package blurhash import ( "fmt" "github.com/buckket/go-blurhash/base83" "image" "math" "strings" ) func init() { initLinearTable(channelToLinear[:]) } var channelToLinear [256]float64 func initLinearTable(table []float64) { for i := range table { channelToLinear[i] = sRGBToLinear(i) } } // An InvalidParameterError occurs when an invalid argument is passed to either the Decode or Encode function. type InvalidParameterError struct { Value int Parameter string } func (e InvalidParameterError) Error() string { return fmt.Sprintf("blurhash: %sComponents (%d) must be element of [1-9]", e.Parameter, e.Value) } // An EncodingError represents an error that occurred during the encoding of the given value. // This most likely means that your input image is invalid and can not be processed. type EncodingError string func (e EncodingError) Error() string { return fmt.Sprintf("blurhash: %s", string(e)) } // Encode calculates the Blurhash for an image using the given x and y component counts. // The x and y components have to be between 1 and 9 respectively. // The image must be of image.Image type. func Encode(xComponents int, yComponents int, rgba image.Image) (string, error) { if xComponents < 1 || xComponents > 9 { return "", InvalidParameterError{xComponents, "x"} } if yComponents < 1 || yComponents > 9 { return "", InvalidParameterError{yComponents, "y"} } var blurhash strings.Builder blurhash.Grow(4 + 2*xComponents*yComponents) // Size Flag str, err := base83.Encode((xComponents-1)+(yComponents-1)*9, 1) if err != nil { return "", EncodingError("could not encode size flag") } blurhash.WriteString(str) factors := make([]float64, yComponents*xComponents*3) multiplyBasisFunction(rgba, factors, xComponents, yComponents) var maximumValue float64 var quantisedMaximumValue int var acCount = xComponents*yComponents - 1 if acCount > 0 { var actualMaximumValue float64 for i := 0; i < acCount*3; i++ { actualMaximumValue = math.Max(math.Abs(factors[i+3]), actualMaximumValue) } quantisedMaximumValue = int(math.Max(0, math.Min(82, math.Floor(actualMaximumValue*166-0.5)))) maximumValue = (float64(quantisedMaximumValue) + 1) / 166 } else { maximumValue = 1 } // Quantised max AC component str, err = base83.Encode(quantisedMaximumValue, 1) if err != nil { return "", EncodingError("could not encode quantised max AC component") } blurhash.WriteString(str) // DC value str, err = base83.Encode(encodeDC(factors[0], factors[1], factors[2]), 4) if err != nil { return "", EncodingError("could not encode DC value") } blurhash.WriteString(str) // AC values for i := 0; i < acCount; i++ { str, err = base83.Encode(encodeAC(factors[3+(i*3+0)], factors[3+(i*3+1)], factors[3+(i*3+2)], maximumValue), 2) if err != nil { return "", EncodingError("could not encode AC value") } blurhash.WriteString(str) } if blurhash.Len() != 4+2*xComponents*yComponents { return "", EncodingError("hash does not match expected size") } return blurhash.String(), nil } func multiplyBasisFunction(rgba image.Image, factors []float64, xComponents int, yComponents int) { height := rgba.Bounds().Max.Y width := rgba.Bounds().Max.X xvalues := make([][]float64, xComponents) for xComponent := 0; xComponent < xComponents; xComponent++ { xvalues[xComponent] = make([]float64, width) for x := 0; x < width; x++ { xvalues[xComponent][x] = math.Cos(math.Pi * float64(xComponent) * float64(x) / float64(width)) } } yvalues := make([][]float64, yComponents) for yComponent := 0; yComponent < yComponents; yComponent++ { yvalues[yComponent] = make([]float64, height) for y := 0; y < height; y++ { yvalues[yComponent][y] = math.Cos(math.Pi * float64(yComponent) * float64(y) / float64(height)) } } for y := 0; y < height; y++ { for x := 0; x < width; x++ { rt, gt, bt, _ := rgba.At(x, y).RGBA() lr := channelToLinear[rt>>8] lg := channelToLinear[gt>>8] lb := channelToLinear[bt>>8] for yc := 0; yc < yComponents; yc++ { for xc := 0; xc < xComponents; xc++ { scale := 1 / float64(width*height) if xc != 0 || yc != 0 { scale = 2 / float64(width*height) } basis := xvalues[xc][x] * yvalues[yc][y] factors[0+xc*3+yc*3*xComponents] += lr * basis * scale factors[1+xc*3+yc*3*xComponents] += lg * basis * scale factors[2+xc*3+yc*3*xComponents] += lb * basis * scale } } } } } func encodeDC(r, g, b float64) int { return (linearTosRGB(r) << 16) + (linearTosRGB(g) << 8) + linearTosRGB(b) } func encodeAC(r, g, b, maximumValue float64) int { quant := func(f float64) int { return int(math.Max(0, math.Min(18, math.Floor(signPow(f/maximumValue, 0.5)*9+9.5)))) } return quant(r)*19*19 + quant(g)*19 + quant(b) }