[experiment] add alternative wasm sqlite3 implementation available via build-tag (#2863)

This allows for building GoToSocial with [SQLite transpiled to WASM](https://github.com/ncruces/go-sqlite3) and accessed through [Wazero](https://wazero.io/).
This commit is contained in:
kim
2024-05-27 15:46:15 +00:00
committed by GitHub
parent cce21c11cb
commit 1e7b32490d
398 changed files with 86174 additions and 684 deletions

View File

@ -0,0 +1,25 @@
package platform
// CpuFeatureFlags exposes methods for querying CPU capabilities
type CpuFeatureFlags interface {
// Has returns true when the specified flag (represented as uint64) is supported
Has(cpuFeature CpuFeature) bool
// HasExtra returns true when the specified extraFlag (represented as uint64) is supported
HasExtra(cpuFeature CpuFeature) bool
}
type CpuFeature uint64
const (
// CpuFeatureAmd64SSE3 is the flag to query CpuFeatureFlags.Has for SSEv3 capabilities on amd64
CpuFeatureAmd64SSE3 CpuFeature = 1
// CpuFeatureAmd64SSE4_1 is the flag to query CpuFeatureFlags.Has for SSEv4.1 capabilities on amd64
CpuFeatureAmd64SSE4_1 CpuFeature = 1 << 19
// CpuFeatureAmd64SSE4_2 is the flag to query CpuFeatureFlags.Has for SSEv4.2 capabilities on amd64
CpuFeatureAmd64SSE4_2 CpuFeature = 1 << 20
)
const (
// CpuExtraFeatureAmd64ABM is the flag to query CpuFeatureFlags.HasExtra for Advanced Bit Manipulation capabilities (e.g. LZCNT) on amd64
CpuExtraFeatureAmd64ABM CpuFeature = 1 << 5
)

View File

@ -0,0 +1,59 @@
//go:build amd64 && !tinygo
package platform
// CpuFeatures exposes the capabilities for this CPU, queried via the Has, HasExtra methods
var CpuFeatures CpuFeatureFlags = loadCpuFeatureFlags()
// cpuFeatureFlags implements CpuFeatureFlags interface
type cpuFeatureFlags struct {
flags uint64
extraFlags uint64
}
// cpuid exposes the CPUID instruction to the Go layer (https://www.amd.com/system/files/TechDocs/25481.pdf)
// implemented in impl_amd64.s
func cpuid(arg1, arg2 uint32) (eax, ebx, ecx, edx uint32)
// cpuidAsBitmap combines the result of invoking cpuid to uint64 bitmap
func cpuidAsBitmap(arg1, arg2 uint32) uint64 {
_ /* eax */, _ /* ebx */, ecx, edx := cpuid(arg1, arg2)
return (uint64(edx) << 32) | uint64(ecx)
}
// loadStandardRange load flags from the standard range, panics otherwise
func loadStandardRange(id uint32) uint64 {
// ensure that the id is in the valid range, returned by cpuid(0,0)
maxRange, _, _, _ := cpuid(0, 0)
if id > maxRange {
panic("cannot query standard CPU flags")
}
return cpuidAsBitmap(id, 0)
}
// loadStandardRange load flags from the extended range, panics otherwise
func loadExtendedRange(id uint32) uint64 {
// ensure that the id is in the valid range, returned by cpuid(0x80000000,0)
maxRange, _, _, _ := cpuid(0x80000000, 0)
if id > maxRange {
panic("cannot query extended CPU flags")
}
return cpuidAsBitmap(id, 0)
}
func loadCpuFeatureFlags() CpuFeatureFlags {
return &cpuFeatureFlags{
flags: loadStandardRange(1),
extraFlags: loadExtendedRange(0x80000001),
}
}
// Has implements the same method on the CpuFeatureFlags interface
func (f *cpuFeatureFlags) Has(cpuFeature CpuFeature) bool {
return (f.flags & uint64(cpuFeature)) != 0
}
// HasExtra implements the same method on the CpuFeatureFlags interface
func (f *cpuFeatureFlags) HasExtra(cpuFeature CpuFeature) bool {
return (f.extraFlags & uint64(cpuFeature)) != 0
}

View File

@ -0,0 +1,14 @@
#include "textflag.h"
// lifted from github.com/intel-go/cpuid and src/internal/cpu/cpu_x86.s
// func cpuid(arg1, arg2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid(SB), NOSPLIT, $0-24
MOVL arg1+0(FP), AX
MOVL arg2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET

View File

@ -0,0 +1,14 @@
//go:build !amd64 || tinygo
package platform
var CpuFeatures CpuFeatureFlags = &cpuFeatureFlags{}
// cpuFeatureFlags implements CpuFeatureFlags for unsupported platforms
type cpuFeatureFlags struct{}
// Has implements the same method on the CpuFeatureFlags interface
func (c *cpuFeatureFlags) Has(cpuFeature CpuFeature) bool { return false }
// HasExtra implements the same method on the CpuFeatureFlags interface
func (c *cpuFeatureFlags) HasExtra(cpuFeature CpuFeature) bool { return false }

View File

@ -0,0 +1,17 @@
package platform
import (
"io"
"math/rand"
)
// seed is a fixed seed value for NewFakeRandSource.
//
// Trivia: While arbitrary, 42 was chosen as it is the "Ultimate Answer" in
// the Douglas Adams novel "The Hitchhiker's Guide to the Galaxy."
const seed = int64(42)
// NewFakeRandSource returns a deterministic source of random values.
func NewFakeRandSource() io.Reader {
return rand.New(rand.NewSource(seed))
}

View File

@ -0,0 +1,76 @@
package platform
import (
"math/bits"
"os"
"sort"
"strconv"
"strings"
"syscall"
)
const (
// https://man7.org/linux/man-pages/man2/mmap.2.html
__MAP_HUGE_SHIFT = 26
__MAP_HUGETLB = 0x40000
)
var hugePagesConfigs []hugePagesConfig
type hugePagesConfig struct {
size int
flag int
}
func (hpc *hugePagesConfig) match(size int) bool {
return (size & (hpc.size - 1)) == 0
}
func init() {
dirents, err := os.ReadDir("/sys/kernel/mm/hugepages/")
if err != nil {
return
}
for _, dirent := range dirents {
name := dirent.Name()
if !strings.HasPrefix(name, "hugepages-") {
continue
}
if !strings.HasSuffix(name, "kB") {
continue
}
n, err := strconv.ParseUint(name[10:len(name)-2], 10, 64)
if err != nil {
continue
}
if bits.OnesCount64(n) != 1 {
continue
}
n *= 1024
hugePagesConfigs = append(hugePagesConfigs, hugePagesConfig{
size: int(n),
flag: int(bits.TrailingZeros64(n)<<__MAP_HUGE_SHIFT) | __MAP_HUGETLB,
})
}
sort.Slice(hugePagesConfigs, func(i, j int) bool {
return hugePagesConfigs[i].size > hugePagesConfigs[j].size
})
}
func mmapCodeSegment(size, prot int) ([]byte, error) {
flags := syscall.MAP_ANON | syscall.MAP_PRIVATE
for _, hugePagesConfig := range hugePagesConfigs {
if hugePagesConfig.match(size) {
b, err := syscall.Mmap(-1, 0, size, prot, flags|hugePagesConfig.flag)
if err != nil {
continue
}
return b, nil
}
}
return syscall.Mmap(-1, 0, size, prot, flags)
}

View File

@ -0,0 +1,18 @@
// Separated from linux which has support for huge pages.
//go:build darwin || freebsd
package platform
import "syscall"
func mmapCodeSegment(size, prot int) ([]byte, error) {
return syscall.Mmap(
-1,
0,
size,
prot,
// Anonymous as this is not an actual file, but a memory,
// Private as this is in-process memory region.
syscall.MAP_ANON|syscall.MAP_PRIVATE,
)
}

View File

@ -0,0 +1,49 @@
//go:build (darwin || linux || freebsd) && !tinygo
package platform
import (
"syscall"
"unsafe"
)
const (
mmapProtAMD64 = syscall.PROT_READ | syscall.PROT_WRITE | syscall.PROT_EXEC
mmapProtARM64 = syscall.PROT_READ | syscall.PROT_WRITE
)
const MmapSupported = true
func munmapCodeSegment(code []byte) error {
return syscall.Munmap(code)
}
// mmapCodeSegmentAMD64 gives all read-write-exec permission to the mmap region
// to enter the function. Otherwise, segmentation fault exception is raised.
func mmapCodeSegmentAMD64(size int) ([]byte, error) {
// The region must be RWX: RW for writing native codes, X for executing the region.
return mmapCodeSegment(size, mmapProtAMD64)
}
// mmapCodeSegmentARM64 cannot give all read-write-exec permission to the mmap region.
// Otherwise, the mmap systemcall would raise an error. Here we give read-write
// to the region so that we can write contents at call-sites. Callers are responsible to
// execute MprotectRX on the returned buffer.
func mmapCodeSegmentARM64(size int) ([]byte, error) {
// The region must be RW: RW for writing native codes.
return mmapCodeSegment(size, mmapProtARM64)
}
// MprotectRX is like syscall.Mprotect with RX permission, defined locally so that freebsd compiles.
func MprotectRX(b []byte) (err error) {
var _p0 unsafe.Pointer
if len(b) > 0 {
_p0 = unsafe.Pointer(&b[0])
}
const prot = syscall.PROT_READ | syscall.PROT_EXEC
_, _, e1 := syscall.Syscall(syscall.SYS_MPROTECT, uintptr(_p0), uintptr(len(b)), uintptr(prot))
if e1 != 0 {
err = syscall.Errno(e1)
}
return
}

View File

@ -0,0 +1,28 @@
//go:build !(darwin || linux || freebsd || windows) || tinygo
package platform
import (
"fmt"
"runtime"
)
var errUnsupported = fmt.Errorf("mmap unsupported on GOOS=%s. Use interpreter instead.", runtime.GOOS)
const MmapSupported = false
func munmapCodeSegment(code []byte) error {
panic(errUnsupported)
}
func mmapCodeSegmentAMD64(size int) ([]byte, error) {
panic(errUnsupported)
}
func mmapCodeSegmentARM64(size int) ([]byte, error) {
panic(errUnsupported)
}
func MprotectRX(b []byte) (err error) {
panic(errUnsupported)
}

View File

@ -0,0 +1,97 @@
package platform
import (
"fmt"
"syscall"
"unsafe"
)
var (
kernel32 = syscall.NewLazyDLL("kernel32.dll")
procVirtualAlloc = kernel32.NewProc("VirtualAlloc")
procVirtualProtect = kernel32.NewProc("VirtualProtect")
procVirtualFree = kernel32.NewProc("VirtualFree")
)
const (
windows_MEM_COMMIT uintptr = 0x00001000
windows_MEM_RELEASE uintptr = 0x00008000
windows_PAGE_READWRITE uintptr = 0x00000004
windows_PAGE_EXECUTE_READ uintptr = 0x00000020
windows_PAGE_EXECUTE_READWRITE uintptr = 0x00000040
)
const MmapSupported = true
func munmapCodeSegment(code []byte) error {
return freeMemory(code)
}
// allocateMemory commits the memory region via the "VirtualAlloc" function.
// See https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
func allocateMemory(size uintptr, protect uintptr) (uintptr, error) {
address := uintptr(0) // system determines where to allocate the region.
alloctype := windows_MEM_COMMIT
if r, _, err := procVirtualAlloc.Call(address, size, alloctype, protect); r == 0 {
return 0, fmt.Errorf("compiler: VirtualAlloc error: %w", ensureErr(err))
} else {
return r, nil
}
}
// freeMemory releases the memory region via the "VirtualFree" function.
// See https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfree
func freeMemory(code []byte) error {
address := unsafe.Pointer(&code[0])
size := uintptr(0) // size must be 0 because we're using MEM_RELEASE.
freetype := windows_MEM_RELEASE
if r, _, err := procVirtualFree.Call(uintptr(address), size, freetype); r == 0 {
return fmt.Errorf("compiler: VirtualFree error: %w", ensureErr(err))
}
return nil
}
func virtualProtect(address, size, newprotect uintptr, oldprotect *uint32) error {
if r, _, err := procVirtualProtect.Call(address, size, newprotect, uintptr(unsafe.Pointer(oldprotect))); r == 0 {
return fmt.Errorf("compiler: VirtualProtect error: %w", ensureErr(err))
}
return nil
}
func mmapCodeSegmentAMD64(size int) ([]byte, error) {
p, err := allocateMemory(uintptr(size), windows_PAGE_EXECUTE_READWRITE)
if err != nil {
return nil, err
}
return unsafe.Slice((*byte)(unsafe.Pointer(p)), size), nil
}
func mmapCodeSegmentARM64(size int) ([]byte, error) {
p, err := allocateMemory(uintptr(size), windows_PAGE_READWRITE)
if err != nil {
return nil, err
}
return unsafe.Slice((*byte)(unsafe.Pointer(p)), size), nil
}
var old = uint32(windows_PAGE_READWRITE)
func MprotectRX(b []byte) (err error) {
err = virtualProtect(uintptr(unsafe.Pointer(&b[0])), uintptr(len(b)), windows_PAGE_EXECUTE_READ, &old)
return
}
// ensureErr returns syscall.EINVAL when the input error is nil.
//
// We are supposed to use "GetLastError" which is more precise, but it is not safe to execute in goroutines. While
// "GetLastError" is thread-local, goroutines are not pinned to threads.
//
// See https://docs.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror
func ensureErr(err error) error {
if err != nil {
return err
}
return syscall.EINVAL
}

View File

@ -0,0 +1,23 @@
//go:build !(darwin || linux || freebsd) || tinygo
package platform
func remapCodeSegmentAMD64(code []byte, size int) ([]byte, error) {
b, err := mmapCodeSegmentAMD64(size)
if err != nil {
return nil, err
}
copy(b, code)
mustMunmapCodeSegment(code)
return b, nil
}
func remapCodeSegmentARM64(code []byte, size int) ([]byte, error) {
b, err := mmapCodeSegmentARM64(size)
if err != nil {
return nil, err
}
copy(b, code)
mustMunmapCodeSegment(code)
return b, nil
}

View File

@ -0,0 +1,21 @@
//go:build (darwin || linux || freebsd) && !tinygo
package platform
func remapCodeSegmentAMD64(code []byte, size int) ([]byte, error) {
return remapCodeSegment(code, size, mmapProtAMD64)
}
func remapCodeSegmentARM64(code []byte, size int) ([]byte, error) {
return remapCodeSegment(code, size, mmapProtARM64)
}
func remapCodeSegment(code []byte, size, prot int) ([]byte, error) {
b, err := mmapCodeSegment(size, prot)
if err != nil {
return nil, err
}
copy(b, code)
mustMunmapCodeSegment(code)
return b, nil
}

View File

@ -0,0 +1,6 @@
//go:build !windows
package platform
// ToPosixPath returns the input, as only windows might return backslashes.
func ToPosixPath(in string) string { return in }

View File

@ -0,0 +1,17 @@
package platform
import "strings"
// ToPosixPath returns the input, converting any backslashes to forward ones.
func ToPosixPath(in string) string {
// strings.Map only allocates on change, which is good enough especially as
// path.Join uses forward slash even on windows.
return strings.Map(windowsToPosixSeparator, in)
}
func windowsToPosixSeparator(r rune) rune {
if r == '\\' {
return '/'
}
return r
}

View File

@ -0,0 +1,81 @@
// Package platform includes runtime-specific code needed for the compiler or otherwise.
//
// Note: This is a dependency-free alternative to depending on parts of Go's x/sys.
// See /RATIONALE.md for more context.
package platform
import (
"runtime"
)
// archRequirementsVerified is set by platform-specific init to true if the platform is supported
var archRequirementsVerified bool
// CompilerSupported is exported for tests and includes constraints here and also the assembler.
func CompilerSupported() bool {
switch runtime.GOOS {
case "darwin", "windows", "linux", "freebsd":
default:
return false
}
return archRequirementsVerified
}
// MmapCodeSegment copies the code into the executable region and returns the byte slice of the region.
//
// See https://man7.org/linux/man-pages/man2/mmap.2.html for mmap API and flags.
func MmapCodeSegment(size int) ([]byte, error) {
if size == 0 {
panic("BUG: MmapCodeSegment with zero length")
}
if runtime.GOARCH == "amd64" {
return mmapCodeSegmentAMD64(size)
} else {
return mmapCodeSegmentARM64(size)
}
}
// RemapCodeSegment reallocates the memory mapping of an existing code segment
// to increase its size. The previous code mapping is unmapped and must not be
// reused after the function returns.
//
// This is similar to mremap(2) on linux, and emulated on platforms which do not
// have this syscall.
//
// See https://man7.org/linux/man-pages/man2/mremap.2.html
func RemapCodeSegment(code []byte, size int) ([]byte, error) {
if size < len(code) {
panic("BUG: RemapCodeSegment with size less than code")
}
if code == nil {
return MmapCodeSegment(size)
}
if runtime.GOARCH == "amd64" {
return remapCodeSegmentAMD64(code, size)
} else {
return remapCodeSegmentARM64(code, size)
}
}
// MunmapCodeSegment unmaps the given memory region.
func MunmapCodeSegment(code []byte) error {
if len(code) == 0 {
panic("BUG: MunmapCodeSegment with zero length")
}
return munmapCodeSegment(code)
}
// mustMunmapCodeSegment panics instead of returning an error to the
// application.
//
// # Why panic?
//
// It is less disruptive to the application to leak the previous block if it
// could be unmapped than to leak the new block and return an error.
// Realistically, either scenarios are pretty hard to debug, so we panic.
func mustMunmapCodeSegment(code []byte) {
if err := munmapCodeSegment(code); err != nil {
panic(err)
}
}

View File

@ -0,0 +1,7 @@
package platform
// init verifies that the current CPU supports the required AMD64 instructions
func init() {
// Ensure SSE4.1 is supported.
archRequirementsVerified = CpuFeatures.Has(CpuFeatureAmd64SSE4_1)
}

View File

@ -0,0 +1,7 @@
package platform
// init verifies that the current CPU supports the required ARM64 features
func init() {
// No further checks currently needed.
archRequirementsVerified = true
}

View File

@ -0,0 +1,76 @@
package platform
import (
"sync/atomic"
"time"
"github.com/tetratelabs/wazero/sys"
)
const (
ms = int64(time.Millisecond)
// FakeEpochNanos is midnight UTC 2022-01-01 and exposed for testing
FakeEpochNanos = 1640995200000 * ms
)
// NewFakeWalltime implements sys.Walltime with FakeEpochNanos that increases by 1ms each reading.
// See /RATIONALE.md
func NewFakeWalltime() sys.Walltime {
// AddInt64 returns the new value. Adjust so the first reading will be FakeEpochNanos
t := FakeEpochNanos - ms
return func() (sec int64, nsec int32) {
wt := atomic.AddInt64(&t, ms)
return wt / 1e9, int32(wt % 1e9)
}
}
// NewFakeNanotime implements sys.Nanotime that increases by 1ms each reading.
// See /RATIONALE.md
func NewFakeNanotime() sys.Nanotime {
// AddInt64 returns the new value. Adjust so the first reading will be zero.
t := int64(0) - ms
return func() int64 {
return atomic.AddInt64(&t, ms)
}
}
// FakeNanosleep implements sys.Nanosleep by returning without sleeping.
var FakeNanosleep = sys.Nanosleep(func(int64) {})
// FakeOsyield implements sys.Osyield by returning without yielding.
var FakeOsyield = sys.Osyield(func() {})
// Walltime implements sys.Walltime with time.Now.
//
// Note: This is only notably less efficient than it could be is reading
// runtime.walltime(). time.Now defensively reads nanotime also, just in case
// time.Since is used. This doubles the performance impact. However, wall time
// is likely to be read less frequently than Nanotime. Also, doubling the cost
// matters less on fast platforms that can return both in <=100ns.
func Walltime() (sec int64, nsec int32) {
t := time.Now()
return t.Unix(), int32(t.Nanosecond())
}
// nanoBase uses time.Now to ensure a monotonic clock reading on all platforms
// via time.Since.
var nanoBase = time.Now()
// nanotimePortable implements sys.Nanotime with time.Since.
//
// Note: This is less efficient than it could be is reading runtime.nanotime(),
// Just to do that requires CGO.
func nanotimePortable() int64 {
return time.Since(nanoBase).Nanoseconds()
}
// Nanotime implements sys.Nanotime with runtime.nanotime() if CGO is available
// and time.Since if not.
func Nanotime() int64 {
return nanotime()
}
// Nanosleep implements sys.Nanosleep with time.Sleep.
func Nanosleep(ns int64) {
time.Sleep(time.Duration(ns))
}

View File

@ -0,0 +1,11 @@
//go:build cgo && !windows
package platform
import _ "unsafe" // for go:linkname
// nanotime uses runtime.nanotime as it is available on all platforms and
// benchmarks faster than using time.Since.
//
//go:linkname nanotime runtime.nanotime
func nanotime() int64

View File

@ -0,0 +1,7 @@
//go:build !cgo && !windows
package platform
func nanotime() int64 {
return nanotimePortable()
}

View File

@ -0,0 +1,40 @@
//go:build windows
package platform
import (
"math/bits"
"time"
"unsafe"
)
var (
_QueryPerformanceCounter = kernel32.NewProc("QueryPerformanceCounter")
_QueryPerformanceFrequency = kernel32.NewProc("QueryPerformanceFrequency")
)
var qpcfreq uint64
func init() {
_, _, _ = _QueryPerformanceFrequency.Call(uintptr(unsafe.Pointer(&qpcfreq)))
}
// On Windows, time.Time handled in time package cannot have the nanosecond precision.
// The reason is that by default, it doesn't use QueryPerformanceCounter[1], but instead, use "interrupt time"
// which doesn't support nanoseconds precision (though it is a monotonic) [2, 3, 4, 5].
//
// [1] https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter
// [2] https://github.com/golang/go/blob/0cd309e12818f988693bf8e4d9f1453331dcf9f2/src/runtime/sys_windows_amd64.s#L297-L298
// [3] https://github.com/golang/go/blob/0cd309e12818f988693bf8e4d9f1453331dcf9f2/src/runtime/os_windows.go#L549-L551
// [4] https://github.com/golang/go/blob/master/src/runtime/time_windows.h#L7-L13
// [5] http://web.archive.org/web/20210411000829/https://wrkhpi.wordpress.com/2007/08/09/getting-os-information-the-kuser_shared_data-structure/
//
// Therefore, on Windows, we directly invoke the syscall for QPC instead of time.Now or runtime.nanotime.
// See https://github.com/golang/go/issues/31160 for example.
func nanotime() int64 {
var counter uint64
_, _, _ = _QueryPerformanceCounter.Call(uintptr(unsafe.Pointer(&counter)))
hi, lo := bits.Mul64(counter, uint64(time.Second))
nanos, _ := bits.Div64(hi, lo, qpcfreq)
return int64(nanos)
}