[chore] Update usage of OTEL libraries (#2725)

* otel to 1.24
* prometheus exporter to 0.46
* bunotel to 1.1.17

Also:
* Use schemaless URL for metrics
* Add software version to tracing schema
This commit is contained in:
Daenney
2024-03-11 15:34:34 +01:00
committed by GitHub
parent 8e88ee8d9c
commit 5e871e81a8
126 changed files with 12940 additions and 2267 deletions

View File

@@ -21,10 +21,13 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets[N int64 | float64] struct {
res exemplar.Reservoir[N]
counts []uint64
count uint64
total N
@@ -54,11 +57,13 @@ type histValues[N int64 | float64] struct {
noSum bool
bounds []float64
newRes func() exemplar.Reservoir[N]
limit limiter[*buckets[N]]
values map[attribute.Set]*buckets[N]
valuesMu sync.Mutex
}
func newHistValues[N int64 | float64](bounds []float64, noSum bool) *histValues[N] {
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.Reservoir[N]) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
@@ -69,13 +74,15 @@ func newHistValues[N int64 | float64](bounds []float64, noSum bool) *histValues[
return &histValues[N]{
noSum: noSum,
bounds: b,
newRes: r,
limit: newLimiter[*buckets[N]](limit),
values: make(map[attribute.Set]*buckets[N]),
}
}
// Aggregate records the measurement value, scoped by attr, and aggregates it
// into a histogram.
func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set) {
func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
// This search will return an index in the range [0, len(s.bounds)], where
// it will return len(s.bounds) if value is greater than the last element
// of s.bounds. This aligns with the buckets in that the length of buckets
@@ -83,9 +90,12 @@ func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set)
// (s.bounds[len(s.bounds)-1], +∞).
idx := sort.SearchFloat64s(s.bounds, float64(value))
t := now()
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
attr := s.limit.Attributes(fltrAttr, s.values)
b, ok := s.values[attr]
if !ok {
// N+1 buckets. For example:
@@ -96,6 +106,8 @@ func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set)
//
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
b = newBuckets[N](len(s.bounds) + 1)
b.res = s.newRes()
// Ensure min and max are recorded values (not zero), for new buckets.
b.min, b.max = value, value
s.values[attr] = b
@@ -104,13 +116,14 @@ func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set)
if !s.noSum {
b.sum(value)
}
b.res.Offer(ctx, t, value, droppedAttr)
}
// newHistogram returns an Aggregator that summarizes a set of measurements as
// an histogram.
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool) *histogram[N] {
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.Reservoir[N]) *histogram[N] {
return &histogram[N]{
histValues: newHistValues[N](boundaries, noSum),
histValues: newHistValues[N](boundaries, noSum, limit, r),
noMinMax: noMinMax,
start: now(),
}
@@ -161,6 +174,8 @@ func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
hDPts[i].Max = metricdata.NewExtrema(b.max)
}
b.res.Collect(&hDPts[i].Exemplars)
// Unused attribute sets do not report.
delete(s.values, a)
i++
@@ -217,6 +232,9 @@ func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
hDPts[i].Min = metricdata.NewExtrema(b.min)
hDPts[i].Max = metricdata.NewExtrema(b.max)
}
b.res.Collect(&hDPts[i].Exemplars)
i++
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute