[chore]: Bump github.com/jackc/pgx/v5 from 5.4.3 to 5.5.0 (#2336)

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
This commit is contained in:
dependabot[bot]
2023-11-06 14:44:53 +00:00
committed by GitHub
parent 74b600655d
commit 9b76afc851
47 changed files with 2905 additions and 162 deletions

74
vendor/github.com/jackc/puddle/v2/CHANGELOG.md generated vendored Normal file
View File

@ -0,0 +1,74 @@
# 2.2.1 (July 15, 2023)
* Fix: CreateResource cannot overflow pool. This changes documented behavior of CreateResource. Previously,
CreateResource could create a resource even if the pool was full. This could cause the pool to overflow. While this
was documented, it was documenting incorrect behavior. CreateResource now returns an error if the pool is full.
# 2.2.0 (February 11, 2023)
* Use Go 1.19 atomics and drop go.uber.org/atomic dependency
# 2.1.2 (November 12, 2022)
* Restore support to Go 1.18 via go.uber.org/atomic
# 2.1.1 (November 11, 2022)
* Fix create resource concurrently with Stat call race
# 2.1.0 (October 28, 2022)
* Concurrency control is now implemented with a semaphore. This simplifies some internal logic, resolves a few error conditions (including a deadlock), and improves performance. (Jan Dubsky)
* Go 1.19 is now required for the improved atomic support.
# 2.0.1 (October 28, 2022)
* Fix race condition when Close is called concurrently with multiple constructors
# 2.0.0 (September 17, 2022)
* Use generics instead of interface{} (Столяров Владимир Алексеевич)
* Add Reset
* Do not cancel resource construction when Acquire is canceled
* NewPool takes Config
# 1.3.0 (August 27, 2022)
* Acquire creates resources in background to allow creation to continue after Acquire is canceled (James Hartig)
# 1.2.1 (December 2, 2021)
* TryAcquire now does not block when background constructing resource
# 1.2.0 (November 20, 2021)
* Add TryAcquire (A. Jensen)
* Fix: remove memory leak / unintentionally pinned memory when shrinking slices (Alexander Staubo)
* Fix: Do not leave pool locked after panic from nil context
# 1.1.4 (September 11, 2021)
* Fix: Deadlock in CreateResource if pool was closed during resource acquisition (Dmitriy Matrenichev)
# 1.1.3 (December 3, 2020)
* Fix: Failed resource creation could cause concurrent Acquire to hang. (Evgeny Vanslov)
# 1.1.2 (September 26, 2020)
* Fix: Resource.Destroy no longer removes itself from the pool before its destructor has completed.
* Fix: Prevent crash when pool is closed while resource is being created.
# 1.1.1 (April 2, 2020)
* Pool.Close can be safely called multiple times
* AcquireAllIDle immediately returns nil if pool is closed
* CreateResource checks if pool is closed before taking any action
* Fix potential race condition when CreateResource and Close are called concurrently. CreateResource now checks if pool is closed before adding newly created resource to pool.
# 1.1.0 (February 5, 2020)
* Use runtime.nanotime for faster tracking of acquire time and last usage time.
* Track resource idle time to enable client health check logic. (Patrick Ellul)
* Add CreateResource to construct a new resource without acquiring it. (Patrick Ellul)
* Fix deadlock race when acquire is cancelled. (Michael Tharp)

22
vendor/github.com/jackc/puddle/v2/LICENSE generated vendored Normal file
View File

@ -0,0 +1,22 @@
Copyright (c) 2018 Jack Christensen
MIT License
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

80
vendor/github.com/jackc/puddle/v2/README.md generated vendored Normal file
View File

@ -0,0 +1,80 @@
[![](https://godoc.org/github.com/jackc/puddle?status.svg)](https://godoc.org/github.com/jackc/puddle)
![Build Status](https://github.com/jackc/puddle/actions/workflows/ci.yml/badge.svg)
# Puddle
Puddle is a tiny generic resource pool library for Go that uses the standard
context library to signal cancellation of acquires. It is designed to contain
the minimum functionality required for a resource pool. It can be used directly
or it can be used as the base for a domain specific resource pool. For example,
a database connection pool may use puddle internally and implement health checks
and keep-alive behavior without needing to implement any concurrent code of its
own.
## Features
* Acquire cancellation via context standard library
* Statistics API for monitoring pool pressure
* No dependencies outside of standard library and golang.org/x/sync
* High performance
* 100% test coverage of reachable code
## Example Usage
```go
package main
import (
"context"
"log"
"net"
"github.com/jackc/puddle/v2"
)
func main() {
constructor := func(context.Context) (net.Conn, error) {
return net.Dial("tcp", "127.0.0.1:8080")
}
destructor := func(value net.Conn) {
value.Close()
}
maxPoolSize := int32(10)
pool, err := puddle.NewPool(&puddle.Config[net.Conn]{Constructor: constructor, Destructor: destructor, MaxSize: maxPoolSize})
if err != nil {
log.Fatal(err)
}
// Acquire resource from the pool.
res, err := pool.Acquire(context.Background())
if err != nil {
log.Fatal(err)
}
// Use resource.
_, err = res.Value().Write([]byte{1})
if err != nil {
log.Fatal(err)
}
// Release when done.
res.Release()
}
```
## Status
Puddle is stable and feature complete.
* Bug reports and fixes are welcome.
* New features will usually not be accepted if they can be feasibly implemented in a wrapper.
* Performance optimizations will usually not be accepted unless the performance issue rises to the level of a bug.
## Supported Go Versions
puddle supports the same versions of Go that are supported by the Go project. For [Go](https://golang.org/doc/devel/release.html#policy) that is the two most recent major releases. This means puddle supports Go 1.19 and higher.
## License
MIT

24
vendor/github.com/jackc/puddle/v2/context.go generated vendored Normal file
View File

@ -0,0 +1,24 @@
package puddle
import (
"context"
"time"
)
// valueCancelCtx combines two contexts into one. One context is used for values and the other is used for cancellation.
type valueCancelCtx struct {
valueCtx context.Context
cancelCtx context.Context
}
func (ctx *valueCancelCtx) Deadline() (time.Time, bool) { return ctx.cancelCtx.Deadline() }
func (ctx *valueCancelCtx) Done() <-chan struct{} { return ctx.cancelCtx.Done() }
func (ctx *valueCancelCtx) Err() error { return ctx.cancelCtx.Err() }
func (ctx *valueCancelCtx) Value(key any) any { return ctx.valueCtx.Value(key) }
func newValueCancelCtx(valueCtx, cancelContext context.Context) context.Context {
return &valueCancelCtx{
valueCtx: valueCtx,
cancelCtx: cancelContext,
}
}

11
vendor/github.com/jackc/puddle/v2/doc.go generated vendored Normal file
View File

@ -0,0 +1,11 @@
// Package puddle is a generic resource pool with type-parametrized api.
/*
Puddle is a tiny generic resource pool library for Go that uses the standard
context library to signal cancellation of acquires. It is designed to contain
the minimum functionality a resource pool needs that cannot be implemented
without concurrency concerns. For example, a database connection pool may use
puddle internally and implement health checks and keep-alive behavior without
needing to implement any concurrent code of its own.
*/
package puddle

View File

@ -0,0 +1,85 @@
package genstack
// GenStack implements a generational stack.
//
// GenStack works as common stack except for the fact that all elements in the
// older generation are guaranteed to be popped before any element in the newer
// generation. New elements are always pushed to the current (newest)
// generation.
//
// We could also say that GenStack behaves as a stack in case of a single
// generation, but it behaves as a queue of individual generation stacks.
type GenStack[T any] struct {
// We can represent arbitrary number of generations using 2 stacks. The
// new stack stores all new pushes and the old stack serves all reads.
// Old stack can represent multiple generations. If old == new, then all
// elements pushed in previous (not current) generations have already
// been popped.
old *stack[T]
new *stack[T]
}
// NewGenStack creates a new empty GenStack.
func NewGenStack[T any]() *GenStack[T] {
s := &stack[T]{}
return &GenStack[T]{
old: s,
new: s,
}
}
func (s *GenStack[T]) Pop() (T, bool) {
// Pushes always append to the new stack, so if the old once becomes
// empty, it will remail empty forever.
if s.old.len() == 0 && s.old != s.new {
s.old = s.new
}
if s.old.len() == 0 {
var zero T
return zero, false
}
return s.old.pop(), true
}
// Push pushes a new element at the top of the stack.
func (s *GenStack[T]) Push(v T) { s.new.push(v) }
// NextGen starts a new stack generation.
func (s *GenStack[T]) NextGen() {
if s.old == s.new {
s.new = &stack[T]{}
return
}
// We need to pop from the old stack to the top of the new stack. Let's
// have an example:
//
// Old: <bottom> 4 3 2 1
// New: <bottom> 8 7 6 5
// PopOrder: 1 2 3 4 5 6 7 8
//
//
// To preserve pop order, we have to take all elements from the old
// stack and push them to the top of new stack:
//
// New: 8 7 6 5 4 3 2 1
//
s.new.push(s.old.takeAll()...)
// We have the old stack allocated and empty, so why not to reuse it as
// new new stack.
s.old, s.new = s.new, s.old
}
// Len returns number of elements in the stack.
func (s *GenStack[T]) Len() int {
l := s.old.len()
if s.old != s.new {
l += s.new.len()
}
return l
}

View File

@ -0,0 +1,39 @@
package genstack
// stack is a wrapper around an array implementing a stack.
//
// We cannot use slice to represent the stack because append might change the
// pointer value of the slice. That would be an issue in GenStack
// implementation.
type stack[T any] struct {
arr []T
}
// push pushes a new element at the top of a stack.
func (s *stack[T]) push(vs ...T) { s.arr = append(s.arr, vs...) }
// pop pops the stack top-most element.
//
// If stack length is zero, this method panics.
func (s *stack[T]) pop() T {
idx := s.len() - 1
val := s.arr[idx]
// Avoid memory leak
var zero T
s.arr[idx] = zero
s.arr = s.arr[:idx]
return val
}
// takeAll returns all elements in the stack in order as they are stored - i.e.
// the top-most stack element is the last one.
func (s *stack[T]) takeAll() []T {
arr := s.arr
s.arr = nil
return arr
}
// len returns number of elements in the stack.
func (s *stack[T]) len() int { return len(s.arr) }

32
vendor/github.com/jackc/puddle/v2/log.go generated vendored Normal file
View File

@ -0,0 +1,32 @@
package puddle
import "unsafe"
type ints interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
// log2Int returns log2 of an integer. This function panics if val < 0. For val
// == 0, returns 0.
func log2Int[T ints](val T) uint8 {
if val <= 0 {
panic("log2 of non-positive number does not exist")
}
return log2IntRange(val, 0, uint8(8*unsafe.Sizeof(val)))
}
func log2IntRange[T ints](val T, begin, end uint8) uint8 {
length := end - begin
if length == 1 {
return begin
}
delim := begin + length/2
mask := T(1) << delim
if mask > val {
return log2IntRange(val, begin, delim)
} else {
return log2IntRange(val, delim, end)
}
}

13
vendor/github.com/jackc/puddle/v2/nanotime_time.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
//go:build purego || appengine || js
// This file contains the safe implementation of nanotime using time.Now().
package puddle
import (
"time"
)
func nanotime() int64 {
return time.Now().UnixNano()
}

12
vendor/github.com/jackc/puddle/v2/nanotime_unsafe.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
//go:build !purego && !appengine && !js
// This file contains the implementation of nanotime using runtime.nanotime.
package puddle
import "unsafe"
var _ = unsafe.Sizeof(0)
//go:linkname nanotime runtime.nanotime
func nanotime() int64

696
vendor/github.com/jackc/puddle/v2/pool.go generated vendored Normal file
View File

@ -0,0 +1,696 @@
package puddle
import (
"context"
"errors"
"sync"
"sync/atomic"
"time"
"github.com/jackc/puddle/v2/internal/genstack"
"golang.org/x/sync/semaphore"
)
const (
resourceStatusConstructing = 0
resourceStatusIdle = iota
resourceStatusAcquired = iota
resourceStatusHijacked = iota
)
// ErrClosedPool occurs on an attempt to acquire a connection from a closed pool
// or a pool that is closed while the acquire is waiting.
var ErrClosedPool = errors.New("closed pool")
// ErrNotAvailable occurs on an attempt to acquire a resource from a pool
// that is at maximum capacity and has no available resources.
var ErrNotAvailable = errors.New("resource not available")
// Constructor is a function called by the pool to construct a resource.
type Constructor[T any] func(ctx context.Context) (res T, err error)
// Destructor is a function called by the pool to destroy a resource.
type Destructor[T any] func(res T)
// Resource is the resource handle returned by acquiring from the pool.
type Resource[T any] struct {
value T
pool *Pool[T]
creationTime time.Time
lastUsedNano int64
poolResetCount int
status byte
}
// Value returns the resource value.
func (res *Resource[T]) Value() T {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return res.value
}
// Release returns the resource to the pool. res must not be subsequently used.
func (res *Resource[T]) Release() {
if res.status != resourceStatusAcquired {
panic("tried to release resource that is not acquired")
}
res.pool.releaseAcquiredResource(res, nanotime())
}
// ReleaseUnused returns the resource to the pool without updating when it was last used used. i.e. LastUsedNanotime
// will not change. res must not be subsequently used.
func (res *Resource[T]) ReleaseUnused() {
if res.status != resourceStatusAcquired {
panic("tried to release resource that is not acquired")
}
res.pool.releaseAcquiredResource(res, res.lastUsedNano)
}
// Destroy returns the resource to the pool for destruction. res must not be
// subsequently used.
func (res *Resource[T]) Destroy() {
if res.status != resourceStatusAcquired {
panic("tried to destroy resource that is not acquired")
}
go res.pool.destroyAcquiredResource(res)
}
// Hijack assumes ownership of the resource from the pool. Caller is responsible
// for cleanup of resource value.
func (res *Resource[T]) Hijack() {
if res.status != resourceStatusAcquired {
panic("tried to hijack resource that is not acquired")
}
res.pool.hijackAcquiredResource(res)
}
// CreationTime returns when the resource was created by the pool.
func (res *Resource[T]) CreationTime() time.Time {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return res.creationTime
}
// LastUsedNanotime returns when Release was last called on the resource measured in nanoseconds from an arbitrary time
// (a monotonic time). Returns creation time if Release has never been called. This is only useful to compare with
// other calls to LastUsedNanotime. In almost all cases, IdleDuration should be used instead.
func (res *Resource[T]) LastUsedNanotime() int64 {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return res.lastUsedNano
}
// IdleDuration returns the duration since Release was last called on the resource. This is equivalent to subtracting
// LastUsedNanotime to the current nanotime.
func (res *Resource[T]) IdleDuration() time.Duration {
if !(res.status == resourceStatusAcquired || res.status == resourceStatusHijacked) {
panic("tried to access resource that is not acquired or hijacked")
}
return time.Duration(nanotime() - res.lastUsedNano)
}
// Pool is a concurrency-safe resource pool.
type Pool[T any] struct {
// mux is the pool internal lock. Any modification of shared state of
// the pool (but Acquires of acquireSem) must be performed only by
// holder of the lock. Long running operations are not allowed when mux
// is held.
mux sync.Mutex
// acquireSem provides an allowance to acquire a resource.
//
// Releases are allowed only when caller holds mux. Acquires have to
// happen before mux is locked (doesn't apply to semaphore.TryAcquire in
// AcquireAllIdle).
acquireSem *semaphore.Weighted
destructWG sync.WaitGroup
allResources resList[T]
idleResources *genstack.GenStack[*Resource[T]]
constructor Constructor[T]
destructor Destructor[T]
maxSize int32
acquireCount int64
acquireDuration time.Duration
emptyAcquireCount int64
canceledAcquireCount atomic.Int64
resetCount int
baseAcquireCtx context.Context
cancelBaseAcquireCtx context.CancelFunc
closed bool
}
type Config[T any] struct {
Constructor Constructor[T]
Destructor Destructor[T]
MaxSize int32
}
// NewPool creates a new pool. Panics if maxSize is less than 1.
func NewPool[T any](config *Config[T]) (*Pool[T], error) {
if config.MaxSize < 1 {
return nil, errors.New("MaxSize must be >= 1")
}
baseAcquireCtx, cancelBaseAcquireCtx := context.WithCancel(context.Background())
return &Pool[T]{
acquireSem: semaphore.NewWeighted(int64(config.MaxSize)),
idleResources: genstack.NewGenStack[*Resource[T]](),
maxSize: config.MaxSize,
constructor: config.Constructor,
destructor: config.Destructor,
baseAcquireCtx: baseAcquireCtx,
cancelBaseAcquireCtx: cancelBaseAcquireCtx,
}, nil
}
// Close destroys all resources in the pool and rejects future Acquire calls.
// Blocks until all resources are returned to pool and destroyed.
func (p *Pool[T]) Close() {
defer p.destructWG.Wait()
p.mux.Lock()
defer p.mux.Unlock()
if p.closed {
return
}
p.closed = true
p.cancelBaseAcquireCtx()
for res, ok := p.idleResources.Pop(); ok; res, ok = p.idleResources.Pop() {
p.allResources.remove(res)
go p.destructResourceValue(res.value)
}
}
// Stat is a snapshot of Pool statistics.
type Stat struct {
constructingResources int32
acquiredResources int32
idleResources int32
maxResources int32
acquireCount int64
acquireDuration time.Duration
emptyAcquireCount int64
canceledAcquireCount int64
}
// TotalResources returns the total number of resources currently in the pool.
// The value is the sum of ConstructingResources, AcquiredResources, and
// IdleResources.
func (s *Stat) TotalResources() int32 {
return s.constructingResources + s.acquiredResources + s.idleResources
}
// ConstructingResources returns the number of resources with construction in progress in
// the pool.
func (s *Stat) ConstructingResources() int32 {
return s.constructingResources
}
// AcquiredResources returns the number of currently acquired resources in the pool.
func (s *Stat) AcquiredResources() int32 {
return s.acquiredResources
}
// IdleResources returns the number of currently idle resources in the pool.
func (s *Stat) IdleResources() int32 {
return s.idleResources
}
// MaxResources returns the maximum size of the pool.
func (s *Stat) MaxResources() int32 {
return s.maxResources
}
// AcquireCount returns the cumulative count of successful acquires from the pool.
func (s *Stat) AcquireCount() int64 {
return s.acquireCount
}
// AcquireDuration returns the total duration of all successful acquires from
// the pool.
func (s *Stat) AcquireDuration() time.Duration {
return s.acquireDuration
}
// EmptyAcquireCount returns the cumulative count of successful acquires from the pool
// that waited for a resource to be released or constructed because the pool was
// empty.
func (s *Stat) EmptyAcquireCount() int64 {
return s.emptyAcquireCount
}
// CanceledAcquireCount returns the cumulative count of acquires from the pool
// that were canceled by a context.
func (s *Stat) CanceledAcquireCount() int64 {
return s.canceledAcquireCount
}
// Stat returns the current pool statistics.
func (p *Pool[T]) Stat() *Stat {
p.mux.Lock()
defer p.mux.Unlock()
s := &Stat{
maxResources: p.maxSize,
acquireCount: p.acquireCount,
emptyAcquireCount: p.emptyAcquireCount,
canceledAcquireCount: p.canceledAcquireCount.Load(),
acquireDuration: p.acquireDuration,
}
for _, res := range p.allResources {
switch res.status {
case resourceStatusConstructing:
s.constructingResources += 1
case resourceStatusIdle:
s.idleResources += 1
case resourceStatusAcquired:
s.acquiredResources += 1
}
}
return s
}
// tryAcquireIdleResource checks if there is any idle resource. If there is
// some, this method removes it from idle list and returns it. If the idle pool
// is empty, this method returns nil and doesn't modify the idleResources slice.
//
// WARNING: Caller of this method must hold the pool mutex!
func (p *Pool[T]) tryAcquireIdleResource() *Resource[T] {
res, ok := p.idleResources.Pop()
if !ok {
return nil
}
res.status = resourceStatusAcquired
return res
}
// createNewResource creates a new resource and inserts it into list of pool
// resources.
//
// WARNING: Caller of this method must hold the pool mutex!
func (p *Pool[T]) createNewResource() *Resource[T] {
res := &Resource[T]{
pool: p,
creationTime: time.Now(),
lastUsedNano: nanotime(),
poolResetCount: p.resetCount,
status: resourceStatusConstructing,
}
p.allResources.append(res)
p.destructWG.Add(1)
return res
}
// Acquire gets a resource from the pool. If no resources are available and the pool is not at maximum capacity it will
// create a new resource. If the pool is at maximum capacity it will block until a resource is available. ctx can be
// used to cancel the Acquire.
//
// If Acquire creates a new resource the resource constructor function will receive a context that delegates Value() to
// ctx. Canceling ctx will cause Acquire to return immediately but it will not cancel the resource creation. This avoids
// the problem of it being impossible to create resources when the time to create a resource is greater than any one
// caller of Acquire is willing to wait.
func (p *Pool[T]) Acquire(ctx context.Context) (_ *Resource[T], err error) {
select {
case <-ctx.Done():
p.canceledAcquireCount.Add(1)
return nil, ctx.Err()
default:
}
return p.acquire(ctx)
}
// acquire is a continuation of Acquire function that doesn't check context
// validity.
//
// This function exists solely only for benchmarking purposes.
func (p *Pool[T]) acquire(ctx context.Context) (*Resource[T], error) {
startNano := nanotime()
var waitedForLock bool
if !p.acquireSem.TryAcquire(1) {
waitedForLock = true
err := p.acquireSem.Acquire(ctx, 1)
if err != nil {
p.canceledAcquireCount.Add(1)
return nil, err
}
}
p.mux.Lock()
if p.closed {
p.acquireSem.Release(1)
p.mux.Unlock()
return nil, ErrClosedPool
}
// If a resource is available in the pool.
if res := p.tryAcquireIdleResource(); res != nil {
if waitedForLock {
p.emptyAcquireCount += 1
}
p.acquireCount += 1
p.acquireDuration += time.Duration(nanotime() - startNano)
p.mux.Unlock()
return res, nil
}
if len(p.allResources) >= int(p.maxSize) {
// Unreachable code.
panic("bug: semaphore allowed more acquires than pool allows")
}
// The resource is not idle, but there is enough space to create one.
res := p.createNewResource()
p.mux.Unlock()
res, err := p.initResourceValue(ctx, res)
if err != nil {
return nil, err
}
p.mux.Lock()
defer p.mux.Unlock()
p.emptyAcquireCount += 1
p.acquireCount += 1
p.acquireDuration += time.Duration(nanotime() - startNano)
return res, nil
}
func (p *Pool[T]) initResourceValue(ctx context.Context, res *Resource[T]) (*Resource[T], error) {
// Create the resource in a goroutine to immediately return from Acquire
// if ctx is canceled without also canceling the constructor.
//
// See:
// - https://github.com/jackc/pgx/issues/1287
// - https://github.com/jackc/pgx/issues/1259
constructErrChan := make(chan error)
go func() {
constructorCtx := newValueCancelCtx(ctx, p.baseAcquireCtx)
value, err := p.constructor(constructorCtx)
if err != nil {
p.mux.Lock()
p.allResources.remove(res)
p.destructWG.Done()
// The resource won't be acquired because its
// construction failed. We have to allow someone else to
// take that resouce.
p.acquireSem.Release(1)
p.mux.Unlock()
select {
case constructErrChan <- err:
case <-ctx.Done():
// The caller is cancelled, so no-one awaits the
// error. This branch avoid goroutine leak.
}
return
}
// The resource is already in p.allResources where it might be read. So we need to acquire the lock to update its
// status.
p.mux.Lock()
res.value = value
res.status = resourceStatusAcquired
p.mux.Unlock()
// This select works because the channel is unbuffered.
select {
case constructErrChan <- nil:
case <-ctx.Done():
p.releaseAcquiredResource(res, res.lastUsedNano)
}
}()
select {
case <-ctx.Done():
p.canceledAcquireCount.Add(1)
return nil, ctx.Err()
case err := <-constructErrChan:
if err != nil {
return nil, err
}
return res, nil
}
}
// TryAcquire gets a resource from the pool if one is immediately available. If not, it returns ErrNotAvailable. If no
// resources are available but the pool has room to grow, a resource will be created in the background. ctx is only
// used to cancel the background creation.
func (p *Pool[T]) TryAcquire(ctx context.Context) (*Resource[T], error) {
if !p.acquireSem.TryAcquire(1) {
return nil, ErrNotAvailable
}
p.mux.Lock()
defer p.mux.Unlock()
if p.closed {
p.acquireSem.Release(1)
return nil, ErrClosedPool
}
// If a resource is available now
if res := p.tryAcquireIdleResource(); res != nil {
p.acquireCount += 1
return res, nil
}
if len(p.allResources) >= int(p.maxSize) {
// Unreachable code.
panic("bug: semaphore allowed more acquires than pool allows")
}
res := p.createNewResource()
go func() {
value, err := p.constructor(ctx)
p.mux.Lock()
defer p.mux.Unlock()
// We have to create the resource and only then release the
// semaphore - For the time being there is no resource that
// someone could acquire.
defer p.acquireSem.Release(1)
if err != nil {
p.allResources.remove(res)
p.destructWG.Done()
return
}
res.value = value
res.status = resourceStatusIdle
p.idleResources.Push(res)
}()
return nil, ErrNotAvailable
}
// acquireSemAll tries to acquire num free tokens from sem. This function is
// guaranteed to acquire at least the lowest number of tokens that has been
// available in the semaphore during runtime of this function.
//
// For the time being, semaphore doesn't allow to acquire all tokens atomically
// (see https://github.com/golang/sync/pull/19). We simulate this by trying all
// powers of 2 that are less or equal to num.
//
// For example, let's immagine we have 19 free tokens in the semaphore which in
// total has 24 tokens (i.e. the maxSize of the pool is 24 resources). Then if
// num is 24, the log2Uint(24) is 4 and we try to acquire 16, 8, 4, 2 and 1
// tokens. Out of those, the acquire of 16, 2 and 1 tokens will succeed.
//
// Naturally, Acquires and Releases of the semaphore might take place
// concurrently. For this reason, it's not guaranteed that absolutely all free
// tokens in the semaphore will be acquired. But it's guaranteed that at least
// the minimal number of tokens that has been present over the whole process
// will be acquired. This is sufficient for the use-case we have in this
// package.
//
// TODO: Replace this with acquireSem.TryAcquireAll() if it gets to
// upstream. https://github.com/golang/sync/pull/19
func acquireSemAll(sem *semaphore.Weighted, num int) int {
if sem.TryAcquire(int64(num)) {
return num
}
var acquired int
for i := int(log2Int(num)); i >= 0; i-- {
val := 1 << i
if sem.TryAcquire(int64(val)) {
acquired += val
}
}
return acquired
}
// AcquireAllIdle acquires all currently idle resources. Its intended use is for
// health check and keep-alive functionality. It does not update pool
// statistics.
func (p *Pool[T]) AcquireAllIdle() []*Resource[T] {
p.mux.Lock()
defer p.mux.Unlock()
if p.closed {
return nil
}
numIdle := p.idleResources.Len()
if numIdle == 0 {
return nil
}
// In acquireSemAll we use only TryAcquire and not Acquire. Because
// TryAcquire cannot block, the fact that we hold mutex locked and try
// to acquire semaphore cannot result in dead-lock.
//
// Because the mutex is locked, no parallel Release can run. This
// implies that the number of tokens can only decrease because some
// Acquire/TryAcquire call can consume the semaphore token. Consequently
// acquired is always less or equal to numIdle. Moreover if acquired <
// numIdle, then there are some parallel Acquire/TryAcquire calls that
// will take the remaining idle connections.
acquired := acquireSemAll(p.acquireSem, numIdle)
idle := make([]*Resource[T], acquired)
for i := range idle {
res, _ := p.idleResources.Pop()
res.status = resourceStatusAcquired
idle[i] = res
}
// We have to bump the generation to ensure that Acquire/TryAcquire
// calls running in parallel (those which caused acquired < numIdle)
// will consume old connections and not freshly released connections
// instead.
p.idleResources.NextGen()
return idle
}
// CreateResource constructs a new resource without acquiring it. It goes straight in the IdlePool. If the pool is full
// it returns an error. It can be useful to maintain warm resources under little load.
func (p *Pool[T]) CreateResource(ctx context.Context) error {
if !p.acquireSem.TryAcquire(1) {
return ErrNotAvailable
}
p.mux.Lock()
if p.closed {
p.acquireSem.Release(1)
p.mux.Unlock()
return ErrClosedPool
}
if len(p.allResources) >= int(p.maxSize) {
p.acquireSem.Release(1)
p.mux.Unlock()
return ErrNotAvailable
}
res := p.createNewResource()
p.mux.Unlock()
value, err := p.constructor(ctx)
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
if err != nil {
p.allResources.remove(res)
p.destructWG.Done()
return err
}
res.value = value
res.status = resourceStatusIdle
// If closed while constructing resource then destroy it and return an error
if p.closed {
go p.destructResourceValue(res.value)
return ErrClosedPool
}
p.idleResources.Push(res)
return nil
}
// Reset destroys all resources, but leaves the pool open. It is intended for use when an error is detected that would
// disrupt all resources (such as a network interruption or a server state change).
//
// It is safe to reset a pool while resources are checked out. Those resources will be destroyed when they are returned
// to the pool.
func (p *Pool[T]) Reset() {
p.mux.Lock()
defer p.mux.Unlock()
p.resetCount++
for res, ok := p.idleResources.Pop(); ok; res, ok = p.idleResources.Pop() {
p.allResources.remove(res)
go p.destructResourceValue(res.value)
}
}
// releaseAcquiredResource returns res to the the pool.
func (p *Pool[T]) releaseAcquiredResource(res *Resource[T], lastUsedNano int64) {
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
if p.closed || res.poolResetCount != p.resetCount {
p.allResources.remove(res)
go p.destructResourceValue(res.value)
} else {
res.lastUsedNano = lastUsedNano
res.status = resourceStatusIdle
p.idleResources.Push(res)
}
}
// Remove removes res from the pool and closes it. If res is not part of the
// pool Remove will panic.
func (p *Pool[T]) destroyAcquiredResource(res *Resource[T]) {
p.destructResourceValue(res.value)
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
p.allResources.remove(res)
}
func (p *Pool[T]) hijackAcquiredResource(res *Resource[T]) {
p.mux.Lock()
defer p.mux.Unlock()
defer p.acquireSem.Release(1)
p.allResources.remove(res)
res.status = resourceStatusHijacked
p.destructWG.Done() // not responsible for destructing hijacked resources
}
func (p *Pool[T]) destructResourceValue(value T) {
p.destructor(value)
p.destructWG.Done()
}

28
vendor/github.com/jackc/puddle/v2/resource_list.go generated vendored Normal file
View File

@ -0,0 +1,28 @@
package puddle
type resList[T any] []*Resource[T]
func (l *resList[T]) append(val *Resource[T]) { *l = append(*l, val) }
func (l *resList[T]) popBack() *Resource[T] {
idx := len(*l) - 1
val := (*l)[idx]
(*l)[idx] = nil // Avoid memory leak
*l = (*l)[:idx]
return val
}
func (l *resList[T]) remove(val *Resource[T]) {
for i, elem := range *l {
if elem == val {
lastIdx := len(*l) - 1
(*l)[i] = (*l)[lastIdx]
(*l)[lastIdx] = nil // Avoid memory leak
(*l) = (*l)[:lastIdx]
return
}
}
panic("BUG: removeResource could not find res in slice")
}