: x.linef("r.EncodeUint(z.M.Uint(strconv.ParseUint(`%s`, 10, 64)))", si.encName) case valueTypeFloat: x.linef("r.EncodeFloat64(z.M.Float(strconv.ParseFloat(`%s`, 64)))", si.encName) default: // string if x.jsonOnlyWhen == nil { if si.path.encNameAsciiAlphaNum { x.linef(`if z.IsJSONHandle() { z.EncWr().WriteStr("\"%s\"") } else { `, si.encName) } x.linef("r.EncodeString(`%s`)", si.encName) if si.path.encNameAsciiAlphaNum { x.linef("}") } } else if *(x.jsonOnlyWhen) { if si.path.encNameAsciiAlphaNum { x.linef(`z.EncWr().WriteStr("\"%s\"")`, si.encName) } else { x.linef("r.EncodeString(`%s`)", si.encName) } } else { x.linef("r.EncodeString(`%s`)", si.encName) } } x.line("z.EncWriteMapElemValue()") if q.canNil { x.line("if " + q.nilVar + " { r.EncodeNil() } else { ") x.encVarChkNil(q.fqname, q.sf.Type, false) x.line("}") } else { x.encVarChkNil(q.fqname, q.sf.Type, false) } if doOmitEmptyCheck { x.line("}") } } } if genStructCanonical { x.linef("if z.EncBasicHandle().Canonical {") // if Canonical block fn(ti.sfi.sorted()) x.linef("} else {") // else !Canonical block fn(ti.sfi.source()) x.linef("}") // end if Canonical block } else { fn(tisfi) } x.line("z.EncWriteMapEnd()") } if toArraySometimes { x.linef("} ") // end if/else ti.toArray } } func (x *genRunner) encListFallback(varname string, t reflect.Type) { x.linef("if %s == nil { r.EncodeNil(); return }", varname) elemBytes := t.Elem().Kind() == reflect.Uint8 if t.AssignableTo(uint8SliceTyp) { x.linef("r.EncodeStringBytesRaw([]byte(%s))", varname) return } if t.Kind() == reflect.Array && elemBytes { x.linef("r.EncodeStringBytesRaw(((*[%d]byte)(%s))[:])", t.Len(), varname) return } i := x.varsfx() if t.Kind() == reflect.Chan { type ts struct { Label, Chan, Slice, Sfx string } tm, err := template.New("").Parse(genEncChanTmpl) genCheckErr(err) x.linef("if %s == nil { r.EncodeNil() } else { ", varname) x.linef("var sch%s []%s", i, x.genTypeName(t.Elem())) err = tm.Execute(x.w, &ts{"Lsch" + i, varname, "sch" + i, i}) genCheckErr(err) if elemBytes { x.linef("r.EncodeStringBytesRaw([]byte(%s))", "sch"+i) x.line("}") return } varname = "sch" + i } x.line("z.EncWriteArrayStart(len(" + varname + "))") // x.linef("for _, %sv%s := range %s {", genTempVarPfx, i, varname) // x.linef("z.EncWriteArrayElem()") // x.encVar(genTempVarPfx+"v"+i, t.Elem()) // x.line("}") x.linef("for %sv%s := range %s {", genTempVarPfx, i, varname) x.linef("z.EncWriteArrayElem()") x.encVar(fmt.Sprintf("%s[%sv%s]", varname, genTempVarPfx, i), t.Elem()) x.line("}") x.line("z.EncWriteArrayEnd()") if t.Kind() == reflect.Chan { x.line("}") } } func (x *genRunner) encMapFallback(varname string, t reflect.Type) { x.linef("if %s == nil { r.EncodeNil()", varname) x.line("} else if z.EncBasicHandle().Canonical {") // Solve for easy case accomodated by sort package without reflection i.e. // map keys of type: float, int, string (pre-defined/builtin types). // // To do this, we will get the keys into an array of uint64|float64|string, // sort them, then write them out, and grab the value and encode it appropriately tkey := t.Key() tkind := tkey.Kind() // tkeybase := tkey // for tkeybase.Kind() == reflect.Ptr { // tkeybase = tkeybase.Elem() // } // tikey := x.ti.get(rt2id(tkeybase), tkeybase) // pre-defined types have a name and no pkgpath and appropriate kind predeclared := tkey.PkgPath() == "" && tkey.Name() != "" canonSortKind := reflect.Invalid switch tkind { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: canonSortKind = reflect.Int64 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64: canonSortKind = reflect.Uint64 case reflect.Float32, reflect.Float64: canonSortKind = reflect.Float64 case reflect.String: canonSortKind = reflect.String } var i string = x.varsfx() fnCanonNumBoolStrKind := func() { if !predeclared { x.linef("var %svv%s %s", genTempVarPfx, i, x.genTypeName(tkey)) x.linef("%sencfn%s := z.EncFnGivenAddr(&%svv%s)", genTempVarPfx, i, genTempVarPfx, i) } // get the type, get the slice type its mapped to, and complete the code x.linef("%ss%s := make([]%s, 0, len(%s))", genTempVarPfx, i, canonSortKind, varname) x.linef("for k, _ := range %s {", varname) x.linef(" %ss%s = append(%ss%s, %s(k))", genTempVarPfx, i, genTempVarPfx, i, canonSortKind) x.linef("}") x.linef("sort.Sort(%s%sSlice(%ss%s))", x.hn, canonSortKind, genTempVarPfx, i) x.linef("z.EncWriteMapStart(len(%s))", varname) x.linef("for _, %sv%s := range %ss%s {", genTempVarPfx, i, genTempVarPfx, i) x.linef(" z.EncWriteMapElemKey()") if predeclared { switch tkind { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32: x.linef("r.EncodeInt(int64(%sv%s))", genTempVarPfx, i) case reflect.Int64: x.linef("r.EncodeInt(%sv%s)", genTempVarPfx, i) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uintptr: x.linef("r.EncodeUint(%sv%s)", genTempVarPfx, i) case reflect.Uint64: x.linef("r.EncodeUint(uint64(%sv%s))", genTempVarPfx, i) case reflect.Float32: x.linef("r.EncodeFloat32(float32(%sv%s))", genTempVarPfx, i) case reflect.Float64: x.linef("r.EncodeFloat64(%sv%s)", genTempVarPfx, i) case reflect.String: x.linef("r.EncodeString(%sv%s)", genTempVarPfx, i) } } else { x.linef("%svv%s = %s(%sv%s)", genTempVarPfx, i, x.genTypeName(tkey), genTempVarPfx, i) x.linef("z.EncEncodeNumBoolStrKindGivenAddr(&%svv%s, %sencfn%s)", genTempVarPfx, i, genTempVarPfx, i) } x.linef(" z.EncWriteMapElemValue()") vname := genTempVarPfx + "e" + i if predeclared { x.linef("%s := %s[%s(%sv%s)]", vname, varname, x.genTypeName(tkey), genTempVarPfx, i) } else { x.linef("%s := %s[%svv%s]", vname, varname, genTempVarPfx, i) } x.encVar(vname, t.Elem()) x.linef("}") x.line("z.EncWriteMapEnd()") } // if canonSortKind != reflect.Invalid && !tikey.flagMarshalInterface { // if predeclared { // fnCanonNumBoolStrKind() // } else { // // handle if an extension // x.linef("if z.Extension(%s(%s)) != nil { z.EncEncodeMapNonNil(%s) } else {", // x.genTypeName(tkey), x.genZeroValueR(tkey), varname) // fnCanonNumBoolStrKind() // x.line("}") // } // } else { // x.linef("z.EncEncodeMapNonNil(%s)", varname) // } if canonSortKind != reflect.Invalid { fnCanonNumBoolStrKind() } else { x.linef("z.EncEncodeMapNonNil(%s)", varname) } x.line("} else {") x.linef("z.EncWriteMapStart(len(%s))", varname) x.linef("for %sk%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname) x.linef("z.EncWriteMapElemKey()") x.encVar(genTempVarPfx+"k"+i, t.Key()) x.line("z.EncWriteMapElemValue()") x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line("}") x.line("z.EncWriteMapEnd()") x.line("}") } func (x *genRunner) decVarInitPtr(varname, nilvar string, t reflect.Type, si *structFieldInfo, newbuf, nilbuf *genBuf) (varname3 string, t2 reflect.StructField) { //we must accommodate anonymous fields, where the embedded field is a nil pointer in the value. // t2 = t.FieldByIndex(si.is) varname3 = varname t2typ := t t2kind := t2typ.Kind() var nilbufed bool if si != nil { fullpath := si.path.fullpath() for _, path := range fullpath { // only one-level pointers can be seen in a type if t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(int(path.index)) t2typ = t2.Type varname3 = varname3 + "." + t2.Name t2kind = t2typ.Kind() if t2kind != reflect.Ptr { continue } if newbuf != nil { if len(newbuf.buf) > 0 { newbuf.s("\n") } newbuf.f("if %s == nil { %s = new(%s) }", varname3, varname3, x.genTypeName(t2typ.Elem())) } if nilbuf != nil { if !nilbufed { nilbuf.s("if ").s(varname3).s(" != nil") nilbufed = true } else { nilbuf.s(" && ").s(varname3).s(" != nil") } } } } if nilbuf != nil { if nilbufed { nilbuf.s(" { ").s("// remove the if-true\n") } if nilvar != "" { nilbuf.s(nilvar).s(" = true") } else if tk := t2typ.Kind(); tk == reflect.Ptr { if strings.IndexByte(varname3, '.') != -1 || strings.IndexByte(varname3, '[') != -1 { nilbuf.s(varname3).s(" = nil") } else { nilbuf.s("*").s(varname3).s(" = ").s(x.genZeroValueR(t2typ.Elem())) } } else { nilbuf.s(varname3).s(" = ").s(x.genZeroValueR(t2typ)) } if nilbufed { nilbuf.s("}") } } return } // decVar takes a variable called varname, of type t func (x *genRunner) decVarMain(varname, rand string, t reflect.Type, checkNotNil bool) { // We only encode as nil if a nillable value. // This removes some of the wasted checks for TryDecodeAsNil. // We need to think about this more, to see what happens if omitempty, etc // cause a nil value to be stored when something is expected. // This could happen when decoding from a struct encoded as an array. // For that, decVar should be called with canNil=true, to force true as its value. var varname2 string if t.Kind() != reflect.Ptr { if t.PkgPath() != "" || !x.decTryAssignPrimitive(varname, t, false) { x.dec(varname, t, false) } } else { if checkNotNil { x.linef("if %s == nil { %s = new(%s) }", varname, varname, x.genTypeName(t.Elem())) } // Ensure we set underlying ptr to a non-nil value (so we can deref to it later). // There's a chance of a **T in here which is nil. var ptrPfx string for t = t.Elem(); t.Kind() == reflect.Ptr; t = t.Elem() { ptrPfx += "*" if checkNotNil { x.linef("if %s%s == nil { %s%s = new(%s)}", ptrPfx, varname, ptrPfx, varname, x.genTypeName(t)) } } // Should we create temp var if a slice/map indexing? No. dec(...) can now handle it. if ptrPfx == "" { x.dec(varname, t, true) } else { varname2 = genTempVarPfx + "z" + rand x.line(varname2 + " := " + ptrPfx + varname) x.dec(varname2, t, true) } } } // decVar takes a variable called varname, of type t func (x *genRunner) decVar(varname, nilvar string, t reflect.Type, canBeNil, checkNotNil bool) { // We only encode as nil if a nillable value. // This removes some of the wasted checks for TryDecodeAsNil. // We need to think about this more, to see what happens if omitempty, etc // cause a nil value to be stored when something is expected. // This could happen when decoding from a struct encoded as an array. // For that, decVar should be called with canNil=true, to force true as its value. i := x.varsfx() if t.Kind() == reflect.Ptr { var buf genBuf x.decVarInitPtr(varname, nilvar, t, nil, nil, &buf) x.linef("if r.TryNil() { %s } else {", buf.buf) x.decVarMain(varname, i, t, checkNotNil) x.line("} ") } else { x.decVarMain(varname, i, t, checkNotNil) } } // dec will decode a variable (varname) of type t or ptrTo(t) if isptr==true. func (x *genRunner) dec(varname string, t reflect.Type, isptr bool) { // assumptions: // - the varname is to a pointer already. No need to take address of it // - t is always a baseType T (not a *T, etc). rtid := rt2id(t) ti2 := x.ti.get(rtid, t) // check if // - type is time.Time, Raw, RawExt // - the type implements (Text|JSON|Binary)(Unm|M)arshal mi := x.varsfx() var hasIf genIfClause defer hasIf.end(x) var ptrPfx, addrPfx string if isptr { ptrPfx = "*" } else { addrPfx = "&" } if t == timeTyp { x.linef("%s z.DecBasicHandle().TimeBuiltin() { %s%v = r.DecodeTime()", hasIf.c(false), ptrPfx, varname) // return } if t == rawTyp { x.linef("%s %s%v = z.DecRaw()", hasIf.c(true), ptrPfx, varname) return } if t == rawExtTyp { x.linef("%s r.DecodeExt(%s%v, 0, nil)", hasIf.c(true), addrPfx, varname) return } // only check for extensions if extensions are configured, // and the type is named, and has a packagePath, // and this is not the CodecEncodeSelf or CodecDecodeSelf method (i.e. it is not a Selfer) // xdebugf("genRunner.dec: varname: %v, t: %v, genImportPath: %v, t.Name: %v", varname, t, genImportPath(t), t.Name()) if !x.nx && varname != genTopLevelVarName && t != genStringDecAsBytesTyp && t != genStringDecZCTyp && genImportPath(t) != "" && t.Name() != "" { // first check if extensions are configued, before doing the interface conversion yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi) x.linef("%s %s := z.Extension(%s); %s != nil { z.DecExtension(%s%s, %s) ", hasIf.c(false), yy, varname, yy, addrPfx, varname, yy) } if x.checkForSelfer(t, varname) { if ti2.flagSelfer { x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname) return } if ti2.flagSelferPtr { x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname) return } if _, ok := x.td[rtid]; ok { x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname) return } } inlist := false for _, t0 := range x.t { if t == t0 { inlist = true if x.checkForSelfer(t, varname) { x.linef("%s %s.CodecDecodeSelf(d)", hasIf.c(true), varname) return } break } } var rtidAdded bool if t == x.tc { x.td[rtid] = true rtidAdded = true } if ti2.flagBinaryUnmarshaler { x.linef("%s z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", hasIf.c(false), ptrPfx, varname) } else if ti2.flagBinaryUnmarshalerPtr { x.linef("%s z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", hasIf.c(false), addrPfx, varname) } if ti2.flagJsonUnmarshaler { x.linef("%s !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", hasIf.c(false), ptrPfx, varname) } else if ti2.flagJsonUnmarshalerPtr { x.linef("%s !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", hasIf.c(false), addrPfx, varname) } else if ti2.flagTextUnmarshaler { x.linef("%s !z.DecBinary() { z.DecTextUnmarshal(%s%v)", hasIf.c(false), ptrPfx, varname) } else if ti2.flagTextUnmarshalerPtr { x.linef("%s !z.DecBinary() { z.DecTextUnmarshal(%s%v)", hasIf.c(false), addrPfx, varname) } x.lineIf(hasIf.c(true)) if x.decTryAssignPrimitive(varname, t, isptr) { return } switch t.Kind() { case reflect.Chan: x.xtraSM(varname, t, ti2, false, isptr) case reflect.Array: _, rtidu := genFastpathUnderlying(t, rtid, ti2) if fastpathAvIndex(rtidu) != -1 { g := x.newFastpathGenV(ti2.key) x.linef("z.F.%sN((%s)(%s[:]), d)", g.MethodNamePfx("Dec", false), x.genTypeName(ti2.key), varname) } else { x.xtraSM(varname, t, ti2, false, isptr) } case reflect.Slice: // if a []byte, call dedicated function // if a known fastpath slice, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if rtid == uint8SliceTypId { x.linef("%s%s = z.DecodeBytesInto(%s(%s[]byte)(%s))", ptrPfx, varname, ptrPfx, ptrPfx, varname) } else { tu, rtidu := genFastpathUnderlying(t, rtid, ti2) if fastpathAvIndex(rtidu) != -1 { g := x.newFastpathGenV(tu) if rtid == rtidu { x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname) } else { x.linef("z.F.%sX((*%s)(%s%s), d)", g.MethodNamePfx("Dec", false), x.genTypeName(tu), addrPfx, varname) } } else { x.xtraSM(varname, t, ti2, false, isptr) // x.decListFallback(varname, rtid, false, t) } } case reflect.Map: // if a known fastpath map, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. tu, rtidu := genFastpathUnderlying(t, rtid, ti2) if fastpathAvIndex(rtidu) != -1 { g := x.newFastpathGenV(tu) if rtid == rtidu { x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname) } else { x.linef("z.F.%sX((*%s)(%s%s), d)", g.MethodNamePfx("Dec", false), x.genTypeName(tu), addrPfx, varname) } } else { x.xtraSM(varname, t, ti2, false, isptr) } case reflect.Struct: if inlist { // no need to create temp variable if isptr, or x.F or x[F] if isptr || strings.IndexByte(varname, '.') != -1 || strings.IndexByte(varname, '[') != -1 { x.decStruct(varname, rtid, t) } else { varname2 := genTempVarPfx + "j" + mi x.line(varname2 + " := &" + varname) x.decStruct(varname2, rtid, t) } } else { // delete(x.td, rtid) x.line("z.DecFallback(" + addrPfx + varname + ", false)") } default: if rtidAdded { delete(x.te, rtid) } x.line("z.DecFallback(" + addrPfx + varname + ", true)") } } func (x *genRunner) decTryAssignPrimitive(varname string, t reflect.Type, isptr bool) (done bool) { // This should only be used for exact primitives (ie un-named types). // Named types may be implementations of Selfer, Unmarshaler, etc. // They should be handled by dec(...) var ptr string if isptr { ptr = "*" } switch t.Kind() { case reflect.Int: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs) case reflect.Int8: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 8))", ptr, varname, x.genTypeName(t)) case reflect.Int16: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 16))", ptr, varname, x.genTypeName(t)) case reflect.Int32: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 32))", ptr, varname, x.genTypeName(t)) case reflect.Int64: x.linef("%s%s = (%s)(r.DecodeInt64())", ptr, varname, x.genTypeName(t)) case reflect.Uint: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs) case reflect.Uint8: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 8))", ptr, varname, x.genTypeName(t)) case reflect.Uint16: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 16))", ptr, varname, x.genTypeName(t)) case reflect.Uint32: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 32))", ptr, varname, x.genTypeName(t)) case reflect.Uint64: x.linef("%s%s = (%s)(r.DecodeUint64())", ptr, varname, x.genTypeName(t)) case reflect.Uintptr: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs) case reflect.Float32: x.linef("%s%s = (%s)(z.DecDecodeFloat32())", ptr, varname, x.genTypeName(t)) case reflect.Float64: x.linef("%s%s = (%s)(r.DecodeFloat64())", ptr, varname, x.genTypeName(t)) case reflect.Complex64: x.linef("%s%s = (%s)(complex(z.DecDecodeFloat32(), 0))", ptr, varname, x.genTypeName(t)) case reflect.Complex128: x.linef("%s%s = (%s)(complex(r.DecodeFloat64(), 0))", ptr, varname, x.genTypeName(t)) case reflect.Bool: x.linef("%s%s = (%s)(r.DecodeBool())", ptr, varname, x.genTypeName(t)) case reflect.String: if t == genStringDecAsBytesTyp { x.linef("%s%s = r.DecodeStringAsBytes()", ptr, varname) } else if t == genStringDecZCTyp { x.linef("%s%s = (string)(z.DecStringZC(r.DecodeStringAsBytes()))", ptr, varname) } else { x.linef("%s%s = (%s)(z.DecStringZC(r.DecodeStringAsBytes()))", ptr, varname, x.genTypeName(t)) } default: return false } return true } func (x *genRunner) decListFallback(varname string, rtid uintptr, t reflect.Type) { if t.AssignableTo(uint8SliceTyp) { x.line("*" + varname + " = z.DecodeBytesInto(*((*[]byte)(" + varname + ")))") return } if t.Kind() == reflect.Array && t.Elem().Kind() == reflect.Uint8 { x.linef("r.DecodeBytes( ((*[%d]byte)(%s))[:])", t.Len(), varname) return } type tstruc struct { TempVar string Sfx string Rand string Varname string CTyp string Typ string Immutable bool Size int } telem := t.Elem() ts := tstruc{genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(t), x.genTypeName(telem), genIsImmutable(telem), int(telem.Size())} funcs := make(template.FuncMap) funcs["decLineVar"] = func(varname string) string { x.decVar(varname, "", telem, false, true) return "" } funcs["var"] = func(s string) string { return ts.TempVar + s + ts.Rand } funcs["xs"] = func() string { return ts.Sfx } funcs["zero"] = func() string { return x.genZeroValueR(telem) } funcs["isArray"] = func() bool { return t.Kind() == reflect.Array } funcs["isSlice"] = func() bool { return t.Kind() == reflect.Slice } funcs["isChan"] = func() bool { return t.Kind() == reflect.Chan } tm, err := template.New("").Funcs(funcs).Parse(genDecListTmpl) genCheckErr(err) genCheckErr(tm.Execute(x.w, &ts)) } func (x *genRunner) decMapFallback(varname string, rtid uintptr, t reflect.Type) { type tstruc struct { TempVar string Sfx string Rand string Varname string KTyp string Typ string Size int } telem := t.Elem() tkey := t.Key() ts := tstruc{ genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(tkey), x.genTypeName(telem), int(telem.Size() + tkey.Size()), } funcs := make(template.FuncMap) funcs["decElemZero"] = func() string { return x.genZeroValueR(telem) } funcs["decElemKindImmutable"] = func() bool { return genIsImmutable(telem) } funcs["decElemKindPtr"] = func() bool { return telem.Kind() == reflect.Ptr } funcs["decElemKindIntf"] = func() bool { return telem.Kind() == reflect.Interface } funcs["decLineVarKStrBytes"] = func(varname string) string { x.decVar(varname, "", genStringDecAsBytesTyp, false, true) return "" } funcs["decLineVarKStrZC"] = func(varname string) string { x.decVar(varname, "", genStringDecZCTyp, false, true) return "" } funcs["decLineVarK"] = func(varname string) string { x.decVar(varname, "", tkey, false, true) return "" } funcs["decLineVar"] = func(varname, decodedNilVarname string) string { x.decVar(varname, decodedNilVarname, telem, false, true) return "" } funcs["var"] = func(s string) string { return ts.TempVar + s + ts.Rand } funcs["xs"] = func() string { return ts.Sfx } tm, err := template.New("").Funcs(funcs).Parse(genDecMapTmpl) genCheckErr(err) genCheckErr(tm.Execute(x.w, &ts)) } func (x *genRunner) decStructMapSwitch(kName string, varname string, rtid uintptr, t reflect.Type) { ti := x.ti.get(rtid, t) tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing. x.line("switch string(" + kName + ") {") var newbuf, nilbuf genBuf for _, si := range tisfi { x.line("case \"" + si.encName + "\":") newbuf.reset() nilbuf.reset() varname3, t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf) if len(newbuf.buf) > 0 { x.linef("if r.TryNil() { %s } else { %s", nilbuf.buf, newbuf.buf) } x.decVarMain(varname3, x.varsfx(), t2.Type, false) if len(newbuf.buf) > 0 { x.line("}") } } x.line("default:") // pass the slice here, so that the string will not escape, and maybe save allocation x.linef("z.DecStructFieldNotFound(-1, string(%s))", kName) x.linef("} // end switch %s", kName) } func (x *genRunner) decStructMap(varname, lenvarname string, rtid uintptr, t reflect.Type) { tpfx := genTempVarPfx ti := x.ti.get(rtid, t) i := x.varsfx() kName := tpfx + "s" + i x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length x.linef("for %sj%s := 0; z.DecContainerNext(%sj%s, %s, %shl%s); %sj%s++ {", tpfx, i, tpfx, i, lenvarname, tpfx, i, tpfx, i) x.line("z.DecReadMapElemKey()") // emulate decstructfieldkey switch ti.keyType { case valueTypeInt: x.linef("%s := strconv.AppendInt(z.DecScratchArrayBuffer()[:0], r.DecodeInt64(), 10)", kName) case valueTypeUint: x.linef("%s := strconv.AppendUint(z.DecScratchArrayBuffer()[:0], r.DecodeUint64(), 10)", kName) case valueTypeFloat: x.linef("%s := strconv.AppendFloat(z.DecScratchArrayBuffer()[:0], r.DecodeFloat64(), 'f', -1, 64)", kName) default: // string x.linef("%s := r.DecodeStringAsBytes()", kName) } x.line("z.DecReadMapElemValue()") x.decStructMapSwitch(kName, varname, rtid, t) x.line("} // end for " + tpfx + "j" + i) } func (x *genRunner) decStructArray(varname, lenvarname, breakString string, rtid uintptr, t reflect.Type) { tpfx := genTempVarPfx i := x.varsfx() ti := x.ti.get(rtid, t) tisfi := ti.sfi.source() // always use sequence from file. decStruct expects same thing. x.linef("var %sj%s int", tpfx, i) x.linef("var %sb%s bool", tpfx, i) // break x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length var newbuf, nilbuf genBuf for _, si := range tisfi { x.linef("%sb%s = !z.DecContainerNext(%sj%s, %s, %shl%s)", tpfx, i, tpfx, i, lenvarname, tpfx, i) x.linef("if %sb%s { z.DecReadArrayEnd(); %s }", tpfx, i, breakString) x.line("z.DecReadArrayElem()") newbuf.reset() nilbuf.reset() varname3, t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf) if len(newbuf.buf) > 0 { x.linef("if r.TryNil() { %s } else { %s", nilbuf.buf, newbuf.buf) } x.decVarMain(varname3, x.varsfx(), t2.Type, false) if len(newbuf.buf) > 0 { x.line("}") } x.linef("%sj%s++", tpfx, i) } // read remaining values and throw away. x.linef("for ; z.DecContainerNext(%sj%s, %s, %shl%s); %sj%s++ {", tpfx, i, lenvarname, tpfx, i, tpfx, i) x.line("z.DecReadArrayElem()") x.linef(`z.DecStructFieldNotFound(%sj%s - 1, "")`, tpfx, i) x.line("}") } func (x *genRunner) decStruct(varname string, rtid uintptr, t reflect.Type) { // varname MUST be a ptr, or a struct field or a slice element. i := x.varsfx() x.linef("%sct%s := r.ContainerType()", genTempVarPfx, i) x.linef("if %sct%s == codecSelferValueTypeNil%s {", genTempVarPfx, i, x.xs) x.linef("*(%s) = %s{}", varname, x.genTypeName(t)) x.linef("} else if %sct%s == codecSelferValueTypeMap%s {", genTempVarPfx, i, x.xs) x.line(genTempVarPfx + "l" + i + " := z.DecReadMapStart()") x.linef("if %sl%s == 0 {", genTempVarPfx, i) x.line("} else { ") x.linef("%s.codecDecodeSelfFromMap(%sl%s, d)", varname, genTempVarPfx, i) x.line("}") x.line("z.DecReadMapEnd()") // else if container is array x.linef("} else if %sct%s == codecSelferValueTypeArray%s {", genTempVarPfx, i, x.xs) x.line(genTempVarPfx + "l" + i + " := z.DecReadArrayStart()") x.linef("if %sl%s != 0 {", genTempVarPfx, i) x.linef("%s.codecDecodeSelfFromArray(%sl%s, d)", varname, genTempVarPfx, i) x.line("}") x.line("z.DecReadArrayEnd()") // else panic x.line("} else { ") x.line("panic(errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + ")") x.line("} ") } // -------- type fastpathGenV struct { // fastpathGenV is either a primitive (Primitive != "") or a map (MapKey != "") or a slice MapKey string Elem string Primitive string Size int NoCanonical bool } func (x *genRunner) newFastpathGenV(t reflect.Type) (v fastpathGenV) { v.NoCanonical = !genFastpathCanonical switch t.Kind() { case reflect.Slice, reflect.Array: te := t.Elem() v.Elem = x.genTypeName(te) v.Size = int(te.Size()) case reflect.Map: te := t.Elem() tk := t.Key() v.Elem = x.genTypeName(te) v.MapKey = x.genTypeName(tk) v.Size = int(te.Size() + tk.Size()) default: halt.onerror(errGenUnexpectedTypeFastpath) } return } func (x *fastpathGenV) MethodNamePfx(prefix string, prim bool) string { var name []byte if prefix != "" { name = append(name, prefix...) } if prim { name = append(name, genTitleCaseName(x.Primitive)...) } else { if x.MapKey == "" { name = append(name, "Slice"...) } else { name = append(name, "Map"...) name = append(name, genTitleCaseName(x.MapKey)...) } name = append(name, genTitleCaseName(x.Elem)...) } return string(name) } // genImportPath returns import path of a non-predeclared named typed, or an empty string otherwise. // // This handles the misbehaviour that occurs when 1.5-style vendoring is enabled, // where PkgPath returns the full path, including the vendoring pre-fix that should have been stripped. // We strip it here. func genImportPath(t reflect.Type) (s string) { s = t.PkgPath() if genCheckVendor { // HACK: always handle vendoring. It should be typically on in go 1.6, 1.7 s = genStripVendor(s) } return } // A go identifier is (letter|_)[letter|number|_]* func genGoIdentifier(s string, checkFirstChar bool) string { b := make([]byte, 0, len(s)) t := make([]byte, 4) var n int for i, r := range s { if checkFirstChar && i == 0 && !unicode.IsLetter(r) { b = append(b, '_') } // r must be unicode_letter, unicode_digit or _ if unicode.IsLetter(r) || unicode.IsDigit(r) { n = utf8.EncodeRune(t, r) b = append(b, t[:n]...) } else { b = append(b, '_') } } return string(b) } func genNonPtr(t reflect.Type) reflect.Type { for t.Kind() == reflect.Ptr { t = t.Elem() } return t } func genFastpathUnderlying(t reflect.Type, rtid uintptr, ti *typeInfo) (tu reflect.Type, rtidu uintptr) { tu = t rtidu = rtid if ti.flagHasPkgPath { tu = ti.fastpathUnderlying rtidu = rt2id(tu) } return } func genTitleCaseName(s string) string { switch s { case "interface{}", "interface {}": return "Intf" case "[]byte", "[]uint8", "bytes": return "Bytes" default: return strings.ToUpper(s[0:1]) + s[1:] } } func genMethodNameT(t reflect.Type, tRef reflect.Type) (n string) { var ptrPfx string for t.Kind() == reflect.Ptr { ptrPfx += "Ptrto" t = t.Elem() } tstr := t.String() if tn := t.Name(); tn != "" { if tRef != nil && genImportPath(t) == genImportPath(tRef) { return ptrPfx + tn } else { if genQNameRegex.MatchString(tstr) { return ptrPfx + strings.Replace(tstr, ".", "_", 1000) } else { return ptrPfx + genCustomTypeName(tstr) } } } switch t.Kind() { case reflect.Map: return ptrPfx + "Map" + genMethodNameT(t.Key(), tRef) + genMethodNameT(t.Elem(), tRef) case reflect.Slice: return ptrPfx + "Slice" + genMethodNameT(t.Elem(), tRef) case reflect.Array: return ptrPfx + "Array" + strconv.FormatInt(int64(t.Len()), 10) + genMethodNameT(t.Elem(), tRef) case reflect.Chan: var cx string switch t.ChanDir() { case reflect.SendDir: cx = "ChanSend" case reflect.RecvDir: cx = "ChanRecv" default: cx = "Chan" } return ptrPfx + cx + genMethodNameT(t.Elem(), tRef) default: if t == intfTyp { return ptrPfx + "Interface" } else { if tRef != nil && genImportPath(t) == genImportPath(tRef) { if t.Name() != "" { return ptrPfx + t.Name() } else { return ptrPfx + genCustomTypeName(tstr) } } else { // best way to get the package name inclusive if t.Name() != "" && genQNameRegex.MatchString(tstr) { return ptrPfx + strings.Replace(tstr, ".", "_", 1000) } else { return ptrPfx + genCustomTypeName(tstr) } } } } } // genCustomNameForType base32 encodes the t.String() value in such a way // that it can be used within a function name. func genCustomTypeName(tstr string) string { len2 := genTypenameEnc.EncodedLen(len(tstr)) bufx := make([]byte, len2) genTypenameEnc.Encode(bufx, []byte(tstr)) for i := len2 - 1; i >= 0; i-- { if bufx[i] == '=' { len2-- } else { break } } return string(bufx[:len2]) } func genIsImmutable(t reflect.Type) (v bool) { return scalarBitset.isset(byte(t.Kind())) } type genInternal struct { Version int Values []fastpathGenV Formats []string } func (x genInternal) FastpathLen() (l int) { for _, v := range x.Values { // if v.Primitive == "" && !(v.MapKey == "" && v.Elem == "uint8") { if v.Primitive == "" { l++ } } return } func genInternalZeroValue(s string) string { switch s { case "interface{}", "interface {}": return "nil" case "[]byte", "[]uint8", "bytes": return "nil" case "bool": return "false" case "string": return `""` default: return "0" } } var genInternalNonZeroValueIdx [6]uint64 var genInternalNonZeroValueStrs = [...][6]string{ {`"string-is-an-interface-1"`, "true", `"some-string-1"`, `[]byte("some-string-1")`, "11.1", "111"}, {`"string-is-an-interface-2"`, "false", `"some-string-2"`, `[]byte("some-string-2")`, "22.2", "77"}, {`"string-is-an-interface-3"`, "true", `"some-string-3"`, `[]byte("some-string-3")`, "33.3e3", "127"}, } // Note: last numbers must be in range: 0-127 (as they may be put into a int8, uint8, etc) func genInternalNonZeroValue(s string) string { var i int switch s { case "interface{}", "interface {}": i = 0 case "bool": i = 1 case "string": i = 2 case "bytes", "[]byte", "[]uint8": i = 3 case "float32", "float64", "float", "double", "complex", "complex64", "complex128": i = 4 default: i = 5 } genInternalNonZeroValueIdx[i]++ idx := genInternalNonZeroValueIdx[i] slen := uint64(len(genInternalNonZeroValueStrs)) return genInternalNonZeroValueStrs[idx%slen][i] // return string, to remove ambiguity } // Note: used for fastpath only func genInternalEncCommandAsString(s string, vname string) string { switch s { case "uint64": return "e.e.EncodeUint(" + vname + ")" case "uint", "uint8", "uint16", "uint32": return "e.e.EncodeUint(uint64(" + vname + "))" case "int64": return "e.e.EncodeInt(" + vname + ")" case "int", "int8", "int16", "int32": return "e.e.EncodeInt(int64(" + vname + "))" case "[]byte", "[]uint8", "bytes": return "e.e.EncodeStringBytesRaw(" + vname + ")" case "string": return "e.e.EncodeString(" + vname + ")" case "float32": return "e.e.EncodeFloat32(" + vname + ")" case "float64": return "e.e.EncodeFloat64(" + vname + ")" case "bool": return "e.e.EncodeBool(" + vname + ")" // case "symbol": // return "e.e.EncodeSymbol(" + vname + ")" default: return "e.encode(" + vname + ")" } } // Note: used for fastpath only func genInternalDecCommandAsString(s string, mapkey bool) string { switch s { case "uint": return "uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))" case "uint8": return "uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))" case "uint16": return "uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))" case "uint32": return "uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))" case "uint64": return "d.d.DecodeUint64()" case "uintptr": return "uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))" case "int": return "int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))" case "int8": return "int8(chkOvf.IntV(d.d.DecodeInt64(), 8))" case "int16": return "int16(chkOvf.IntV(d.d.DecodeInt64(), 16))" case "int32": return "int32(chkOvf.IntV(d.d.DecodeInt64(), 32))" case "int64": return "d.d.DecodeInt64()" case "string": // if mapkey { // return "d.stringZC(d.d.DecodeStringAsBytes())" // } // return "string(d.d.DecodeStringAsBytes())" return "d.stringZC(d.d.DecodeStringAsBytes())" case "[]byte", "[]uint8", "bytes": return "d.d.DecodeBytes([]byte{})" case "float32": return "float32(d.decodeFloat32())" case "float64": return "d.d.DecodeFloat64()" case "complex64": return "complex(d.decodeFloat32(), 0)" case "complex128": return "complex(d.d.DecodeFloat64(), 0)" case "bool": return "d.d.DecodeBool()" default: halt.onerror(errors.New("gen internal: unknown type for decode: " + s)) } return "" } // func genInternalSortType(s string, elem bool) string { // for _, v := range [...]string{ // "int", // "uint", // "float", // "bool", // "string", // "bytes", "[]uint8", "[]byte", // } { // if v == "[]byte" || v == "[]uint8" { // v = "bytes" // } // if strings.HasPrefix(s, v) { // if v == "int" || v == "uint" || v == "float" { // v += "64" // } // if elem { // return v // } // return v + "Slice" // } // } // halt.onerror(errors.New("sorttype: unexpected type: " + s)) // } func genInternalSortType(s string, elem bool) string { if elem { return s } return s + "Slice" } // MARKER: keep in sync with codecgen/gen.go func genStripVendor(s string) string { // HACK: Misbehaviour occurs in go 1.5. May have to re-visit this later. // if s contains /vendor/ OR startsWith vendor/, then return everything after it. const vendorStart = "vendor/" const vendorInline = "/vendor/" if i := strings.LastIndex(s, vendorInline); i >= 0 { s = s[i+len(vendorInline):] } else if strings.HasPrefix(s, vendorStart) { s = s[len(vendorStart):] } return s } // var genInternalMu sync.Mutex var genInternalV = genInternal{Version: genVersion} var genInternalTmplFuncs template.FuncMap var genInternalOnce sync.Once func genInternalInit() { wordSizeBytes := int(intBitsize) / 8 typesizes := map[string]int{ "interface{}": 2 * wordSizeBytes, "string": 2 * wordSizeBytes, "[]byte": 3 * wordSizeBytes, "uint": 1 * wordSizeBytes, "uint8": 1, "uint16": 2, "uint32": 4, "uint64": 8, "uintptr": 1 * wordSizeBytes, "int": 1 * wordSizeBytes, "int8": 1, "int16": 2, "int32": 4, "int64": 8, "float32": 4, "float64": 8, "complex64": 8, "complex128": 16, "bool": 1, } // keep as slice, so it is in specific iteration order. // Initial order was uint64, string, interface{}, int, int64, ... var types = [...]string{ "interface{}", "string", "[]byte", "float32", "float64", "uint", "uint8", "uint16", "uint32", "uint64", "uintptr", "int", "int8", "int16", "int32", "int64", "bool", } var primitivetypes, slicetypes, mapkeytypes, mapvaltypes []string primitivetypes = types[:] slicetypes = types[:] mapkeytypes = types[:] mapvaltypes = types[:] if genFastpathTrimTypes { // Note: we only create fast-paths for commonly used types. // Consequently, things like int8, uint16, uint, etc are commented out. slicetypes = genInternalFastpathSliceTypes() mapkeytypes = genInternalFastpathMapKeyTypes() mapvaltypes = genInternalFastpathMapValueTypes() } // var mapkeytypes [len(&types) - 1]string // skip bool // copy(mapkeytypes[:], types[:]) // var mb []byte // mb = append(mb, '|') // for _, s := range mapkeytypes { // mb = append(mb, s...) // mb = append(mb, '|') // } // var mapkeytypestr = string(mb) var gt = genInternal{Version: genVersion, Formats: genFormats} // For each slice or map type, there must be a (symmetrical) Encode and Decode fast-path function for _, s := range primitivetypes { gt.Values = append(gt.Values, fastpathGenV{Primitive: s, Size: typesizes[s], NoCanonical: !genFastpathCanonical}) } for _, s := range slicetypes { // if s != "uint8" { // do not generate fast path for slice of bytes. Treat specially already. // gt.Values = append(gt.Values, fastpathGenV{Elem: s, Size: typesizes[s]}) // } gt.Values = append(gt.Values, fastpathGenV{Elem: s, Size: typesizes[s], NoCanonical: !genFastpathCanonical}) } for _, s := range mapkeytypes { // if _, ok := typesizes[s]; !ok { // if strings.Contains(mapkeytypestr, "|"+s+"|") { // gt.Values = append(gt.Values, fastpathGenV{MapKey: s, Elem: s, Size: 2 * typesizes[s]}) // } for _, ms := range mapvaltypes { gt.Values = append(gt.Values, fastpathGenV{MapKey: s, Elem: ms, Size: typesizes[s] + typesizes[ms], NoCanonical: !genFastpathCanonical}) } } funcs := make(template.FuncMap) // funcs["haspfx"] = strings.HasPrefix funcs["encmd"] = genInternalEncCommandAsString funcs["decmd"] = genInternalDecCommandAsString funcs["zerocmd"] = genInternalZeroValue funcs["nonzerocmd"] = genInternalNonZeroValue funcs["hasprefix"] = strings.HasPrefix funcs["sorttype"] = genInternalSortType genInternalV = gt genInternalTmplFuncs = funcs } // genInternalGoFile is used to generate source files from templates. func genInternalGoFile(r io.Reader, w io.Writer) (err error) { genInternalOnce.Do(genInternalInit) gt := genInternalV t := template.New("").Funcs(genInternalTmplFuncs) tmplstr, err := ioutil.ReadAll(r) if err != nil { return } if t, err = t.Parse(string(tmplstr)); err != nil { return } var out bytes.Buffer err = t.Execute(&out, gt) if err != nil { return } bout, err := format.Source(out.Bytes()) if err != nil { w.Write(out.Bytes()) // write out if error, so we can still see. // w.Write(bout) // write out if error, as much as possible, so we can still see. return } w.Write(bout) return } func genInternalFastpathSliceTypes() []string { return []string{ "interface{}", "string", "[]byte", "float32", "float64", // "uint", // "uint8", // no need for fastpath of []uint8, as it is handled specially "uint8", // keep fast-path, so it doesn't have to go through reflection // "uint16", // "uint32", "uint64", // "uintptr", "int", // "int8", // "int16", "int32", // rune "int64", "bool", } } func genInternalFastpathMapKeyTypes() []string { return []string{ // "interface{}", "string", // "[]byte", // "float32", // "float64", // "uint", "uint8", // byte // "uint16", // "uint32", "uint64", // used for keys // "uintptr", "int", // default number key // "int8", // "int16", "int32", // rune // "int64", // "bool", } } func genInternalFastpathMapValueTypes() []string { return []string{ "interface{}", "string", "[]byte", // "uint", "uint8", // byte // "uint16", // "uint32", "uint64", // used for keys, etc // "uintptr", "int", // default number //"int8", // "int16", "int32", // rune (mostly used for unicode) // "int64", // "float32", "float64", "bool", } } // sort-slice ... // generates sort implementations for // various slice types and combination slice+reflect.Value types. // // The combination slice+reflect.Value types are used // during canonical encode, and the others are used during fast-path // encoding of map keys. // genInternalSortableTypes returns the types // that are used for fast-path canonical's encoding of maps. // // For now, we only support the highest sizes for // int64, uint64, float64, bool, string, bytes. func genInternalSortableTypes() []string { return genInternalFastpathMapKeyTypes() } // genInternalSortablePlusTypes returns the types // that are used for reflection-based canonical's encoding of maps. // // For now, we only support the highest sizes for // int64, uint64, float64, string, bytes. func genInternalSortablePlusTypes() []string { return []string{ "string", "float64", "uint64", // "uintptr", "int64", // "bool", "time", "bytes", } } func genTypeForShortName(s string) string { switch s { case "time": return "time.Time" case "bytes": return "[]byte" } return s } func genArgs(args ...interface{}) map[string]interface{} { m := make(map[string]interface{}, len(args)/2) for i := 0; i < len(args); { m[args[i].(string)] = args[i+1] i += 2 } return m } func genEndsWith(s0 string, sn ...string) bool { for _, s := range sn { if strings.HasSuffix(s0, s) { return true } } return false } func genCheckErr(err error) { halt.onerror(err) } func genRunSortTmpl2Go(fnameIn, fnameOut string) { var err error funcs := make(template.FuncMap) funcs["sortables"] = genInternalSortableTypes funcs["sortablesplus"] = genInternalSortablePlusTypes funcs["tshort"] = genTypeForShortName funcs["endswith"] = genEndsWith funcs["args"] = genArgs t := template.New("").Funcs(funcs) fin, err := os.Open(fnameIn) genCheckErr(err) defer fin.Close() fout, err := os.Create(fnameOut) genCheckErr(err) defer fout.Close() tmplstr, err := ioutil.ReadAll(fin) genCheckErr(err) t, err = t.Parse(string(tmplstr)) genCheckErr(err) var out bytes.Buffer err = t.Execute(&out, 0) genCheckErr(err) bout, err := format.Source(out.Bytes()) if err != nil { fout.Write(out.Bytes()) // write out if error, so we can still see. } genCheckErr(err) // write out if error, as much as possible, so we can still see. _, err = fout.Write(bout) genCheckErr(err) } func genRunTmpl2Go(fnameIn, fnameOut string) { // println("____ " + fnameIn + " --> " + fnameOut + " ______") fin, err := os.Open(fnameIn) genCheckErr(err) defer fin.Close() fout, err := os.Create(fnameOut) genCheckErr(err) defer fout.Close() err = genInternalGoFile(fin, fout) genCheckErr(err) } // --- some methods here for other types, which are only used in codecgen // depth returns number of valid nodes in the hierachy func (path *structFieldInfoPathNode) root() *structFieldInfoPathNode { TOP: if path.parent != nil { path = path.parent goto TOP } return path } func (path *structFieldInfoPathNode) fullpath() (p []*structFieldInfoPathNode) { // this method is mostly called by a command-line tool - it's not optimized, and that's ok. // it shouldn't be used in typical runtime use - as it does unnecessary allocation. d := path.depth() p = make([]*structFieldInfoPathNode, d) for d--; d >= 0; d-- { p[d] = path path = path.parent } return }