update go-ffmpreg to v0.2.5 (pulls in latest tetratelabs/wazero) (#3203)

This commit is contained in:
kim
2024-08-15 00:08:55 +00:00
committed by GitHub
parent 6fe96a5611
commit 09f24e0446
75 changed files with 1772 additions and 1913 deletions

View File

@ -69,7 +69,7 @@ type Compiler interface {
AllocateVReg(typ ssa.Type) regalloc.VReg
// ValueDefinition returns the definition of the given value.
ValueDefinition(ssa.Value) *SSAValueDefinition
ValueDefinition(ssa.Value) SSAValueDefinition
// VRegOf returns the virtual register of the given ssa.Value.
VRegOf(value ssa.Value) regalloc.VReg
@ -79,13 +79,13 @@ type Compiler interface {
// MatchInstr returns true if the given definition is from an instruction with the given opcode, the current group ID,
// and a refcount of 1. That means, the instruction can be merged/swapped within the current instruction group.
MatchInstr(def *SSAValueDefinition, opcode ssa.Opcode) bool
MatchInstr(def SSAValueDefinition, opcode ssa.Opcode) bool
// MatchInstrOneOf is the same as MatchInstr but for multiple opcodes. If it matches one of ssa.Opcode,
// this returns the opcode. Otherwise, this returns ssa.OpcodeInvalid.
//
// Note: caller should be careful to avoid excessive allocation on opcodes slice.
MatchInstrOneOf(def *SSAValueDefinition, opcodes []ssa.Opcode) ssa.Opcode
MatchInstrOneOf(def SSAValueDefinition, opcodes []ssa.Opcode) ssa.Opcode
// AddRelocationInfo appends the relocation information for the function reference at the current buffer offset.
AddRelocationInfo(funcRef ssa.FuncRef)
@ -126,10 +126,7 @@ type compiler struct {
nextVRegID regalloc.VRegID
// ssaValueToVRegs maps ssa.ValueID to regalloc.VReg.
ssaValueToVRegs [] /* VRegID to */ regalloc.VReg
// ssaValueDefinitions maps ssa.ValueID to its definition.
ssaValueDefinitions []SSAValueDefinition
// ssaValueRefCounts is a cached list obtained by ssa.Builder.ValueRefCounts().
ssaValueRefCounts []int
ssaValuesInfo []ssa.ValueInfo
// returnVRegs is the list of virtual registers that store the return values.
returnVRegs []regalloc.VReg
varEdges [][2]regalloc.VReg
@ -206,15 +203,10 @@ func (c *compiler) setCurrentGroupID(gid ssa.InstructionGroupID) {
// assignVirtualRegisters assigns a virtual register to each ssa.ValueID Valid in the ssa.Builder.
func (c *compiler) assignVirtualRegisters() {
builder := c.ssaBuilder
refCounts := builder.ValueRefCounts()
c.ssaValueRefCounts = refCounts
c.ssaValuesInfo = builder.ValuesInfo()
need := len(refCounts)
if need >= len(c.ssaValueToVRegs) {
c.ssaValueToVRegs = append(c.ssaValueToVRegs, make([]regalloc.VReg, need+1)...)
}
if need >= len(c.ssaValueDefinitions) {
c.ssaValueDefinitions = append(c.ssaValueDefinitions, make([]SSAValueDefinition, need+1)...)
if diff := len(c.ssaValuesInfo) - len(c.ssaValueToVRegs); diff > 0 {
c.ssaValueToVRegs = append(c.ssaValueToVRegs, make([]regalloc.VReg, diff+1)...)
}
for blk := builder.BlockIteratorReversePostOrderBegin(); blk != nil; blk = builder.BlockIteratorReversePostOrderNext() {
@ -225,40 +217,26 @@ func (c *compiler) assignVirtualRegisters() {
typ := p.Type()
vreg := c.AllocateVReg(typ)
c.ssaValueToVRegs[pid] = vreg
c.ssaValueDefinitions[pid] = SSAValueDefinition{BlockParamValue: p, BlkParamVReg: vreg}
c.ssaTypeOfVRegID[vreg.ID()] = p.Type()
}
// Assigns each value to a virtual register produced by instructions.
for cur := blk.Root(); cur != nil; cur = cur.Next() {
r, rs := cur.Returns()
var N int
if r.Valid() {
id := r.ID()
ssaTyp := r.Type()
typ := r.Type()
vReg := c.AllocateVReg(typ)
c.ssaValueToVRegs[id] = vReg
c.ssaValueDefinitions[id] = SSAValueDefinition{
Instr: cur,
N: 0,
RefCount: refCounts[id],
}
c.ssaTypeOfVRegID[vReg.ID()] = ssaTyp
N++
}
for _, r := range rs {
id := r.ID()
ssaTyp := r.Type()
vReg := c.AllocateVReg(ssaTyp)
c.ssaValueToVRegs[id] = vReg
c.ssaValueDefinitions[id] = SSAValueDefinition{
Instr: cur,
N: N,
RefCount: refCounts[id],
}
c.ssaTypeOfVRegID[vReg.ID()] = ssaTyp
N++
}
}
}
@ -299,8 +277,12 @@ func (c *compiler) Init() {
}
// ValueDefinition implements Compiler.ValueDefinition.
func (c *compiler) ValueDefinition(value ssa.Value) *SSAValueDefinition {
return &c.ssaValueDefinitions[value.ID()]
func (c *compiler) ValueDefinition(value ssa.Value) SSAValueDefinition {
return SSAValueDefinition{
V: value,
Instr: c.ssaBuilder.InstructionOfValue(value),
RefCount: c.ssaValuesInfo[value.ID()].RefCount,
}
}
// VRegOf implements Compiler.VRegOf.
@ -319,7 +301,7 @@ func (c *compiler) TypeOf(v regalloc.VReg) ssa.Type {
}
// MatchInstr implements Compiler.MatchInstr.
func (c *compiler) MatchInstr(def *SSAValueDefinition, opcode ssa.Opcode) bool {
func (c *compiler) MatchInstr(def SSAValueDefinition, opcode ssa.Opcode) bool {
instr := def.Instr
return def.IsFromInstr() &&
instr.Opcode() == opcode &&
@ -328,7 +310,7 @@ func (c *compiler) MatchInstr(def *SSAValueDefinition, opcode ssa.Opcode) bool {
}
// MatchInstrOneOf implements Compiler.MatchInstrOneOf.
func (c *compiler) MatchInstrOneOf(def *SSAValueDefinition, opcodes []ssa.Opcode) ssa.Opcode {
func (c *compiler) MatchInstrOneOf(def SSAValueDefinition, opcodes []ssa.Opcode) ssa.Opcode {
instr := def.Instr
if !def.IsFromInstr() {
return ssa.OpcodeInvalid

View File

@ -9,7 +9,7 @@ import (
func (c *compiler) Lower() {
c.assignVirtualRegisters()
c.mach.SetCurrentABI(c.GetFunctionABI(c.ssaBuilder.Signature()))
c.mach.ExecutableContext().StartLoweringFunction(c.ssaBuilder.BlockIDMax())
c.mach.StartLoweringFunction(c.ssaBuilder.BlockIDMax())
c.lowerBlocks()
}
@ -20,12 +20,11 @@ func (c *compiler) lowerBlocks() {
c.lowerBlock(blk)
}
ectx := c.mach.ExecutableContext()
// After lowering all blocks, we need to link adjacent blocks to layout one single instruction list.
var prev ssa.BasicBlock
for next := builder.BlockIteratorReversePostOrderBegin(); next != nil; next = builder.BlockIteratorReversePostOrderNext() {
if prev != nil {
ectx.LinkAdjacentBlocks(prev, next)
c.mach.LinkAdjacentBlocks(prev, next)
}
prev = next
}
@ -33,8 +32,7 @@ func (c *compiler) lowerBlocks() {
func (c *compiler) lowerBlock(blk ssa.BasicBlock) {
mach := c.mach
ectx := mach.ExecutableContext()
ectx.StartBlock(blk)
mach.StartBlock(blk)
// We traverse the instructions in reverse order because we might want to lower multiple
// instructions together.
@ -76,7 +74,7 @@ func (c *compiler) lowerBlock(blk ssa.BasicBlock) {
default:
mach.LowerInstr(cur)
}
ectx.FlushPendingInstructions()
mach.FlushPendingInstructions()
}
// Finally, if this is the entry block, we have to insert copies of arguments from the real location to the VReg.
@ -84,7 +82,7 @@ func (c *compiler) lowerBlock(blk ssa.BasicBlock) {
c.lowerFunctionArguments(blk)
}
ectx.EndBlock()
mach.EndBlock()
}
// lowerBranches is called right after StartBlock and before any LowerInstr call if
@ -93,23 +91,24 @@ func (c *compiler) lowerBlock(blk ssa.BasicBlock) {
//
// See ssa.Instruction IsBranching, and the comment on ssa.BasicBlock.
func (c *compiler) lowerBranches(br0, br1 *ssa.Instruction) {
ectx := c.mach.ExecutableContext()
mach := c.mach
c.setCurrentGroupID(br0.GroupID())
c.mach.LowerSingleBranch(br0)
ectx.FlushPendingInstructions()
mach.FlushPendingInstructions()
if br1 != nil {
c.setCurrentGroupID(br1.GroupID())
c.mach.LowerConditionalBranch(br1)
ectx.FlushPendingInstructions()
mach.FlushPendingInstructions()
}
if br0.Opcode() == ssa.OpcodeJump {
_, args, target := br0.BranchData()
_, args, targetBlockID := br0.BranchData()
argExists := len(args) != 0
if argExists && br1 != nil {
panic("BUG: critical edge split failed")
}
target := c.ssaBuilder.BasicBlock(targetBlockID)
if argExists && target.ReturnBlock() {
if len(args) > 0 {
c.mach.LowerReturns(args)
@ -118,24 +117,25 @@ func (c *compiler) lowerBranches(br0, br1 *ssa.Instruction) {
c.lowerBlockArguments(args, target)
}
}
ectx.FlushPendingInstructions()
mach.FlushPendingInstructions()
}
func (c *compiler) lowerFunctionArguments(entry ssa.BasicBlock) {
ectx := c.mach.ExecutableContext()
mach := c.mach
c.tmpVals = c.tmpVals[:0]
data := c.ssaBuilder.ValuesInfo()
for i := 0; i < entry.Params(); i++ {
p := entry.Param(i)
if c.ssaValueRefCounts[p.ID()] > 0 {
if data[p.ID()].RefCount > 0 {
c.tmpVals = append(c.tmpVals, p)
} else {
// If the argument is not used, we can just pass an invalid value.
c.tmpVals = append(c.tmpVals, ssa.ValueInvalid)
}
}
c.mach.LowerParams(c.tmpVals)
ectx.FlushPendingInstructions()
mach.LowerParams(c.tmpVals)
mach.FlushPendingInstructions()
}
// lowerBlockArguments lowers how to pass arguments to the given successor block.
@ -152,12 +152,12 @@ func (c *compiler) lowerBlockArguments(args []ssa.Value, succ ssa.BasicBlock) {
src := args[i]
dstReg := c.VRegOf(dst)
srcDef := c.ssaValueDefinitions[src.ID()]
if srcDef.IsFromInstr() && srcDef.Instr.Constant() {
srcInstr := c.ssaBuilder.InstructionOfValue(src)
if srcInstr != nil && srcInstr.Constant() {
c.constEdges = append(c.constEdges, struct {
cInst *ssa.Instruction
dst regalloc.VReg
}{cInst: srcDef.Instr, dst: dstReg})
}{cInst: srcInstr, dst: dstReg})
} else {
srcReg := c.VRegOf(src)
// Even when the src=dst, insert the move so that we can keep such registers keep-alive.

View File

@ -1,221 +0,0 @@
package backend
import (
"fmt"
"math"
"github.com/tetratelabs/wazero/internal/engine/wazevo/ssa"
"github.com/tetratelabs/wazero/internal/engine/wazevo/wazevoapi"
)
type ExecutableContext interface {
// StartLoweringFunction is called when the lowering of the given function is started.
// maximumBlockID is the maximum value of ssa.BasicBlockID existing in the function.
StartLoweringFunction(maximumBlockID ssa.BasicBlockID)
// LinkAdjacentBlocks is called after finished lowering all blocks in order to create one single instruction list.
LinkAdjacentBlocks(prev, next ssa.BasicBlock)
// StartBlock is called when the compilation of the given block is started.
// The order of this being called is the reverse post order of the ssa.BasicBlock(s) as we iterate with
// ssa.Builder BlockIteratorReversePostOrderBegin and BlockIteratorReversePostOrderEnd.
StartBlock(ssa.BasicBlock)
// EndBlock is called when the compilation of the current block is finished.
EndBlock()
// FlushPendingInstructions flushes the pending instructions to the buffer.
// This will be called after the lowering of each SSA Instruction.
FlushPendingInstructions()
}
type ExecutableContextT[Instr any] struct {
CurrentSSABlk ssa.BasicBlock
// InstrPool is the InstructionPool of instructions.
InstructionPool wazevoapi.Pool[Instr]
asNop func(*Instr)
setNext func(*Instr, *Instr)
setPrev func(*Instr, *Instr)
// RootInstr is the root instruction of the executable.
RootInstr *Instr
labelPositionPool wazevoapi.Pool[LabelPosition[Instr]]
NextLabel Label
// LabelPositions maps a label to the instructions of the region which the label represents.
LabelPositions []*LabelPosition[Instr]
OrderedBlockLabels []*LabelPosition[Instr]
// PerBlockHead and PerBlockEnd are the head and tail of the instruction list per currently-compiled ssa.BasicBlock.
PerBlockHead, PerBlockEnd *Instr
// PendingInstructions are the instructions which are not yet emitted into the instruction list.
PendingInstructions []*Instr
// SsaBlockIDToLabels maps an SSA block ID to the label.
SsaBlockIDToLabels []Label
}
func NewExecutableContextT[Instr any](
resetInstruction func(*Instr),
setNext func(*Instr, *Instr),
setPrev func(*Instr, *Instr),
asNop func(*Instr),
) *ExecutableContextT[Instr] {
return &ExecutableContextT[Instr]{
InstructionPool: wazevoapi.NewPool[Instr](resetInstruction),
asNop: asNop,
setNext: setNext,
setPrev: setPrev,
labelPositionPool: wazevoapi.NewPool[LabelPosition[Instr]](resetLabelPosition[Instr]),
NextLabel: LabelInvalid,
}
}
func resetLabelPosition[T any](l *LabelPosition[T]) {
*l = LabelPosition[T]{}
}
// StartLoweringFunction implements ExecutableContext.
func (e *ExecutableContextT[Instr]) StartLoweringFunction(max ssa.BasicBlockID) {
imax := int(max)
if len(e.SsaBlockIDToLabels) <= imax {
// Eagerly allocate labels for the blocks since the underlying slice will be used for the next iteration.
e.SsaBlockIDToLabels = append(e.SsaBlockIDToLabels, make([]Label, imax+1)...)
}
}
func (e *ExecutableContextT[Instr]) StartBlock(blk ssa.BasicBlock) {
e.CurrentSSABlk = blk
l := e.SsaBlockIDToLabels[e.CurrentSSABlk.ID()]
if l == LabelInvalid {
l = e.AllocateLabel()
e.SsaBlockIDToLabels[blk.ID()] = l
}
end := e.allocateNop0()
e.PerBlockHead, e.PerBlockEnd = end, end
labelPos := e.GetOrAllocateLabelPosition(l)
e.OrderedBlockLabels = append(e.OrderedBlockLabels, labelPos)
labelPos.Begin, labelPos.End = end, end
labelPos.SB = blk
}
// EndBlock implements ExecutableContext.
func (e *ExecutableContextT[T]) EndBlock() {
// Insert nop0 as the head of the block for convenience to simplify the logic of inserting instructions.
e.insertAtPerBlockHead(e.allocateNop0())
l := e.SsaBlockIDToLabels[e.CurrentSSABlk.ID()]
e.LabelPositions[l].Begin = e.PerBlockHead
if e.CurrentSSABlk.EntryBlock() {
e.RootInstr = e.PerBlockHead
}
}
func (e *ExecutableContextT[T]) insertAtPerBlockHead(i *T) {
if e.PerBlockHead == nil {
e.PerBlockHead = i
e.PerBlockEnd = i
return
}
e.setNext(i, e.PerBlockHead)
e.setPrev(e.PerBlockHead, i)
e.PerBlockHead = i
}
// FlushPendingInstructions implements ExecutableContext.
func (e *ExecutableContextT[T]) FlushPendingInstructions() {
l := len(e.PendingInstructions)
if l == 0 {
return
}
for i := l - 1; i >= 0; i-- { // reverse because we lower instructions in reverse order.
e.insertAtPerBlockHead(e.PendingInstructions[i])
}
e.PendingInstructions = e.PendingInstructions[:0]
}
func (e *ExecutableContextT[T]) Reset() {
e.labelPositionPool.Reset()
e.InstructionPool.Reset()
for i := range e.LabelPositions {
e.LabelPositions[i] = nil
}
e.PendingInstructions = e.PendingInstructions[:0]
e.OrderedBlockLabels = e.OrderedBlockLabels[:0]
e.RootInstr = nil
e.SsaBlockIDToLabels = e.SsaBlockIDToLabels[:0]
e.PerBlockHead, e.PerBlockEnd = nil, nil
e.NextLabel = LabelInvalid
}
// AllocateLabel allocates an unused label.
func (e *ExecutableContextT[T]) AllocateLabel() Label {
e.NextLabel++
return e.NextLabel
}
func (e *ExecutableContextT[T]) GetOrAllocateLabelPosition(l Label) *LabelPosition[T] {
if len(e.LabelPositions) <= int(l) {
e.LabelPositions = append(e.LabelPositions, make([]*LabelPosition[T], int(l)+1-len(e.LabelPositions))...)
}
ret := e.LabelPositions[l]
if ret == nil {
ret = e.labelPositionPool.Allocate()
ret.L = l
e.LabelPositions[l] = ret
}
return ret
}
func (e *ExecutableContextT[T]) GetOrAllocateSSABlockLabel(blk ssa.BasicBlock) Label {
if blk.ReturnBlock() {
return LabelReturn
}
l := e.SsaBlockIDToLabels[blk.ID()]
if l == LabelInvalid {
l = e.AllocateLabel()
e.SsaBlockIDToLabels[blk.ID()] = l
}
return l
}
func (e *ExecutableContextT[T]) allocateNop0() *T {
i := e.InstructionPool.Allocate()
e.asNop(i)
return i
}
// LinkAdjacentBlocks implements backend.Machine.
func (e *ExecutableContextT[T]) LinkAdjacentBlocks(prev, next ssa.BasicBlock) {
prevLabelPos := e.LabelPositions[e.GetOrAllocateSSABlockLabel(prev)]
nextLabelPos := e.LabelPositions[e.GetOrAllocateSSABlockLabel(next)]
e.setNext(prevLabelPos.End, nextLabelPos.Begin)
}
// LabelPosition represents the regions of the generated code which the label represents.
type LabelPosition[Instr any] struct {
SB ssa.BasicBlock
L Label
Begin, End *Instr
BinaryOffset int64
}
// Label represents a position in the generated code which is either
// a real instruction or the constant InstructionPool (e.g. jump tables).
//
// This is exactly the same as the traditional "label" in assembly code.
type Label uint32
const (
LabelInvalid Label = 0
LabelReturn Label = math.MaxUint32
)
// String implements backend.Machine.
func (l Label) String() string {
return fmt.Sprintf("L%d", l)
}

View File

@ -14,7 +14,6 @@ var calleeSavedVRegs = []regalloc.VReg{
// CompileGoFunctionTrampoline implements backend.Machine.
func (m *machine) CompileGoFunctionTrampoline(exitCode wazevoapi.ExitCode, sig *ssa.Signature, needModuleContextPtr bool) []byte {
ectx := m.ectx
argBegin := 1 // Skips exec context by default.
if needModuleContextPtr {
argBegin++
@ -25,7 +24,7 @@ func (m *machine) CompileGoFunctionTrampoline(exitCode wazevoapi.ExitCode, sig *
m.currentABI = abi
cur := m.allocateNop()
ectx.RootInstr = cur
m.rootInstr = cur
// Execution context is always the first argument.
execCtrPtr := raxVReg
@ -272,7 +271,7 @@ func (m *machine) CompileGoFunctionTrampoline(exitCode wazevoapi.ExitCode, sig *
cur = m.revertRBPRSP(cur)
linkInstr(cur, m.allocateInstr().asRet())
m.encodeWithoutSSA(ectx.RootInstr)
m.encodeWithoutSSA(m.rootInstr)
return m.c.Buf()
}
@ -347,10 +346,8 @@ var stackGrowSaveVRegs = []regalloc.VReg{
// CompileStackGrowCallSequence implements backend.Machine.
func (m *machine) CompileStackGrowCallSequence() []byte {
ectx := m.ectx
cur := m.allocateNop()
ectx.RootInstr = cur
m.rootInstr = cur
cur = m.setupRBPRSP(cur)
@ -379,7 +376,7 @@ func (m *machine) CompileStackGrowCallSequence() []byte {
cur = m.revertRBPRSP(cur)
linkInstr(cur, m.allocateInstr().asRet())
m.encodeWithoutSSA(ectx.RootInstr)
m.encodeWithoutSSA(m.rootInstr)
return m.c.Buf()
}

View File

@ -17,16 +17,6 @@ type instruction struct {
kind instructionKind
}
// Next implements regalloc.Instr.
func (i *instruction) Next() regalloc.Instr {
return i.next
}
// Prev implements regalloc.Instr.
func (i *instruction) Prev() regalloc.Instr {
return i.prev
}
// IsCall implements regalloc.Instr.
func (i *instruction) IsCall() bool { return i.kind == call }
@ -36,9 +26,6 @@ func (i *instruction) IsIndirectCall() bool { return i.kind == callIndirect }
// IsReturn implements regalloc.Instr.
func (i *instruction) IsReturn() bool { return i.kind == ret }
// AddedBeforeRegAlloc implements regalloc.Instr.
func (i *instruction) AddedBeforeRegAlloc() bool { return i.addedBeforeRegAlloc }
// String implements regalloc.Instr.
func (i *instruction) String() string {
switch i.kind {
@ -651,26 +638,14 @@ func resetInstruction(i *instruction) {
*i = instruction{}
}
func setNext(i *instruction, next *instruction) {
i.next = next
}
func setPrev(i *instruction, prev *instruction) {
i.prev = prev
}
func asNop(i *instruction) {
i.kind = nop0
}
func (i *instruction) asNop0WithLabel(label backend.Label) *instruction { //nolint
func (i *instruction) asNop0WithLabel(label label) *instruction { //nolint
i.kind = nop0
i.u1 = uint64(label)
return i
}
func (i *instruction) nop0Label() backend.Label {
return backend.Label(i.u1)
func (i *instruction) nop0Label() label {
return label(i.u1)
}
type instructionKind byte
@ -1161,7 +1136,7 @@ func (i *instruction) asJmp(target operand) *instruction {
return i
}
func (i *instruction) jmpLabel() backend.Label {
func (i *instruction) jmpLabel() label {
switch i.kind {
case jmp, jmpIf, lea, xmmUnaryRmR:
return i.op1.label()

View File

@ -130,9 +130,9 @@ func (m *machine) lowerAddendsToAmode(x, y addend, offBase uint32) *amode {
}
}
func (m *machine) lowerAddend(x *backend.SSAValueDefinition) addend {
if x.IsFromBlockParam() {
return addend{x.BlkParamVReg, 0, 0}
func (m *machine) lowerAddend(x backend.SSAValueDefinition) addend {
if !x.IsFromInstr() {
return addend{m.c.VRegOf(x.V), 0, 0}
}
// Ensure the addend is not referenced in multiple places; we will discard nested Iadds.
op := m.c.MatchInstrOneOf(x, addendsMatchOpcodes[:])

View File

@ -16,18 +16,13 @@ import (
// NewBackend returns a new backend for arm64.
func NewBackend() backend.Machine {
ectx := backend.NewExecutableContextT[instruction](
resetInstruction,
setNext,
setPrev,
asNop,
)
return &machine{
ectx: ectx,
m := &machine{
cpuFeatures: platform.CpuFeatures,
regAlloc: regalloc.NewAllocator(regInfo),
regAlloc: regalloc.NewAllocator[*instruction, *labelPosition, *regAllocFn](regInfo),
spillSlots: map[regalloc.VRegID]int64{},
amodePool: wazevoapi.NewPool[amode](nil),
labelPositionPool: wazevoapi.NewIDedPool[labelPosition](resetLabelPosition),
instrPool: wazevoapi.NewPool[instruction](resetInstruction),
constSwizzleMaskConstIndex: -1,
constSqmulRoundSatIndex: -1,
constI8x16SHLMaskTableIndex: -1,
@ -41,23 +36,46 @@ func NewBackend() backend.Machine {
constExtAddPairwiseI16x8uMask1Index: -1,
constExtAddPairwiseI16x8uMask2Index: -1,
}
m.regAllocFn.m = m
return m
}
type (
// machine implements backend.Machine for amd64.
machine struct {
c backend.Compiler
ectx *backend.ExecutableContextT[instruction]
stackBoundsCheckDisabled bool
instrPool wazevoapi.Pool[instruction]
amodePool wazevoapi.Pool[amode]
cpuFeatures platform.CpuFeatureFlags
regAlloc regalloc.Allocator
regAllocFn *backend.RegAllocFunction[*instruction, *machine]
regAlloc regalloc.Allocator[*instruction, *labelPosition, *regAllocFn]
regAllocFn regAllocFn
regAllocStarted bool
// labelPositionPool is the pool of labelPosition. The id is the label where
// if the label is less than the maxSSABlockID, it's the ssa.BasicBlockID.
labelPositionPool wazevoapi.IDedPool[labelPosition]
// nextLabel is the next label to be allocated. The first free label comes after maxSSABlockID
// so that we can have an identical label for the SSA block ID, which is useful for debugging.
nextLabel label
// rootInstr is the first instruction of the function.
rootInstr *instruction
// currentLabelPos is the currently-compiled ssa.BasicBlock's labelPosition.
currentLabelPos *labelPosition
// orderedSSABlockLabelPos is the ordered list of labelPosition in the generated code for each ssa.BasicBlock.
orderedSSABlockLabelPos []*labelPosition
// returnLabelPos is the labelPosition for the return block.
returnLabelPos labelPosition
// perBlockHead and perBlockEnd are the head and tail of the instruction list per currently-compiled ssa.BasicBlock.
perBlockHead, perBlockEnd *instruction
// pendingInstructions are the instructions which are not yet emitted into the instruction list.
pendingInstructions []*instruction
// maxSSABlockID is the maximum ssa.BasicBlockID in the current function.
maxSSABlockID label
spillSlotSize int64
spillSlots map[regalloc.VRegID]int64
currentABI *backend.FunctionABI
@ -67,8 +85,11 @@ type (
labelResolutionPends []labelResolutionPend
// jmpTableTargets holds the labels of the jump table targets.
jmpTableTargets [][]uint32
consts []_const
// jmpTableTargetNext is the index to the jmpTableTargets slice to be used for the next jump table.
jmpTableTargetsNext int
consts []_const
constSwizzleMaskConstIndex, constSqmulRoundSatIndex,
constI8x16SHLMaskTableIndex, constI8x16LogicalSHRMaskTableIndex,
@ -79,9 +100,10 @@ type (
}
_const struct {
lo, hi uint64
_var []byte
label *labelPosition
lo, hi uint64
_var []byte
label label
labelPos *labelPosition
}
labelResolutionPend struct {
@ -90,22 +112,73 @@ type (
// imm32Offset is the offset of the last 4 bytes of the instruction.
imm32Offset int64
}
labelPosition = backend.LabelPosition[instruction]
)
func (m *machine) getOrAllocateConstLabel(i *int, _var []byte) backend.Label {
type (
// label represents a position in the generated code which is either
// a real instruction or the constant InstructionPool (e.g. jump tables).
//
// This is exactly the same as the traditional "label" in assembly code.
label uint32
// labelPosition represents the regions of the generated code which the label represents.
// This implements regalloc.Block.
labelPosition struct {
// sb is not nil if this corresponds to a ssa.BasicBlock.
sb ssa.BasicBlock
// cur is used to walk through the instructions in the block during the register allocation.
cur,
// begin and end are the first and last instructions of the block.
begin, end *instruction
// binaryOffset is the offset in the binary where the label is located.
binaryOffset int64
}
)
// String implements backend.Machine.
func (l label) String() string {
return fmt.Sprintf("L%d", l)
}
func resetLabelPosition(l *labelPosition) {
*l = labelPosition{}
}
const labelReturn = math.MaxUint32
func ssaBlockLabel(sb ssa.BasicBlock) label {
if sb.ReturnBlock() {
return labelReturn
}
return label(sb.ID())
}
// getOrAllocateSSABlockLabelPosition returns the labelPosition for the given basic block.
func (m *machine) getOrAllocateSSABlockLabelPosition(sb ssa.BasicBlock) *labelPosition {
if sb.ReturnBlock() {
m.returnLabelPos.sb = sb
return &m.returnLabelPos
}
l := ssaBlockLabel(sb)
pos := m.labelPositionPool.GetOrAllocate(int(l))
pos.sb = sb
return pos
}
func (m *machine) getOrAllocateConstLabel(i *int, _var []byte) label {
index := *i
if index == -1 {
label := m.allocateLabel()
l, pos := m.allocateLabel()
index = len(m.consts)
m.consts = append(m.consts, _const{
_var: _var,
label: label,
_var: _var,
label: l,
labelPos: pos,
})
*i = index
}
return m.consts[index].label.L
return m.consts[index].label
}
// Reset implements backend.Machine.
@ -120,18 +193,20 @@ func (m *machine) Reset() {
}
m.stackBoundsCheckDisabled = false
m.ectx.Reset()
m.regAllocFn.Reset()
m.regAlloc.Reset()
m.labelPositionPool.Reset()
m.instrPool.Reset()
m.regAllocStarted = false
m.clobberedRegs = m.clobberedRegs[:0]
m.spillSlotSize = 0
m.maxRequiredStackSizeForCalls = 0
m.perBlockHead, m.perBlockEnd, m.rootInstr = nil, nil, nil
m.pendingInstructions = m.pendingInstructions[:0]
m.orderedSSABlockLabelPos = m.orderedSSABlockLabelPos[:0]
m.amodePool.Reset()
m.jmpTableTargets = m.jmpTableTargets[:0]
m.jmpTableTargetsNext = 0
m.constSwizzleMaskConstIndex = -1
m.constSqmulRoundSatIndex = -1
m.constI8x16SHLMaskTableIndex = -1
@ -146,8 +221,63 @@ func (m *machine) Reset() {
m.constExtAddPairwiseI16x8uMask2Index = -1
}
// ExecutableContext implements backend.Machine.
func (m *machine) ExecutableContext() backend.ExecutableContext { return m.ectx }
// StartLoweringFunction implements backend.Machine StartLoweringFunction.
func (m *machine) StartLoweringFunction(maxBlockID ssa.BasicBlockID) {
m.maxSSABlockID = label(maxBlockID)
m.nextLabel = label(maxBlockID) + 1
}
// LinkAdjacentBlocks implements backend.Machine.
func (m *machine) LinkAdjacentBlocks(prev, next ssa.BasicBlock) {
prevPos, nextPos := m.getOrAllocateSSABlockLabelPosition(prev), m.getOrAllocateSSABlockLabelPosition(next)
prevPos.end.next = nextPos.begin
}
// StartBlock implements backend.Machine.
func (m *machine) StartBlock(blk ssa.BasicBlock) {
m.currentLabelPos = m.getOrAllocateSSABlockLabelPosition(blk)
labelPos := m.currentLabelPos
end := m.allocateNop()
m.perBlockHead, m.perBlockEnd = end, end
labelPos.begin, labelPos.end = end, end
m.orderedSSABlockLabelPos = append(m.orderedSSABlockLabelPos, labelPos)
}
// EndBlock implements ExecutableContext.
func (m *machine) EndBlock() {
// Insert nop0 as the head of the block for convenience to simplify the logic of inserting instructions.
m.insertAtPerBlockHead(m.allocateNop())
m.currentLabelPos.begin = m.perBlockHead
if m.currentLabelPos.sb.EntryBlock() {
m.rootInstr = m.perBlockHead
}
}
func (m *machine) insertAtPerBlockHead(i *instruction) {
if m.perBlockHead == nil {
m.perBlockHead = i
m.perBlockEnd = i
return
}
i.next = m.perBlockHead
m.perBlockHead.prev = i
m.perBlockHead = i
}
// FlushPendingInstructions implements backend.Machine.
func (m *machine) FlushPendingInstructions() {
l := len(m.pendingInstructions)
if l == 0 {
return
}
for i := l - 1; i >= 0; i-- { // reverse because we lower instructions in reverse order.
m.insertAtPerBlockHead(m.pendingInstructions[i])
}
m.pendingInstructions = m.pendingInstructions[:0]
}
// DisableStackCheck implements backend.Machine.
func (m *machine) DisableStackCheck() { m.stackBoundsCheckDisabled = true }
@ -155,23 +285,17 @@ func (m *machine) DisableStackCheck() { m.stackBoundsCheckDisabled = true }
// SetCompiler implements backend.Machine.
func (m *machine) SetCompiler(c backend.Compiler) {
m.c = c
m.regAllocFn = backend.NewRegAllocFunction[*instruction, *machine](m, c.SSABuilder(), c)
m.regAllocFn.ssaB = c.SSABuilder()
}
// SetCurrentABI implements backend.Machine.
func (m *machine) SetCurrentABI(abi *backend.FunctionABI) {
m.currentABI = abi
}
func (m *machine) SetCurrentABI(abi *backend.FunctionABI) { m.currentABI = abi }
// RegAlloc implements backend.Machine.
func (m *machine) RegAlloc() {
rf := m.regAllocFn
for _, pos := range m.ectx.OrderedBlockLabels {
rf.AddBlock(pos.SB, pos.L, pos.Begin, pos.End)
}
m.regAllocStarted = true
m.regAlloc.DoAllocation(rf)
m.regAlloc.DoAllocation(&rf)
// Now that we know the final spill slot size, we must align spillSlotSize to 16 bytes.
m.spillSlotSize = (m.spillSlotSize + 15) &^ 15
}
@ -184,49 +308,54 @@ func (m *machine) InsertReturn() {
// LowerSingleBranch implements backend.Machine.
func (m *machine) LowerSingleBranch(b *ssa.Instruction) {
ectx := m.ectx
switch b.Opcode() {
case ssa.OpcodeJump:
_, _, targetBlk := b.BranchData()
_, _, targetBlkID := b.BranchData()
if b.IsFallthroughJump() {
return
}
jmp := m.allocateInstr()
target := ectx.GetOrAllocateSSABlockLabel(targetBlk)
if target == backend.LabelReturn {
target := ssaBlockLabel(m.c.SSABuilder().BasicBlock(targetBlkID))
if target == labelReturn {
jmp.asRet()
} else {
jmp.asJmp(newOperandLabel(target))
}
m.insert(jmp)
case ssa.OpcodeBrTable:
index, target := b.BrTableData()
m.lowerBrTable(index, target)
index, targetBlkIDs := b.BrTableData()
m.lowerBrTable(index, targetBlkIDs)
default:
panic("BUG: unexpected branch opcode" + b.Opcode().String())
}
}
func (m *machine) addJmpTableTarget(targets []ssa.BasicBlock) (index int) {
// TODO: reuse the slice!
labels := make([]uint32, len(targets))
for j, target := range targets {
labels[j] = uint32(m.ectx.GetOrAllocateSSABlockLabel(target))
func (m *machine) addJmpTableTarget(targets ssa.Values) (index int) {
if m.jmpTableTargetsNext == len(m.jmpTableTargets) {
m.jmpTableTargets = append(m.jmpTableTargets, make([]uint32, 0, len(targets.View())))
}
index = m.jmpTableTargetsNext
m.jmpTableTargetsNext++
m.jmpTableTargets[index] = m.jmpTableTargets[index][:0]
for _, targetBlockID := range targets.View() {
target := m.c.SSABuilder().BasicBlock(ssa.BasicBlockID(targetBlockID))
m.jmpTableTargets[index] = append(m.jmpTableTargets[index], uint32(ssaBlockLabel(target)))
}
index = len(m.jmpTableTargets)
m.jmpTableTargets = append(m.jmpTableTargets, labels)
return
}
var condBranchMatches = [...]ssa.Opcode{ssa.OpcodeIcmp, ssa.OpcodeFcmp}
func (m *machine) lowerBrTable(index ssa.Value, targets []ssa.BasicBlock) {
func (m *machine) lowerBrTable(index ssa.Value, targets ssa.Values) {
_v := m.getOperand_Reg(m.c.ValueDefinition(index))
v := m.copyToTmp(_v.reg())
targetCount := len(targets.View())
// First, we need to do the bounds check.
maxIndex := m.c.AllocateVReg(ssa.TypeI32)
m.lowerIconst(maxIndex, uint64(len(targets)-1), false)
m.lowerIconst(maxIndex, uint64(targetCount-1), false)
cmp := m.allocateInstr().asCmpRmiR(true, newOperandReg(maxIndex), v, false)
m.insert(cmp)
@ -255,23 +384,22 @@ func (m *machine) lowerBrTable(index ssa.Value, targets []ssa.BasicBlock) {
jmpTable := m.allocateInstr()
targetSliceIndex := m.addJmpTableTarget(targets)
jmpTable.asJmpTableSequence(targetSliceIndex, len(targets))
jmpTable.asJmpTableSequence(targetSliceIndex, targetCount)
m.insert(jmpTable)
}
// LowerConditionalBranch implements backend.Machine.
func (m *machine) LowerConditionalBranch(b *ssa.Instruction) {
exctx := m.ectx
cval, args, targetBlk := b.BranchData()
cval, args, targetBlkID := b.BranchData()
if len(args) > 0 {
panic(fmt.Sprintf(
"conditional branch shouldn't have args; likely a bug in critical edge splitting: from %s to %s",
exctx.CurrentSSABlk,
targetBlk,
m.currentLabelPos.sb,
targetBlkID,
))
}
target := exctx.GetOrAllocateSSABlockLabel(targetBlk)
target := ssaBlockLabel(m.c.SSABuilder().BasicBlock(targetBlkID))
cvalDef := m.c.ValueDefinition(cval)
switch m.c.MatchInstrOneOf(cvalDef, condBranchMatches[:]) {
@ -1272,9 +1400,9 @@ func (m *machine) lowerVconst(dst regalloc.VReg, lo, hi uint64) {
}
load := m.allocateInstr()
constLabel := m.allocateLabel()
m.consts = append(m.consts, _const{label: constLabel, lo: lo, hi: hi})
load.asXmmUnaryRmR(sseOpcodeMovdqu, newOperandMem(m.newAmodeRipRel(constLabel.L)), dst)
l, pos := m.allocateLabel()
m.consts = append(m.consts, _const{label: l, labelPos: pos, lo: lo, hi: hi})
load.asXmmUnaryRmR(sseOpcodeMovdqu, newOperandMem(m.newAmodeRipRel(l)), dst)
m.insert(load)
}
@ -1473,21 +1601,24 @@ func (m *machine) lowerExitIfTrueWithCode(execCtx regalloc.VReg, cond ssa.Value,
jmpIf.asJmpIf(condFromSSAIntCmpCond(c).invert(), newOperandLabel(l))
}
func (m *machine) tryLowerBandToFlag(x, y *backend.SSAValueDefinition) (ok bool) {
var target *backend.SSAValueDefinition
func (m *machine) tryLowerBandToFlag(x, y backend.SSAValueDefinition) (ok bool) {
var target backend.SSAValueDefinition
var got bool
if x.IsFromInstr() && x.Instr.Constant() && x.Instr.ConstantVal() == 0 {
if m.c.MatchInstr(y, ssa.OpcodeBand) {
target = y
got = true
}
}
if y.IsFromInstr() && y.Instr.Constant() && y.Instr.ConstantVal() == 0 {
if m.c.MatchInstr(x, ssa.OpcodeBand) {
target = x
got = true
}
}
if target == nil {
if !got {
return false
}
@ -1522,7 +1653,7 @@ func (m *machine) allocateExitInstructions(execCtx, exitCodeReg regalloc.VReg) (
return
}
func (m *machine) lowerExitWithCode(execCtx regalloc.VReg, code wazevoapi.ExitCode) (afterLabel backend.Label) {
func (m *machine) lowerExitWithCode(execCtx regalloc.VReg, code wazevoapi.ExitCode) (afterLabel label) {
exitCodeReg := rbpVReg
saveRsp, saveRbp, setExitCode := m.allocateExitInstructions(execCtx, exitCodeReg)
@ -1819,9 +1950,9 @@ func (m *machine) lowerCall(si *ssa.Instruction) {
// callerGenVRegToFunctionArg is the opposite of GenFunctionArgToVReg, which is used to generate the
// caller side of the function call.
func (m *machine) callerGenVRegToFunctionArg(a *backend.FunctionABI, argIndex int, reg regalloc.VReg, def *backend.SSAValueDefinition, stackSlotSize int64) {
func (m *machine) callerGenVRegToFunctionArg(a *backend.FunctionABI, argIndex int, reg regalloc.VReg, def backend.SSAValueDefinition, stackSlotSize int64) {
arg := &a.Args[argIndex]
if def != nil && def.IsFromInstr() {
if def.IsFromInstr() {
// Constant instructions are inlined.
if inst := def.Instr; inst.Constant() {
m.insertLoadConstant(inst, reg)
@ -1904,25 +2035,20 @@ func (m *machine) InsertMove(dst, src regalloc.VReg, typ ssa.Type) {
// Format implements backend.Machine.
func (m *machine) Format() string {
ectx := m.ectx
begins := map[*instruction]backend.Label{}
for _, pos := range ectx.LabelPositions {
begins := map[*instruction]label{}
for l := label(0); l < m.nextLabel; l++ {
pos := m.labelPositionPool.Get(int(l))
if pos != nil {
begins[pos.Begin] = pos.L
begins[pos.begin] = l
}
}
irBlocks := map[backend.Label]ssa.BasicBlockID{}
for i, l := range ectx.SsaBlockIDToLabels {
irBlocks[l] = ssa.BasicBlockID(i)
}
var lines []string
for cur := ectx.RootInstr; cur != nil; cur = cur.next {
for cur := m.rootInstr; cur != nil; cur = cur.next {
if l, ok := begins[cur]; ok {
var labelStr string
if blkID, ok := irBlocks[l]; ok {
labelStr = fmt.Sprintf("%s (SSA Block: %s):", l, blkID)
if l <= m.maxSSABlockID {
labelStr = fmt.Sprintf("%s (SSA Block: blk%d):", l, l)
} else {
labelStr = fmt.Sprintf("%s:", l)
}
@ -1935,9 +2061,9 @@ func (m *machine) Format() string {
}
for _, vc := range m.consts {
if vc._var == nil {
lines = append(lines, fmt.Sprintf("%s: const [%d %d]", vc.label.L, vc.lo, vc.hi))
lines = append(lines, fmt.Sprintf("%s: const [%d %d]", vc.label, vc.lo, vc.hi))
} else {
lines = append(lines, fmt.Sprintf("%s: const %#x", vc.label.L, vc._var))
lines = append(lines, fmt.Sprintf("%s: const %#x", vc.label, vc._var))
}
}
return "\n" + strings.Join(lines, "\n") + "\n"
@ -1945,18 +2071,14 @@ func (m *machine) Format() string {
func (m *machine) encodeWithoutSSA(root *instruction) {
m.labelResolutionPends = m.labelResolutionPends[:0]
ectx := m.ectx
bufPtr := m.c.BufPtr()
for cur := root; cur != nil; cur = cur.next {
offset := int64(len(*bufPtr))
if cur.kind == nop0 {
l := cur.nop0Label()
if int(l) >= len(ectx.LabelPositions) {
continue
}
if pos := ectx.LabelPositions[l]; pos != nil {
pos.BinaryOffset = offset
pos := m.labelPositionPool.Get(int(l))
if pos != nil {
pos.binaryOffset = offset
}
}
@ -1973,7 +2095,7 @@ func (m *machine) encodeWithoutSSA(root *instruction) {
switch p.instr.kind {
case jmp, jmpIf, lea:
target := p.instr.jmpLabel()
targetOffset := ectx.LabelPositions[target].BinaryOffset
targetOffset := m.labelPositionPool.Get(int(target)).binaryOffset
imm32Offset := p.imm32Offset
jmpOffset := int32(targetOffset - (p.imm32Offset + 4)) // +4 because RIP points to the next instruction.
binary.LittleEndian.PutUint32((*bufPtr)[imm32Offset:], uint32(jmpOffset))
@ -1985,33 +2107,33 @@ func (m *machine) encodeWithoutSSA(root *instruction) {
// Encode implements backend.Machine Encode.
func (m *machine) Encode(ctx context.Context) (err error) {
ectx := m.ectx
bufPtr := m.c.BufPtr()
var fn string
var fnIndex int
var labelToSSABlockID map[backend.Label]ssa.BasicBlockID
var labelPosToLabel map[*labelPosition]label
if wazevoapi.PerfMapEnabled {
fn = wazevoapi.GetCurrentFunctionName(ctx)
labelToSSABlockID = make(map[backend.Label]ssa.BasicBlockID)
for i, l := range ectx.SsaBlockIDToLabels {
labelToSSABlockID[l] = ssa.BasicBlockID(i)
labelPosToLabel = make(map[*labelPosition]label)
for i := 0; i <= m.labelPositionPool.MaxIDEncountered(); i++ {
pos := m.labelPositionPool.Get(i)
labelPosToLabel[pos] = label(i)
}
fnIndex = wazevoapi.GetCurrentFunctionIndex(ctx)
}
m.labelResolutionPends = m.labelResolutionPends[:0]
for _, pos := range ectx.OrderedBlockLabels {
for _, pos := range m.orderedSSABlockLabelPos {
offset := int64(len(*bufPtr))
pos.BinaryOffset = offset
for cur := pos.Begin; cur != pos.End.next; cur = cur.next {
pos.binaryOffset = offset
for cur := pos.begin; cur != pos.end.next; cur = cur.next {
offset := int64(len(*bufPtr))
switch cur.kind {
case nop0:
l := cur.nop0Label()
if pos := ectx.LabelPositions[l]; pos != nil {
pos.BinaryOffset = offset
if pos := m.labelPositionPool.Get(int(l)); pos != nil {
pos.binaryOffset = offset
}
case sourceOffsetInfo:
m.c.AddSourceOffsetInfo(offset, cur.sourceOffsetInfo())
@ -2026,22 +2148,16 @@ func (m *machine) Encode(ctx context.Context) (err error) {
}
if wazevoapi.PerfMapEnabled {
l := pos.L
var labelStr string
if blkID, ok := labelToSSABlockID[l]; ok {
labelStr = fmt.Sprintf("%s::SSA_Block[%s]", l, blkID)
} else {
labelStr = l.String()
}
l := labelPosToLabel[pos]
size := int64(len(*bufPtr)) - offset
wazevoapi.PerfMap.AddModuleEntry(fnIndex, offset, uint64(size), fmt.Sprintf("%s:::::%s", fn, labelStr))
wazevoapi.PerfMap.AddModuleEntry(fnIndex, offset, uint64(size), fmt.Sprintf("%s:::::%s", fn, l))
}
}
for i := range m.consts {
offset := int64(len(*bufPtr))
vc := &m.consts[i]
vc.label.BinaryOffset = offset
vc.labelPos.binaryOffset = offset
if vc._var == nil {
lo, hi := vc.lo, vc.hi
m.c.Emit8Bytes(lo)
@ -2059,7 +2175,7 @@ func (m *machine) Encode(ctx context.Context) (err error) {
switch p.instr.kind {
case jmp, jmpIf, lea, xmmUnaryRmR:
target := p.instr.jmpLabel()
targetOffset := ectx.LabelPositions[target].BinaryOffset
targetOffset := m.labelPositionPool.Get(int(target)).binaryOffset
imm32Offset := p.imm32Offset
jmpOffset := int32(targetOffset - (p.imm32Offset + 4)) // +4 because RIP points to the next instruction.
binary.LittleEndian.PutUint32(buf[imm32Offset:], uint32(jmpOffset))
@ -2068,7 +2184,7 @@ func (m *machine) Encode(ctx context.Context) (err error) {
// Each entry is the offset from the beginning of the jmpTableIsland instruction in 8 bytes.
targets := m.jmpTableTargets[p.instr.u1]
for i, l := range targets {
targetOffset := ectx.LabelPositions[backend.Label(l)].BinaryOffset
targetOffset := m.labelPositionPool.Get(int(l)).binaryOffset
jmpOffset := targetOffset - tableBegin
binary.LittleEndian.PutUint64(buf[tableBegin+int64(i)*8:], uint64(jmpOffset))
}
@ -2097,7 +2213,7 @@ func (m *machine) ResolveRelocations(refToBinaryOffset []int, binary []byte, rel
// CallTrampolineIslandInfo implements backend.Machine CallTrampolineIslandInfo.
func (m *machine) CallTrampolineIslandInfo(_ int) (_, _ int, _ error) { return }
func (m *machine) lowerIcmpToFlag(xd, yd *backend.SSAValueDefinition, _64 bool) {
func (m *machine) lowerIcmpToFlag(xd, yd backend.SSAValueDefinition, _64 bool) {
x := m.getOperand_Reg(xd)
y := m.getOperand_Mem_Imm32_Reg(yd)
cmp := m.allocateInstr().asCmpRmiR(true, y, x.reg(), _64)
@ -2140,7 +2256,7 @@ func (m *machine) lowerFcmpToFlags(instr *ssa.Instruction) (f1, f2 cond, and boo
// allocateInstr allocates an instruction.
func (m *machine) allocateInstr() *instruction {
instr := m.ectx.InstructionPool.Allocate()
instr := m.instrPool.Allocate()
if !m.regAllocStarted {
instr.addedBeforeRegAlloc = true
}
@ -2154,24 +2270,22 @@ func (m *machine) allocateNop() *instruction {
}
func (m *machine) insert(i *instruction) {
ectx := m.ectx
ectx.PendingInstructions = append(ectx.PendingInstructions, i)
m.pendingInstructions = append(m.pendingInstructions, i)
}
func (m *machine) allocateBrTarget() (nop *instruction, l backend.Label) { //nolint
pos := m.allocateLabel()
l = pos.L
func (m *machine) allocateBrTarget() (nop *instruction, l label) { //nolint
l, pos := m.allocateLabel()
nop = m.allocateInstr()
nop.asNop0WithLabel(l)
pos.Begin, pos.End = nop, nop
pos.begin, pos.end = nop, nop
return
}
func (m *machine) allocateLabel() *labelPosition {
ectx := m.ectx
l := ectx.AllocateLabel()
pos := ectx.GetOrAllocateLabelPosition(l)
return pos
func (m *machine) allocateLabel() (label, *labelPosition) {
l := m.nextLabel
pos := m.labelPositionPool.GetOrAllocate(int(l))
m.nextLabel++
return l, pos
}
func (m *machine) getVRegSpillSlotOffsetFromSP(id regalloc.VRegID, size byte) int64 {
@ -3185,22 +3299,22 @@ func (m *machine) lowerShuffle(x, y ssa.Value, lo, hi uint64, ret ssa.Value) {
}
}
xmaskLabel := m.allocateLabel()
m.consts = append(m.consts, _const{lo: xMask[0], hi: xMask[1], label: xmaskLabel})
ymaskLabel := m.allocateLabel()
m.consts = append(m.consts, _const{lo: yMask[0], hi: yMask[1], label: ymaskLabel})
xl, xmaskPos := m.allocateLabel()
m.consts = append(m.consts, _const{lo: xMask[0], hi: xMask[1], label: xl, labelPos: xmaskPos})
yl, ymaskPos := m.allocateLabel()
m.consts = append(m.consts, _const{lo: yMask[0], hi: yMask[1], label: yl, labelPos: ymaskPos})
xx, yy := m.getOperand_Reg(m.c.ValueDefinition(x)), m.getOperand_Reg(m.c.ValueDefinition(y))
tmpX, tmpY := m.copyToTmp(xx.reg()), m.copyToTmp(yy.reg())
// Apply mask to X.
tmp := m.c.AllocateVReg(ssa.TypeV128)
loadMaskLo := m.allocateInstr().asXmmUnaryRmR(sseOpcodeMovdqu, newOperandMem(m.newAmodeRipRel(xmaskLabel.L)), tmp)
loadMaskLo := m.allocateInstr().asXmmUnaryRmR(sseOpcodeMovdqu, newOperandMem(m.newAmodeRipRel(xl)), tmp)
m.insert(loadMaskLo)
m.insert(m.allocateInstr().asXmmRmR(sseOpcodePshufb, newOperandReg(tmp), tmpX))
// Apply mask to Y.
loadMaskHi := m.allocateInstr().asXmmUnaryRmR(sseOpcodeMovdqu, newOperandMem(m.newAmodeRipRel(ymaskLabel.L)), tmp)
loadMaskHi := m.allocateInstr().asXmmUnaryRmR(sseOpcodeMovdqu, newOperandMem(m.newAmodeRipRel(yl)), tmp)
m.insert(loadMaskHi)
m.insert(m.allocateInstr().asXmmRmR(sseOpcodePshufb, newOperandReg(tmp), tmpY))

View File

@ -12,7 +12,7 @@ func (m *machine) PostRegAlloc() {
}
func (m *machine) setupPrologue() {
cur := m.ectx.RootInstr
cur := m.rootInstr
prevInitInst := cur.next
// At this point, we have the stack layout as follows:
@ -130,14 +130,13 @@ func (m *machine) setupPrologue() {
// 3. Inserts the dec/inc RSP instruction right before/after the call instruction.
// 4. Lowering that is supposed to be done after regalloc.
func (m *machine) postRegAlloc() {
ectx := m.ectx
for cur := ectx.RootInstr; cur != nil; cur = cur.next {
for cur := m.rootInstr; cur != nil; cur = cur.next {
switch k := cur.kind; k {
case ret:
m.setupEpilogueAfter(cur.prev)
continue
case fcvtToSintSequence, fcvtToUintSequence:
m.ectx.PendingInstructions = m.ectx.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
if k == fcvtToSintSequence {
m.lowerFcvtToSintSequenceAfterRegalloc(cur)
} else {
@ -146,29 +145,29 @@ func (m *machine) postRegAlloc() {
prev := cur.prev
next := cur.next
cur := prev
for _, instr := range m.ectx.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
linkInstr(cur, next)
continue
case xmmCMov:
m.ectx.PendingInstructions = m.ectx.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
m.lowerXmmCmovAfterRegAlloc(cur)
prev := cur.prev
next := cur.next
cur := prev
for _, instr := range m.ectx.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
linkInstr(cur, next)
continue
case idivRemSequence:
m.ectx.PendingInstructions = m.ectx.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
m.lowerIDivRemSequenceAfterRegAlloc(cur)
prev := cur.prev
next := cur.next
cur := prev
for _, instr := range m.ectx.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
linkInstr(cur, next)

View File

@ -1,13 +1,226 @@
package amd64
import (
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend"
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend/regalloc"
"github.com/tetratelabs/wazero/internal/engine/wazevo/ssa"
)
// InsertMoveBefore implements backend.RegAllocFunctionMachine.
func (m *machine) InsertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
// regAllocFn implements regalloc.Function.
type regAllocFn struct {
ssaB ssa.Builder
m *machine
loopNestingForestRoots []ssa.BasicBlock
blockIter int
}
// PostOrderBlockIteratorBegin implements regalloc.Function.
func (f *regAllocFn) PostOrderBlockIteratorBegin() *labelPosition {
f.blockIter = len(f.m.orderedSSABlockLabelPos) - 1
return f.PostOrderBlockIteratorNext()
}
// PostOrderBlockIteratorNext implements regalloc.Function.
func (f *regAllocFn) PostOrderBlockIteratorNext() *labelPosition {
if f.blockIter < 0 {
return nil
}
b := f.m.orderedSSABlockLabelPos[f.blockIter]
f.blockIter--
return b
}
// ReversePostOrderBlockIteratorBegin implements regalloc.Function.
func (f *regAllocFn) ReversePostOrderBlockIteratorBegin() *labelPosition {
f.blockIter = 0
return f.ReversePostOrderBlockIteratorNext()
}
// ReversePostOrderBlockIteratorNext implements regalloc.Function.
func (f *regAllocFn) ReversePostOrderBlockIteratorNext() *labelPosition {
if f.blockIter >= len(f.m.orderedSSABlockLabelPos) {
return nil
}
b := f.m.orderedSSABlockLabelPos[f.blockIter]
f.blockIter++
return b
}
// ClobberedRegisters implements regalloc.Function.
func (f *regAllocFn) ClobberedRegisters(regs []regalloc.VReg) {
f.m.clobberedRegs = append(f.m.clobberedRegs[:0], regs...)
}
// LoopNestingForestRoots implements regalloc.Function.
func (f *regAllocFn) LoopNestingForestRoots() int {
f.loopNestingForestRoots = f.ssaB.LoopNestingForestRoots()
return len(f.loopNestingForestRoots)
}
// LoopNestingForestRoot implements regalloc.Function.
func (f *regAllocFn) LoopNestingForestRoot(i int) *labelPosition {
root := f.loopNestingForestRoots[i]
pos := f.m.getOrAllocateSSABlockLabelPosition(root)
return pos
}
// LowestCommonAncestor implements regalloc.Function.
func (f *regAllocFn) LowestCommonAncestor(blk1, blk2 *labelPosition) *labelPosition {
sb := f.ssaB.LowestCommonAncestor(blk1.sb, blk2.sb)
pos := f.m.getOrAllocateSSABlockLabelPosition(sb)
return pos
}
// Idom implements regalloc.Function.
func (f *regAllocFn) Idom(blk *labelPosition) *labelPosition {
sb := f.ssaB.Idom(blk.sb)
pos := f.m.getOrAllocateSSABlockLabelPosition(sb)
return pos
}
// SwapBefore implements regalloc.Function.
func (f *regAllocFn) SwapBefore(x1, x2, tmp regalloc.VReg, instr *instruction) {
f.m.swap(instr.prev, x1, x2, tmp)
}
// StoreRegisterBefore implements regalloc.Function.
func (f *regAllocFn) StoreRegisterBefore(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertStoreRegisterAt(v, instr, false)
}
// StoreRegisterAfter implements regalloc.Function.
func (f *regAllocFn) StoreRegisterAfter(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertStoreRegisterAt(v, instr, true)
}
// ReloadRegisterBefore implements regalloc.Function.
func (f *regAllocFn) ReloadRegisterBefore(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertReloadRegisterAt(v, instr, false)
}
// ReloadRegisterAfter implements regalloc.Function.
func (f *regAllocFn) ReloadRegisterAfter(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertReloadRegisterAt(v, instr, true)
}
// InsertMoveBefore implements regalloc.Function.
func (f *regAllocFn) InsertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
f.m.insertMoveBefore(dst, src, instr)
}
// LoopNestingForestChild implements regalloc.Function.
func (f *regAllocFn) LoopNestingForestChild(pos *labelPosition, i int) *labelPosition {
childSB := pos.sb.LoopNestingForestChildren()[i]
return f.m.getOrAllocateSSABlockLabelPosition(childSB)
}
// Succ implements regalloc.Block.
func (f *regAllocFn) Succ(pos *labelPosition, i int) *labelPosition {
succSB := pos.sb.Succ(i)
if succSB.ReturnBlock() {
return nil
}
return f.m.getOrAllocateSSABlockLabelPosition(succSB)
}
// Pred implements regalloc.Block.
func (f *regAllocFn) Pred(pos *labelPosition, i int) *labelPosition {
predSB := pos.sb.Pred(i)
return f.m.getOrAllocateSSABlockLabelPosition(predSB)
}
// BlockParams implements regalloc.Function.
func (f *regAllocFn) BlockParams(pos *labelPosition, regs *[]regalloc.VReg) []regalloc.VReg {
c := f.m.c
*regs = (*regs)[:0]
for i := 0; i < pos.sb.Params(); i++ {
v := c.VRegOf(pos.sb.Param(i))
*regs = append(*regs, v)
}
return *regs
}
// ID implements regalloc.Block.
func (pos *labelPosition) ID() int32 {
return int32(pos.sb.ID())
}
// InstrIteratorBegin implements regalloc.Block.
func (pos *labelPosition) InstrIteratorBegin() *instruction {
ret := pos.begin
pos.cur = ret
return ret
}
// InstrIteratorNext implements regalloc.Block.
func (pos *labelPosition) InstrIteratorNext() *instruction {
for {
if pos.cur == pos.end {
return nil
}
instr := pos.cur.next
pos.cur = instr
if instr == nil {
return nil
} else if instr.addedBeforeRegAlloc {
// Only concerned about the instruction added before regalloc.
return instr
}
}
}
// InstrRevIteratorBegin implements regalloc.Block.
func (pos *labelPosition) InstrRevIteratorBegin() *instruction {
pos.cur = pos.end
return pos.cur
}
// InstrRevIteratorNext implements regalloc.Block.
func (pos *labelPosition) InstrRevIteratorNext() *instruction {
for {
if pos.cur == pos.begin {
return nil
}
instr := pos.cur.prev
pos.cur = instr
if instr == nil {
return nil
} else if instr.addedBeforeRegAlloc {
// Only concerned about the instruction added before regalloc.
return instr
}
}
}
// FirstInstr implements regalloc.Block.
func (pos *labelPosition) FirstInstr() *instruction { return pos.begin }
// LastInstrForInsertion implements regalloc.Block.
func (pos *labelPosition) LastInstrForInsertion() *instruction {
return lastInstrForInsertion(pos.begin, pos.end)
}
// Preds implements regalloc.Block.
func (pos *labelPosition) Preds() int { return pos.sb.Preds() }
// Entry implements regalloc.Block.
func (pos *labelPosition) Entry() bool { return pos.sb.EntryBlock() }
// Succs implements regalloc.Block.
func (pos *labelPosition) Succs() int { return pos.sb.Succs() }
// LoopHeader implements regalloc.Block.
func (pos *labelPosition) LoopHeader() bool { return pos.sb.LoopHeader() }
// LoopNestingForestChildren implements regalloc.Block.
func (pos *labelPosition) LoopNestingForestChildren() int {
return len(pos.sb.LoopNestingForestChildren())
}
func (m *machine) insertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
typ := src.RegType()
if typ != dst.RegType() {
panic("BUG: src and dst must have the same type")
@ -26,8 +239,7 @@ func (m *machine) InsertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
linkInstr(cur, prevNext)
}
// InsertStoreRegisterAt implements backend.RegAllocFunctionMachine.
func (m *machine) InsertStoreRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
func (m *machine) insertStoreRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
if !v.IsRealReg() {
panic("BUG: VReg must be backed by real reg to be stored")
}
@ -61,8 +273,7 @@ func (m *machine) InsertStoreRegisterAt(v regalloc.VReg, instr *instruction, aft
return linkInstr(cur, prevNext)
}
// InsertReloadRegisterAt implements backend.RegAllocFunctionMachine.
func (m *machine) InsertReloadRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
func (m *machine) insertReloadRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
if !v.IsRealReg() {
panic("BUG: VReg must be backed by real reg to be stored")
}
@ -98,13 +309,7 @@ func (m *machine) InsertReloadRegisterAt(v regalloc.VReg, instr *instruction, af
return linkInstr(cur, prevNext)
}
// ClobberedRegisters implements backend.RegAllocFunctionMachine.
func (m *machine) ClobberedRegisters(regs []regalloc.VReg) {
m.clobberedRegs = append(m.clobberedRegs[:0], regs...)
}
// Swap implements backend.RegAllocFunctionMachine.
func (m *machine) Swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
func (m *machine) swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
if x1.RegType() == regalloc.RegTypeInt {
prevNext := cur.next
xc := m.allocateInstr().asXCHG(x1, newOperandReg(x2), 8)
@ -113,25 +318,24 @@ func (m *machine) Swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
} else {
if tmp.Valid() {
prevNext := cur.next
m.InsertMoveBefore(tmp, x1, prevNext)
m.InsertMoveBefore(x1, x2, prevNext)
m.InsertMoveBefore(x2, tmp, prevNext)
m.insertMoveBefore(tmp, x1, prevNext)
m.insertMoveBefore(x1, x2, prevNext)
m.insertMoveBefore(x2, tmp, prevNext)
} else {
prevNext := cur.next
r2 := x2.RealReg()
// Temporarily spill x1 to stack.
cur = m.InsertStoreRegisterAt(x1, cur, true).prev
cur = m.insertStoreRegisterAt(x1, cur, true).prev
// Then move x2 to x1.
cur = linkInstr(cur, m.allocateInstr().asXmmUnaryRmR(sseOpcodeMovdqa, newOperandReg(x2), x1))
linkInstr(cur, prevNext)
// Then reload the original value on x1 from stack to r2.
m.InsertReloadRegisterAt(x1.SetRealReg(r2), cur, true)
m.insertReloadRegisterAt(x1.SetRealReg(r2), cur, true)
}
}
}
// LastInstrForInsertion implements backend.RegAllocFunctionMachine.
func (m *machine) LastInstrForInsertion(begin, end *instruction) *instruction {
func lastInstrForInsertion(begin, end *instruction) *instruction {
cur := end
for cur.kind == nop0 {
cur = cur.prev
@ -146,8 +350,3 @@ func (m *machine) LastInstrForInsertion(begin, end *instruction) *instruction {
return end
}
}
// SSABlockLabel implements backend.RegAllocFunctionMachine.
func (m *machine) SSABlockLabel(id ssa.BasicBlockID) backend.Label {
return m.ectx.SsaBlockIDToLabels[id]
}

View File

@ -127,7 +127,7 @@ func (m *machine) lowerSqmulRoundSat(x, y, ret ssa.Value) {
tmpX := m.copyToTmp(xx.reg())
m.insert(m.allocateInstr().asXmmRmR(sseOpcodePmulhrsw, yy, tmpX))
m.insert(m.allocateInstr().asXmmRmR(sseOpcodePcmpeqd, newOperandReg(tmpX), tmp))
m.insert(m.allocateInstr().asXmmRmR(sseOpcodePcmpeqw, newOperandReg(tmpX), tmp))
m.insert(m.allocateInstr().asXmmRmR(sseOpcodePxor, newOperandReg(tmp), tmpX))
m.copyTo(tmpX, m.c.VRegOf(ret))

View File

@ -59,7 +59,7 @@ func (o *operand) format(_64 bool) string {
case operandKindImm32:
return fmt.Sprintf("$%d", int32(o.imm32()))
case operandKindLabel:
return backend.Label(o.imm32()).String()
return label(o.imm32()).String()
default:
panic(fmt.Sprintf("BUG: invalid operand: %s", o.kind))
}
@ -85,22 +85,22 @@ func (o *operand) imm32() uint32 {
return uint32(o.data)
}
func (o *operand) label() backend.Label {
func (o *operand) label() label {
switch o.kind {
case operandKindLabel:
return backend.Label(o.data)
return label(o.data)
case operandKindMem:
mem := o.addressMode()
if mem.kind() != amodeRipRel {
panic("BUG: invalid label")
}
return backend.Label(mem.imm32)
return label(mem.imm32)
default:
panic("BUG: invalid operand kind")
}
}
func newOperandLabel(label backend.Label) operand {
func newOperandLabel(label label) operand {
return operand{kind: operandKindLabel, data: uint64(label)}
}
@ -221,7 +221,7 @@ func (m *machine) newAmodeRegRegShift(imm32 uint32, base, index regalloc.VReg, s
return ret
}
func (m *machine) newAmodeRipRel(label backend.Label) *amode {
func (m *machine) newAmodeRipRel(label label) *amode {
ret := m.amodePool.Allocate()
*ret = amode{kindWithShift: uint32(amodeRipRel), imm32: uint32(label)}
return ret
@ -246,18 +246,18 @@ func (a *amode) String() string {
"%d(%s,%s,%d)",
int32(a.imm32), formatVRegSized(a.base, true), formatVRegSized(a.index, true), shift)
case amodeRipRel:
return fmt.Sprintf("%s(%%rip)", backend.Label(a.imm32))
return fmt.Sprintf("%s(%%rip)", label(a.imm32))
default:
panic("BUG: invalid amode kind")
}
}
func (m *machine) getOperand_Mem_Reg(def *backend.SSAValueDefinition) (op operand) {
if def.IsFromBlockParam() {
return newOperandReg(def.BlkParamVReg)
func (m *machine) getOperand_Mem_Reg(def backend.SSAValueDefinition) (op operand) {
if !def.IsFromInstr() {
return newOperandReg(m.c.VRegOf(def.V))
}
if def.SSAValue().Type() == ssa.TypeV128 {
if def.V.Type() == ssa.TypeV128 {
// SIMD instructions require strict memory alignment, so we don't support the memory operand for V128 at the moment.
return m.getOperand_Reg(def)
}
@ -272,9 +272,9 @@ func (m *machine) getOperand_Mem_Reg(def *backend.SSAValueDefinition) (op operan
return m.getOperand_Reg(def)
}
func (m *machine) getOperand_Mem_Imm32_Reg(def *backend.SSAValueDefinition) (op operand) {
if def.IsFromBlockParam() {
return newOperandReg(def.BlkParamVReg)
func (m *machine) getOperand_Mem_Imm32_Reg(def backend.SSAValueDefinition) (op operand) {
if !def.IsFromInstr() {
return newOperandReg(m.c.VRegOf(def.V))
}
if m.c.MatchInstr(def, ssa.OpcodeLoad) {
@ -287,9 +287,9 @@ func (m *machine) getOperand_Mem_Imm32_Reg(def *backend.SSAValueDefinition) (op
return m.getOperand_Imm32_Reg(def)
}
func (m *machine) getOperand_Imm32_Reg(def *backend.SSAValueDefinition) (op operand) {
if def.IsFromBlockParam() {
return newOperandReg(def.BlkParamVReg)
func (m *machine) getOperand_Imm32_Reg(def backend.SSAValueDefinition) (op operand) {
if !def.IsFromInstr() {
return newOperandReg(m.c.VRegOf(def.V))
}
instr := def.Instr
@ -323,24 +323,14 @@ func asImm32(val uint64, allowSignExt bool) (uint32, bool) {
return u32val, true
}
func (m *machine) getOperand_Reg(def *backend.SSAValueDefinition) (op operand) {
func (m *machine) getOperand_Reg(def backend.SSAValueDefinition) (op operand) {
var v regalloc.VReg
if def.IsFromBlockParam() {
v = def.BlkParamVReg
if instr := def.Instr; instr != nil && instr.Constant() {
// We inline all the constant instructions so that we could reduce the register usage.
v = m.lowerConstant(instr)
instr.MarkLowered()
} else {
instr := def.Instr
if instr.Constant() {
// We inline all the constant instructions so that we could reduce the register usage.
v = m.lowerConstant(instr)
instr.MarkLowered()
} else {
if n := def.N; n == 0 {
v = m.c.VRegOf(instr.Return())
} else {
_, rs := instr.Returns()
v = m.c.VRegOf(rs[n-1])
}
}
v = m.c.VRegOf(def.V)
}
return newOperandReg(v)
}

View File

@ -1,11 +0,0 @@
//go:build !tinygo
package amd64
import "reflect"
// setSliceLimits sets both Cap and Len for the given reflected slice.
func setSliceLimits(s *reflect.SliceHeader, limit uintptr) {
s.Len = int(limit)
s.Cap = int(limit)
}

View File

@ -1,11 +0,0 @@
//go:build tinygo
package amd64
import "reflect"
// setSliceLimits sets both Cap and Len for the given reflected slice.
func setSliceLimits(s *reflect.SliceHeader, limit uintptr) {
s.Len = limit
s.Len = limit
}

View File

@ -9,12 +9,14 @@ import (
)
func stackView(rbp, top uintptr) []byte {
l := int(top - rbp)
var stackBuf []byte
{
// TODO: use unsafe.Slice after floor version is set to Go 1.20.
//nolint:staticcheck
hdr := (*reflect.SliceHeader)(unsafe.Pointer(&stackBuf))
hdr.Data = rbp
setSliceLimits(hdr, top-rbp)
hdr.Len = l
hdr.Cap = l
}
return stackBuf
}
@ -72,9 +74,9 @@ func GoCallStackView(stackPointerBeforeGoCall *uint64) []uint64 {
// | SizeInBytes |
// +-----------------+ <---- stackPointerBeforeGoCall
// (low address)
data := unsafe.Pointer(uintptr(unsafe.Pointer(stackPointerBeforeGoCall)) + 8)
data := unsafe.Add(unsafe.Pointer(stackPointerBeforeGoCall), 8)
size := *stackPointerBeforeGoCall / 8
return unsafe.Slice((*uint64)(data), int(size))
return unsafe.Slice((*uint64)(data), size)
}
func AdjustClonedStack(oldRsp, oldTop, rsp, rbp, top uintptr) {

View File

@ -182,9 +182,9 @@ func (m *machine) LowerReturns(rets []ssa.Value) {
// callerGenVRegToFunctionArg is the opposite of GenFunctionArgToVReg, which is used to generate the
// caller side of the function call.
func (m *machine) callerGenVRegToFunctionArg(a *backend.FunctionABI, argIndex int, reg regalloc.VReg, def *backend.SSAValueDefinition, slotBegin int64) {
func (m *machine) callerGenVRegToFunctionArg(a *backend.FunctionABI, argIndex int, reg regalloc.VReg, def backend.SSAValueDefinition, slotBegin int64) {
arg := &a.Args[argIndex]
if def != nil && def.IsFromInstr() {
if def.IsFromInstr() {
// Constant instructions are inlined.
if inst := def.Instr; inst.Constant() {
val := inst.Return()
@ -228,10 +228,9 @@ func (m *machine) callerGenFunctionReturnVReg(a *backend.FunctionABI, retIndex i
}
func (m *machine) resolveAddressModeForOffsetAndInsert(cur *instruction, offset int64, dstBits byte, rn regalloc.VReg, allowTmpRegUse bool) (*instruction, *addressMode) {
exct := m.executableContext
exct.PendingInstructions = exct.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
mode := m.resolveAddressModeForOffset(offset, dstBits, rn, allowTmpRegUse)
for _, instr := range exct.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
return cur, mode

View File

@ -14,7 +14,6 @@ var calleeSavedRegistersSorted = []regalloc.VReg{
// CompileGoFunctionTrampoline implements backend.Machine.
func (m *machine) CompileGoFunctionTrampoline(exitCode wazevoapi.ExitCode, sig *ssa.Signature, needModuleContextPtr bool) []byte {
exct := m.executableContext
argBegin := 1 // Skips exec context by default.
if needModuleContextPtr {
argBegin++
@ -26,7 +25,7 @@ func (m *machine) CompileGoFunctionTrampoline(exitCode wazevoapi.ExitCode, sig *
cur := m.allocateInstr()
cur.asNop0()
exct.RootInstr = cur
m.rootInstr = cur
// Execution context is always the first argument.
execCtrPtr := x0VReg
@ -244,7 +243,7 @@ func (m *machine) CompileGoFunctionTrampoline(exitCode wazevoapi.ExitCode, sig *
ret.asRet()
linkInstr(cur, ret)
m.encode(m.executableContext.RootInstr)
m.encode(m.rootInstr)
return m.compiler.Buf()
}
@ -302,20 +301,18 @@ func (m *machine) restoreRegistersInExecutionContext(cur *instruction, regs []re
}
func (m *machine) lowerConstantI64AndInsert(cur *instruction, dst regalloc.VReg, v int64) *instruction {
exct := m.executableContext
exct.PendingInstructions = exct.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
m.lowerConstantI64(dst, v)
for _, instr := range exct.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
return cur
}
func (m *machine) lowerConstantI32AndInsert(cur *instruction, dst regalloc.VReg, v int32) *instruction {
exct := m.executableContext
exct.PendingInstructions = exct.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
m.lowerConstantI32(dst, v)
for _, instr := range exct.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
return cur

View File

@ -36,18 +36,6 @@ type (
instructionKind byte
)
func asNop0(i *instruction) {
i.kind = nop0
}
func setNext(i, next *instruction) {
i.next = next
}
func setPrev(i, prev *instruction) {
i.prev = prev
}
// IsCall implements regalloc.Instr IsCall.
func (i *instruction) IsCall() bool {
return i.kind == call
@ -63,21 +51,6 @@ func (i *instruction) IsReturn() bool {
return i.kind == ret
}
// Next implements regalloc.Instr Next.
func (i *instruction) Next() regalloc.Instr {
return i.next
}
// Prev implements regalloc.Instr Prev.
func (i *instruction) Prev() regalloc.Instr {
return i.prev
}
// AddedBeforeRegAlloc implements regalloc.Instr AddedBeforeRegAlloc.
func (i *instruction) AddedBeforeRegAlloc() bool {
return i.addedBeforeRegAlloc
}
type defKind byte
const (

View File

@ -12,7 +12,7 @@ import (
// Encode implements backend.Machine Encode.
func (m *machine) Encode(ctx context.Context) error {
m.resolveRelativeAddresses(ctx)
m.encode(m.executableContext.RootInstr)
m.encode(m.rootInstr)
if l := len(m.compiler.Buf()); l > maxFunctionExecutableSize {
return fmt.Errorf("function size exceeds the limit: %d > %d", l, maxFunctionExecutableSize)
}

View File

@ -17,19 +17,18 @@ import (
// LowerSingleBranch implements backend.Machine.
func (m *machine) LowerSingleBranch(br *ssa.Instruction) {
ectx := m.executableContext
switch br.Opcode() {
case ssa.OpcodeJump:
_, _, targetBlk := br.BranchData()
_, _, targetBlkID := br.BranchData()
if br.IsFallthroughJump() {
return
}
b := m.allocateInstr()
target := ectx.GetOrAllocateSSABlockLabel(targetBlk)
if target == labelReturn {
targetBlk := m.compiler.SSABuilder().BasicBlock(targetBlkID)
if targetBlk.ReturnBlock() {
b.asRet()
} else {
b.asBr(target)
b.asBr(ssaBlockLabel(targetBlk))
}
m.insert(b)
case ssa.OpcodeBrTable:
@ -40,7 +39,8 @@ func (m *machine) LowerSingleBranch(br *ssa.Instruction) {
}
func (m *machine) lowerBrTable(i *ssa.Instruction) {
index, targets := i.BrTableData()
index, targetBlockIDs := i.BrTableData()
targetBlockCount := len(targetBlockIDs.View())
indexOperand := m.getOperand_NR(m.compiler.ValueDefinition(index), extModeNone)
// Firstly, we have to do the bounds check of the index, and
@ -50,7 +50,7 @@ func (m *machine) lowerBrTable(i *ssa.Instruction) {
// subs wzr, index, maxIndexReg
// csel adjustedIndex, maxIndexReg, index, hs ;; if index is higher or equal than maxIndexReg.
maxIndexReg := m.compiler.AllocateVReg(ssa.TypeI32)
m.lowerConstantI32(maxIndexReg, int32(len(targets)-1))
m.lowerConstantI32(maxIndexReg, int32(targetBlockCount-1))
subs := m.allocateInstr()
subs.asALU(aluOpSubS, xzrVReg, indexOperand, operandNR(maxIndexReg), false)
m.insert(subs)
@ -61,24 +61,24 @@ func (m *machine) lowerBrTable(i *ssa.Instruction) {
brSequence := m.allocateInstr()
tableIndex := m.addJmpTableTarget(targets)
brSequence.asBrTableSequence(adjustedIndex, tableIndex, len(targets))
tableIndex := m.addJmpTableTarget(targetBlockIDs)
brSequence.asBrTableSequence(adjustedIndex, tableIndex, targetBlockCount)
m.insert(brSequence)
}
// LowerConditionalBranch implements backend.Machine.
func (m *machine) LowerConditionalBranch(b *ssa.Instruction) {
exctx := m.executableContext
cval, args, targetBlk := b.BranchData()
cval, args, targetBlkID := b.BranchData()
if len(args) > 0 {
panic(fmt.Sprintf(
"conditional branch shouldn't have args; likely a bug in critical edge splitting: from %s to %s",
exctx.CurrentSSABlk,
targetBlk,
m.currentLabelPos.sb,
targetBlkID,
))
}
target := exctx.GetOrAllocateSSABlockLabel(targetBlk)
targetBlk := m.compiler.SSABuilder().BasicBlock(targetBlkID)
target := ssaBlockLabel(targetBlk)
cvalDef := m.compiler.ValueDefinition(cval)
switch {
@ -791,7 +791,7 @@ func (m *machine) LowerInstr(instr *ssa.Instruction) {
default:
panic("TODO: lowering " + op.String())
}
m.executableContext.FlushPendingInstructions()
m.FlushPendingInstructions()
}
func (m *machine) lowerShuffle(rd regalloc.VReg, rn, rm operand, lane1, lane2 uint64) {

View File

@ -162,9 +162,9 @@ func (o operand) assignReg(v regalloc.VReg) operand {
//
// `mode` is used to extend the operand if the bit length is smaller than mode.bits().
// If the operand can be expressed as operandKindImm12, `mode` is ignored.
func (m *machine) getOperand_Imm12_ER_SR_NR(def *backend.SSAValueDefinition, mode extMode) (op operand) {
if def.IsFromBlockParam() {
return operandNR(def.BlkParamVReg)
func (m *machine) getOperand_Imm12_ER_SR_NR(def backend.SSAValueDefinition, mode extMode) (op operand) {
if !def.IsFromInstr() {
return operandNR(m.compiler.VRegOf(def.V))
}
instr := def.Instr
@ -179,9 +179,9 @@ func (m *machine) getOperand_Imm12_ER_SR_NR(def *backend.SSAValueDefinition, mod
// getOperand_MaybeNegatedImm12_ER_SR_NR is almost the same as getOperand_Imm12_ER_SR_NR, but this might negate the immediate value.
// If the immediate value is negated, the second return value is true, otherwise always false.
func (m *machine) getOperand_MaybeNegatedImm12_ER_SR_NR(def *backend.SSAValueDefinition, mode extMode) (op operand, negatedImm12 bool) {
if def.IsFromBlockParam() {
return operandNR(def.BlkParamVReg), false
func (m *machine) getOperand_MaybeNegatedImm12_ER_SR_NR(def backend.SSAValueDefinition, mode extMode) (op operand, negatedImm12 bool) {
if !def.IsFromInstr() {
return operandNR(m.compiler.VRegOf(def.V)), false
}
instr := def.Instr
@ -193,7 +193,7 @@ func (m *machine) getOperand_MaybeNegatedImm12_ER_SR_NR(def *backend.SSAValueDef
}
signExtended := int64(c)
if def.SSAValue().Type().Bits() == 32 {
if def.V.Type().Bits() == 32 {
signExtended = (signExtended << 32) >> 32
}
negatedWithoutSign := -signExtended
@ -208,9 +208,9 @@ func (m *machine) getOperand_MaybeNegatedImm12_ER_SR_NR(def *backend.SSAValueDef
// ensureValueNR returns an operand of either operandKindER, operandKindSR, or operandKindNR from the given value (defined by `def).
//
// `mode` is used to extend the operand if the bit length is smaller than mode.bits().
func (m *machine) getOperand_ER_SR_NR(def *backend.SSAValueDefinition, mode extMode) (op operand) {
if def.IsFromBlockParam() {
return operandNR(def.BlkParamVReg)
func (m *machine) getOperand_ER_SR_NR(def backend.SSAValueDefinition, mode extMode) (op operand) {
if !def.IsFromInstr() {
return operandNR(m.compiler.VRegOf(def.V))
}
if m.compiler.MatchInstr(def, ssa.OpcodeSExtend) || m.compiler.MatchInstr(def, ssa.OpcodeUExtend) {
@ -251,9 +251,9 @@ func (m *machine) getOperand_ER_SR_NR(def *backend.SSAValueDefinition, mode extM
// ensureValueNR returns an operand of either operandKindSR or operandKindNR from the given value (defined by `def).
//
// `mode` is used to extend the operand if the bit length is smaller than mode.bits().
func (m *machine) getOperand_SR_NR(def *backend.SSAValueDefinition, mode extMode) (op operand) {
if def.IsFromBlockParam() {
return operandNR(def.BlkParamVReg)
func (m *machine) getOperand_SR_NR(def backend.SSAValueDefinition, mode extMode) (op operand) {
if !def.IsFromInstr() {
return operandNR(m.compiler.VRegOf(def.V))
}
if m.compiler.MatchInstr(def, ssa.OpcodeIshl) {
@ -273,9 +273,9 @@ func (m *machine) getOperand_SR_NR(def *backend.SSAValueDefinition, mode extMode
}
// getOperand_ShiftImm_NR returns an operand of either operandKindShiftImm or operandKindNR from the given value (defined by `def).
func (m *machine) getOperand_ShiftImm_NR(def *backend.SSAValueDefinition, mode extMode, shiftBitWidth byte) (op operand) {
if def.IsFromBlockParam() {
return operandNR(def.BlkParamVReg)
func (m *machine) getOperand_ShiftImm_NR(def backend.SSAValueDefinition, mode extMode, shiftBitWidth byte) (op operand) {
if !def.IsFromInstr() {
return operandNR(m.compiler.VRegOf(def.V))
}
instr := def.Instr
@ -289,28 +289,18 @@ func (m *machine) getOperand_ShiftImm_NR(def *backend.SSAValueDefinition, mode e
// ensureValueNR returns an operand of operandKindNR from the given value (defined by `def).
//
// `mode` is used to extend the operand if the bit length is smaller than mode.bits().
func (m *machine) getOperand_NR(def *backend.SSAValueDefinition, mode extMode) (op operand) {
func (m *machine) getOperand_NR(def backend.SSAValueDefinition, mode extMode) (op operand) {
var v regalloc.VReg
if def.IsFromBlockParam() {
v = def.BlkParamVReg
if def.IsFromInstr() && def.Instr.Constant() {
// We inline all the constant instructions so that we could reduce the register usage.
v = m.lowerConstant(def.Instr)
def.Instr.MarkLowered()
} else {
instr := def.Instr
if instr.Constant() {
// We inline all the constant instructions so that we could reduce the register usage.
v = m.lowerConstant(instr)
instr.MarkLowered()
} else {
if n := def.N; n == 0 {
v = m.compiler.VRegOf(instr.Return())
} else {
_, rs := instr.Returns()
v = m.compiler.VRegOf(rs[n-1])
}
}
v = m.compiler.VRegOf(def.V)
}
r := v
switch inBits := def.SSAValue().Type().Bits(); {
switch inBits := def.V.Type().Bits(); {
case mode == extModeNone:
case inBits == 32 && (mode == extModeZeroExtend32 || mode == extModeSignExtend32):
case inBits == 32 && mode == extModeZeroExtend64:

View File

@ -3,6 +3,7 @@ package arm64
import (
"context"
"fmt"
"math"
"strings"
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend"
@ -14,12 +15,33 @@ import (
type (
// machine implements backend.Machine.
machine struct {
compiler backend.Compiler
executableContext *backend.ExecutableContextT[instruction]
currentABI *backend.FunctionABI
compiler backend.Compiler
currentABI *backend.FunctionABI
instrPool wazevoapi.Pool[instruction]
// labelPositionPool is the pool of labelPosition. The id is the label where
// if the label is less than the maxSSABlockID, it's the ssa.BasicBlockID.
labelPositionPool wazevoapi.IDedPool[labelPosition]
regAlloc regalloc.Allocator
regAllocFn *backend.RegAllocFunction[*instruction, *machine]
// nextLabel is the next label to be allocated. The first free label comes after maxSSABlockID
// so that we can have an identical label for the SSA block ID, which is useful for debugging.
nextLabel label
// rootInstr is the first instruction of the function.
rootInstr *instruction
// currentLabelPos is the currently-compiled ssa.BasicBlock's labelPosition.
currentLabelPos *labelPosition
// orderedSSABlockLabelPos is the ordered list of labelPosition in the generated code for each ssa.BasicBlock.
orderedSSABlockLabelPos []*labelPosition
// returnLabelPos is the labelPosition for the return block.
returnLabelPos labelPosition
// perBlockHead and perBlockEnd are the head and tail of the instruction list per currently-compiled ssa.BasicBlock.
perBlockHead, perBlockEnd *instruction
// pendingInstructions are the instructions which are not yet emitted into the instruction list.
pendingInstructions []*instruction
// maxSSABlockID is the maximum ssa.BasicBlockID in the current function.
maxSSABlockID label
regAlloc regalloc.Allocator[*instruction, *labelPosition, *regAllocFn]
regAllocFn regAllocFn
amodePool wazevoapi.Pool[addressMode]
@ -35,6 +57,8 @@ type (
// jmpTableTargets holds the labels of the jump table targets.
jmpTableTargets [][]uint32
// jmpTableTargetNext is the index to the jmpTableTargets slice to be used for the next jump table.
jmpTableTargetsNext int
// spillSlotSize is the size of the stack slot in bytes used for spilling registers.
// During the execution of the function, the stack looks like:
@ -91,45 +115,132 @@ type (
nextLabel label
offset int64
}
)
labelPosition = backend.LabelPosition[instruction]
label = backend.Label
type (
// label represents a position in the generated code which is either
// a real instruction or the constant InstructionPool (e.g. jump tables).
//
// This is exactly the same as the traditional "label" in assembly code.
label uint32
// labelPosition represents the regions of the generated code which the label represents.
// This implements regalloc.Block.
labelPosition struct {
// sb is not nil if this corresponds to a ssa.BasicBlock.
sb ssa.BasicBlock
// cur is used to walk through the instructions in the block during the register allocation.
cur,
// begin and end are the first and last instructions of the block.
begin, end *instruction
// binaryOffset is the offset in the binary where the label is located.
binaryOffset int64
}
)
const (
labelReturn = backend.LabelReturn
labelInvalid = backend.LabelInvalid
labelReturn label = math.MaxUint32
labelInvalid = labelReturn - 1
)
// String implements backend.Machine.
func (l label) String() string {
return fmt.Sprintf("L%d", l)
}
func resetLabelPosition(l *labelPosition) {
*l = labelPosition{}
}
// NewBackend returns a new backend for arm64.
func NewBackend() backend.Machine {
m := &machine{
spillSlots: make(map[regalloc.VRegID]int64),
executableContext: newExecutableContext(),
regAlloc: regalloc.NewAllocator(regInfo),
regAlloc: regalloc.NewAllocator[*instruction, *labelPosition, *regAllocFn](regInfo),
amodePool: wazevoapi.NewPool[addressMode](resetAddressMode),
instrPool: wazevoapi.NewPool[instruction](resetInstruction),
labelPositionPool: wazevoapi.NewIDedPool[labelPosition](resetLabelPosition),
}
m.regAllocFn.m = m
return m
}
func newExecutableContext() *backend.ExecutableContextT[instruction] {
return backend.NewExecutableContextT[instruction](resetInstruction, setNext, setPrev, asNop0)
func ssaBlockLabel(sb ssa.BasicBlock) label {
if sb.ReturnBlock() {
return labelReturn
}
return label(sb.ID())
}
// ExecutableContext implements backend.Machine.
func (m *machine) ExecutableContext() backend.ExecutableContext {
return m.executableContext
// getOrAllocateSSABlockLabelPosition returns the labelPosition for the given basic block.
func (m *machine) getOrAllocateSSABlockLabelPosition(sb ssa.BasicBlock) *labelPosition {
if sb.ReturnBlock() {
m.returnLabelPos.sb = sb
return &m.returnLabelPos
}
l := ssaBlockLabel(sb)
pos := m.labelPositionPool.GetOrAllocate(int(l))
pos.sb = sb
return pos
}
// LinkAdjacentBlocks implements backend.Machine.
func (m *machine) LinkAdjacentBlocks(prev, next ssa.BasicBlock) {
prevPos, nextPos := m.getOrAllocateSSABlockLabelPosition(prev), m.getOrAllocateSSABlockLabelPosition(next)
prevPos.end.next = nextPos.begin
}
// StartBlock implements backend.Machine.
func (m *machine) StartBlock(blk ssa.BasicBlock) {
m.currentLabelPos = m.getOrAllocateSSABlockLabelPosition(blk)
labelPos := m.currentLabelPos
end := m.allocateNop()
m.perBlockHead, m.perBlockEnd = end, end
labelPos.begin, labelPos.end = end, end
m.orderedSSABlockLabelPos = append(m.orderedSSABlockLabelPos, labelPos)
}
// EndBlock implements ExecutableContext.
func (m *machine) EndBlock() {
// Insert nop0 as the head of the block for convenience to simplify the logic of inserting instructions.
m.insertAtPerBlockHead(m.allocateNop())
m.currentLabelPos.begin = m.perBlockHead
if m.currentLabelPos.sb.EntryBlock() {
m.rootInstr = m.perBlockHead
}
}
func (m *machine) insertAtPerBlockHead(i *instruction) {
if m.perBlockHead == nil {
m.perBlockHead = i
m.perBlockEnd = i
return
}
i.next = m.perBlockHead
m.perBlockHead.prev = i
m.perBlockHead = i
}
// FlushPendingInstructions implements backend.Machine.
func (m *machine) FlushPendingInstructions() {
l := len(m.pendingInstructions)
if l == 0 {
return
}
for i := l - 1; i >= 0; i-- { // reverse because we lower instructions in reverse order.
m.insertAtPerBlockHead(m.pendingInstructions[i])
}
m.pendingInstructions = m.pendingInstructions[:0]
}
// RegAlloc implements backend.Machine Function.
func (m *machine) RegAlloc() {
rf := m.regAllocFn
for _, pos := range m.executableContext.OrderedBlockLabels {
rf.AddBlock(pos.SB, pos.L, pos.Begin, pos.End)
}
m.regAllocStarted = true
m.regAlloc.DoAllocation(rf)
m.regAlloc.DoAllocation(&m.regAllocFn)
// Now that we know the final spill slot size, we must align spillSlotSize to 16 bytes.
m.spillSlotSize = (m.spillSlotSize + 15) &^ 15
}
@ -146,13 +257,22 @@ func (m *machine) Reset() {
m.clobberedRegs = m.clobberedRegs[:0]
m.regAllocStarted = false
m.regAlloc.Reset()
m.regAllocFn.Reset()
m.spillSlotSize = 0
m.unresolvedAddressModes = m.unresolvedAddressModes[:0]
m.maxRequiredStackSizeForCalls = 0
m.executableContext.Reset()
m.jmpTableTargets = m.jmpTableTargets[:0]
m.jmpTableTargetsNext = 0
m.amodePool.Reset()
m.instrPool.Reset()
m.labelPositionPool.Reset()
m.pendingInstructions = m.pendingInstructions[:0]
m.perBlockHead, m.perBlockEnd, m.rootInstr = nil, nil, nil
m.orderedSSABlockLabelPos = m.orderedSSABlockLabelPos[:0]
}
// StartLoweringFunction implements backend.Machine StartLoweringFunction.
func (m *machine) StartLoweringFunction(maxBlockID ssa.BasicBlockID) {
m.maxSSABlockID = label(maxBlockID)
m.nextLabel = label(maxBlockID) + 1
}
// SetCurrentABI implements backend.Machine SetCurrentABI.
@ -168,12 +288,11 @@ func (m *machine) DisableStackCheck() {
// SetCompiler implements backend.Machine.
func (m *machine) SetCompiler(ctx backend.Compiler) {
m.compiler = ctx
m.regAllocFn = backend.NewRegAllocFunction[*instruction, *machine](m, ctx.SSABuilder(), ctx)
m.regAllocFn.ssaB = ctx.SSABuilder()
}
func (m *machine) insert(i *instruction) {
ectx := m.executableContext
ectx.PendingInstructions = append(ectx.PendingInstructions, i)
m.pendingInstructions = append(m.pendingInstructions, i)
}
func (m *machine) insertBrTargetLabel() label {
@ -183,18 +302,18 @@ func (m *machine) insertBrTargetLabel() label {
}
func (m *machine) allocateBrTarget() (nop *instruction, l label) {
ectx := m.executableContext
l = ectx.AllocateLabel()
l = m.nextLabel
m.nextLabel++
nop = m.allocateInstr()
nop.asNop0WithLabel(l)
pos := ectx.GetOrAllocateLabelPosition(l)
pos.Begin, pos.End = nop, nop
pos := m.labelPositionPool.GetOrAllocate(int(l))
pos.begin, pos.end = nop, nop
return
}
// allocateInstr allocates an instruction.
func (m *machine) allocateInstr() *instruction {
instr := m.executableContext.InstructionPool.Allocate()
instr := m.instrPool.Allocate()
if !m.regAllocStarted {
instr.addedBeforeRegAlloc = true
}
@ -251,7 +370,6 @@ func (m *machine) resolveAddressingMode(arg0offset, ret0offset int64, i *instruc
// resolveRelativeAddresses resolves the relative addresses before encoding.
func (m *machine) resolveRelativeAddresses(ctx context.Context) {
ectx := m.executableContext
for {
if len(m.unresolvedAddressModes) > 0 {
arg0offset, ret0offset := m.arg0OffsetFromSP(), m.ret0OffsetFromSP()
@ -265,35 +383,36 @@ func (m *machine) resolveRelativeAddresses(ctx context.Context) {
var fn string
var fnIndex int
var labelToSSABlockID map[label]ssa.BasicBlockID
var labelPosToLabel map[*labelPosition]label
if wazevoapi.PerfMapEnabled {
fn = wazevoapi.GetCurrentFunctionName(ctx)
labelToSSABlockID = make(map[label]ssa.BasicBlockID)
for i, l := range ectx.SsaBlockIDToLabels {
labelToSSABlockID[l] = ssa.BasicBlockID(i)
labelPosToLabel = make(map[*labelPosition]label)
for i := 0; i <= m.labelPositionPool.MaxIDEncountered(); i++ {
labelPosToLabel[m.labelPositionPool.Get(i)] = label(i)
}
fn = wazevoapi.GetCurrentFunctionName(ctx)
fnIndex = wazevoapi.GetCurrentFunctionIndex(ctx)
}
// Next, in order to determine the offsets of relative jumps, we have to calculate the size of each label.
var offset int64
for i, pos := range ectx.OrderedBlockLabels {
pos.BinaryOffset = offset
for i, pos := range m.orderedSSABlockLabelPos {
pos.binaryOffset = offset
var size int64
for cur := pos.Begin; ; cur = cur.next {
for cur := pos.begin; ; cur = cur.next {
switch cur.kind {
case nop0:
l := cur.nop0Label()
if pos := ectx.LabelPositions[l]; pos != nil {
pos.BinaryOffset = offset + size
if pos := m.labelPositionPool.Get(int(l)); pos != nil {
pos.binaryOffset = offset + size
}
case condBr:
if !cur.condBrOffsetResolved() {
var nextLabel label
if i < len(ectx.OrderedBlockLabels)-1 {
if i < len(m.orderedSSABlockLabelPos)-1 {
// Note: this is only used when the block ends with fallthrough,
// therefore can be safely assumed that the next block exists when it's needed.
nextLabel = ectx.OrderedBlockLabels[i+1].L
nextLabel = ssaBlockLabel(m.orderedSSABlockLabelPos[i+1].sb)
}
m.condBrRelocs = append(m.condBrRelocs, condBrReloc{
cbr: cur, currentLabelPos: pos, offset: offset + size,
@ -302,21 +421,14 @@ func (m *machine) resolveRelativeAddresses(ctx context.Context) {
}
}
size += cur.size()
if cur == pos.End {
if cur == pos.end {
break
}
}
if wazevoapi.PerfMapEnabled {
if size > 0 {
l := pos.L
var labelStr string
if blkID, ok := labelToSSABlockID[l]; ok {
labelStr = fmt.Sprintf("%s::SSA_Block[%s]", l, blkID)
} else {
labelStr = l.String()
}
wazevoapi.PerfMap.AddModuleEntry(fnIndex, offset, uint64(size), fmt.Sprintf("%s:::::%s", fn, labelStr))
wazevoapi.PerfMap.AddModuleEntry(fnIndex, offset, uint64(size), fmt.Sprintf("%s:::::%s", fn, labelPosToLabel[pos]))
}
}
offset += size
@ -330,7 +442,7 @@ func (m *machine) resolveRelativeAddresses(ctx context.Context) {
offset := reloc.offset
target := cbr.condBrLabel()
offsetOfTarget := ectx.LabelPositions[target].BinaryOffset
offsetOfTarget := m.labelPositionPool.Get(int(target)).binaryOffset
diff := offsetOfTarget - offset
if divided := diff >> 2; divided < minSignedInt19 || divided > maxSignedInt19 {
// This case the conditional branch is too huge. We place the trampoline instructions at the end of the current block,
@ -351,11 +463,11 @@ func (m *machine) resolveRelativeAddresses(ctx context.Context) {
}
var currentOffset int64
for cur := ectx.RootInstr; cur != nil; cur = cur.next {
for cur := m.rootInstr; cur != nil; cur = cur.next {
switch cur.kind {
case br:
target := cur.brLabel()
offsetOfTarget := ectx.LabelPositions[target].BinaryOffset
offsetOfTarget := m.labelPositionPool.Get(int(target)).binaryOffset
diff := offsetOfTarget - currentOffset
divided := diff >> 2
if divided < minSignedInt26 || divided > maxSignedInt26 {
@ -366,7 +478,7 @@ func (m *machine) resolveRelativeAddresses(ctx context.Context) {
case condBr:
if !cur.condBrOffsetResolved() {
target := cur.condBrLabel()
offsetOfTarget := ectx.LabelPositions[target].BinaryOffset
offsetOfTarget := m.labelPositionPool.Get(int(target)).binaryOffset
diff := offsetOfTarget - currentOffset
if divided := diff >> 2; divided < minSignedInt19 || divided > maxSignedInt19 {
panic("BUG: branch relocation for large conditional branch larger than 19-bit range must be handled properly")
@ -378,7 +490,7 @@ func (m *machine) resolveRelativeAddresses(ctx context.Context) {
targets := m.jmpTableTargets[tableIndex]
for i := range targets {
l := label(targets[i])
offsetOfTarget := ectx.LabelPositions[l].BinaryOffset
offsetOfTarget := m.labelPositionPool.Get(int(l)).binaryOffset
diff := offsetOfTarget - (currentOffset + brTableSequenceOffsetTableBegin)
targets[i] = uint32(diff)
}
@ -399,7 +511,7 @@ const (
)
func (m *machine) insertConditionalJumpTrampoline(cbr *instruction, currentBlk *labelPosition, nextLabel label) {
cur := currentBlk.End
cur := currentBlk.end
originalTarget := cbr.condBrLabel()
endNext := cur.next
@ -422,32 +534,27 @@ func (m *machine) insertConditionalJumpTrampoline(cbr *instruction, currentBlk *
cur = linkInstr(cur, br)
// Update the end of the current block.
currentBlk.End = cur
currentBlk.end = cur
linkInstr(cur, endNext)
}
// Format implements backend.Machine.
func (m *machine) Format() string {
ectx := m.executableContext
begins := map[*instruction]label{}
for _, pos := range ectx.LabelPositions {
for l := label(0); l < m.nextLabel; l++ {
pos := m.labelPositionPool.Get(int(l))
if pos != nil {
begins[pos.Begin] = pos.L
begins[pos.begin] = l
}
}
irBlocks := map[label]ssa.BasicBlockID{}
for i, l := range ectx.SsaBlockIDToLabels {
irBlocks[l] = ssa.BasicBlockID(i)
}
var lines []string
for cur := ectx.RootInstr; cur != nil; cur = cur.next {
for cur := m.rootInstr; cur != nil; cur = cur.next {
if l, ok := begins[cur]; ok {
var labelStr string
if blkID, ok := irBlocks[l]; ok {
labelStr = fmt.Sprintf("%s (SSA Block: %s):", l, blkID)
if l <= m.maxSSABlockID {
labelStr = fmt.Sprintf("%s (SSA Block: blk%d):", l, int(l))
} else {
labelStr = fmt.Sprintf("%s:", l)
}
@ -508,13 +615,17 @@ func (m *machine) frameSize() int64 {
return s
}
func (m *machine) addJmpTableTarget(targets []ssa.BasicBlock) (index int) {
// TODO: reuse the slice!
labels := make([]uint32, len(targets))
for j, target := range targets {
labels[j] = uint32(m.executableContext.GetOrAllocateSSABlockLabel(target))
func (m *machine) addJmpTableTarget(targets ssa.Values) (index int) {
if m.jmpTableTargetsNext == len(m.jmpTableTargets) {
m.jmpTableTargets = append(m.jmpTableTargets, make([]uint32, 0, len(targets.View())))
}
index = m.jmpTableTargetsNext
m.jmpTableTargetsNext++
m.jmpTableTargets[index] = m.jmpTableTargets[index][:0]
for _, targetBlockID := range targets.View() {
target := m.compiler.SSABuilder().BasicBlock(ssa.BasicBlockID(targetBlockID))
m.jmpTableTargets[index] = append(m.jmpTableTargets[index], uint32(target.ID()))
}
index = len(m.jmpTableTargets)
m.jmpTableTargets = append(m.jmpTableTargets, labels)
return
}

View File

@ -15,9 +15,7 @@ func (m *machine) PostRegAlloc() {
// setupPrologue initializes the prologue of the function.
func (m *machine) setupPrologue() {
ectx := m.executableContext
cur := ectx.RootInstr
cur := m.rootInstr
prevInitInst := cur.next
//
@ -196,21 +194,20 @@ func (m *machine) createFrameSizeSlot(cur *instruction, s int64) *instruction {
// 1. Removes the redundant copy instruction.
// 2. Inserts the epilogue.
func (m *machine) postRegAlloc() {
ectx := m.executableContext
for cur := ectx.RootInstr; cur != nil; cur = cur.next {
for cur := m.rootInstr; cur != nil; cur = cur.next {
switch cur.kind {
case ret:
m.setupEpilogueAfter(cur.prev)
case loadConstBlockArg:
lc := cur
next := lc.next
m.executableContext.PendingInstructions = m.executableContext.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
m.lowerLoadConstantBlockArgAfterRegAlloc(lc)
for _, instr := range m.executableContext.PendingInstructions {
for _, instr := range m.pendingInstructions {
cur = linkInstr(cur, instr)
}
linkInstr(cur, next)
m.executableContext.PendingInstructions = m.executableContext.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
default:
// Removes the redundant copy instruction.
if cur.IsCopy() && cur.rn.realReg() == cur.rd.RealReg() {
@ -432,11 +429,9 @@ func (m *machine) insertStackBoundsCheck(requiredStackSize int64, cur *instructi
// CompileStackGrowCallSequence implements backend.Machine.
func (m *machine) CompileStackGrowCallSequence() []byte {
ectx := m.executableContext
cur := m.allocateInstr()
cur.asNop0()
ectx.RootInstr = cur
m.rootInstr = cur
// Save the callee saved and argument registers.
cur = m.saveRegistersInExecutionContext(cur, saveRequiredRegs)
@ -458,16 +453,14 @@ func (m *machine) CompileStackGrowCallSequence() []byte {
ret.asRet()
linkInstr(cur, ret)
m.encode(ectx.RootInstr)
m.encode(m.rootInstr)
return m.compiler.Buf()
}
func (m *machine) addsAddOrSubStackPointer(cur *instruction, rd regalloc.VReg, diff int64, add bool) *instruction {
ectx := m.executableContext
ectx.PendingInstructions = ectx.PendingInstructions[:0]
m.pendingInstructions = m.pendingInstructions[:0]
m.insertAddOrSubStackPointer(rd, diff, add)
for _, inserted := range ectx.PendingInstructions {
for _, inserted := range m.pendingInstructions {
cur = linkInstr(cur, inserted)
}
return cur

View File

@ -3,18 +3,226 @@ package arm64
// This file implements the interfaces required for register allocations. See backend.RegAllocFunctionMachine.
import (
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend"
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend/regalloc"
"github.com/tetratelabs/wazero/internal/engine/wazevo/ssa"
)
// ClobberedRegisters implements backend.RegAllocFunctionMachine.
func (m *machine) ClobberedRegisters(regs []regalloc.VReg) {
m.clobberedRegs = append(m.clobberedRegs[:0], regs...)
// regAllocFn implements regalloc.Function.
type regAllocFn struct {
ssaB ssa.Builder
m *machine
loopNestingForestRoots []ssa.BasicBlock
blockIter int
}
// Swap implements backend.RegAllocFunctionMachine.
func (m *machine) Swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
// PostOrderBlockIteratorBegin implements regalloc.Function.
func (f *regAllocFn) PostOrderBlockIteratorBegin() *labelPosition {
f.blockIter = len(f.m.orderedSSABlockLabelPos) - 1
return f.PostOrderBlockIteratorNext()
}
// PostOrderBlockIteratorNext implements regalloc.Function.
func (f *regAllocFn) PostOrderBlockIteratorNext() *labelPosition {
if f.blockIter < 0 {
return nil
}
b := f.m.orderedSSABlockLabelPos[f.blockIter]
f.blockIter--
return b
}
// ReversePostOrderBlockIteratorBegin implements regalloc.Function.
func (f *regAllocFn) ReversePostOrderBlockIteratorBegin() *labelPosition {
f.blockIter = 0
return f.ReversePostOrderBlockIteratorNext()
}
// ReversePostOrderBlockIteratorNext implements regalloc.Function.
func (f *regAllocFn) ReversePostOrderBlockIteratorNext() *labelPosition {
if f.blockIter >= len(f.m.orderedSSABlockLabelPos) {
return nil
}
b := f.m.orderedSSABlockLabelPos[f.blockIter]
f.blockIter++
return b
}
// ClobberedRegisters implements regalloc.Function.
func (f *regAllocFn) ClobberedRegisters(regs []regalloc.VReg) {
f.m.clobberedRegs = append(f.m.clobberedRegs[:0], regs...)
}
// LoopNestingForestRoots implements regalloc.Function.
func (f *regAllocFn) LoopNestingForestRoots() int {
f.loopNestingForestRoots = f.ssaB.LoopNestingForestRoots()
return len(f.loopNestingForestRoots)
}
// LoopNestingForestRoot implements regalloc.Function.
func (f *regAllocFn) LoopNestingForestRoot(i int) *labelPosition {
root := f.loopNestingForestRoots[i]
pos := f.m.getOrAllocateSSABlockLabelPosition(root)
return pos
}
// LowestCommonAncestor implements regalloc.Function.
func (f *regAllocFn) LowestCommonAncestor(blk1, blk2 *labelPosition) *labelPosition {
sb := f.ssaB.LowestCommonAncestor(blk1.sb, blk2.sb)
pos := f.m.getOrAllocateSSABlockLabelPosition(sb)
return pos
}
// Idom implements regalloc.Function.
func (f *regAllocFn) Idom(blk *labelPosition) *labelPosition {
sb := f.ssaB.Idom(blk.sb)
pos := f.m.getOrAllocateSSABlockLabelPosition(sb)
return pos
}
// SwapBefore implements regalloc.Function.
func (f *regAllocFn) SwapBefore(x1, x2, tmp regalloc.VReg, instr *instruction) {
f.m.swap(instr.prev, x1, x2, tmp)
}
// StoreRegisterBefore implements regalloc.Function.
func (f *regAllocFn) StoreRegisterBefore(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertStoreRegisterAt(v, instr, false)
}
// StoreRegisterAfter implements regalloc.Function.
func (f *regAllocFn) StoreRegisterAfter(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertStoreRegisterAt(v, instr, true)
}
// ReloadRegisterBefore implements regalloc.Function.
func (f *regAllocFn) ReloadRegisterBefore(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertReloadRegisterAt(v, instr, false)
}
// ReloadRegisterAfter implements regalloc.Function.
func (f *regAllocFn) ReloadRegisterAfter(v regalloc.VReg, instr *instruction) {
m := f.m
m.insertReloadRegisterAt(v, instr, true)
}
// InsertMoveBefore implements regalloc.Function.
func (f *regAllocFn) InsertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
f.m.insertMoveBefore(dst, src, instr)
}
// LoopNestingForestChild implements regalloc.Function.
func (f *regAllocFn) LoopNestingForestChild(pos *labelPosition, i int) *labelPosition {
childSB := pos.sb.LoopNestingForestChildren()[i]
return f.m.getOrAllocateSSABlockLabelPosition(childSB)
}
// Succ implements regalloc.Block.
func (f *regAllocFn) Succ(pos *labelPosition, i int) *labelPosition {
succSB := pos.sb.Succ(i)
if succSB.ReturnBlock() {
return nil
}
return f.m.getOrAllocateSSABlockLabelPosition(succSB)
}
// Pred implements regalloc.Block.
func (f *regAllocFn) Pred(pos *labelPosition, i int) *labelPosition {
predSB := pos.sb.Pred(i)
return f.m.getOrAllocateSSABlockLabelPosition(predSB)
}
// BlockParams implements regalloc.Function.
func (f *regAllocFn) BlockParams(pos *labelPosition, regs *[]regalloc.VReg) []regalloc.VReg {
c := f.m.compiler
*regs = (*regs)[:0]
for i := 0; i < pos.sb.Params(); i++ {
v := c.VRegOf(pos.sb.Param(i))
*regs = append(*regs, v)
}
return *regs
}
// ID implements regalloc.Block.
func (pos *labelPosition) ID() int32 {
return int32(pos.sb.ID())
}
// InstrIteratorBegin implements regalloc.Block.
func (pos *labelPosition) InstrIteratorBegin() *instruction {
ret := pos.begin
pos.cur = ret
return ret
}
// InstrIteratorNext implements regalloc.Block.
func (pos *labelPosition) InstrIteratorNext() *instruction {
for {
if pos.cur == pos.end {
return nil
}
instr := pos.cur.next
pos.cur = instr
if instr == nil {
return nil
} else if instr.addedBeforeRegAlloc {
// Only concerned about the instruction added before regalloc.
return instr
}
}
}
// InstrRevIteratorBegin implements regalloc.Block.
func (pos *labelPosition) InstrRevIteratorBegin() *instruction {
pos.cur = pos.end
return pos.cur
}
// InstrRevIteratorNext implements regalloc.Block.
func (pos *labelPosition) InstrRevIteratorNext() *instruction {
for {
if pos.cur == pos.begin {
return nil
}
instr := pos.cur.prev
pos.cur = instr
if instr == nil {
return nil
} else if instr.addedBeforeRegAlloc {
// Only concerned about the instruction added before regalloc.
return instr
}
}
}
// FirstInstr implements regalloc.Block.
func (pos *labelPosition) FirstInstr() *instruction { return pos.begin }
// LastInstrForInsertion implements regalloc.Block.
func (pos *labelPosition) LastInstrForInsertion() *instruction {
return lastInstrForInsertion(pos.begin, pos.end)
}
// Preds implements regalloc.Block.
func (pos *labelPosition) Preds() int { return pos.sb.Preds() }
// Entry implements regalloc.Block.
func (pos *labelPosition) Entry() bool { return pos.sb.EntryBlock() }
// Succs implements regalloc.Block.
func (pos *labelPosition) Succs() int { return pos.sb.Succs() }
// LoopHeader implements regalloc.Block.
func (pos *labelPosition) LoopHeader() bool { return pos.sb.LoopHeader() }
// LoopNestingForestChildren implements regalloc.Block.
func (pos *labelPosition) LoopNestingForestChildren() int {
return len(pos.sb.LoopNestingForestChildren())
}
func (m *machine) swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
prevNext := cur.next
var mov1, mov2, mov3 *instruction
if x1.RegType() == regalloc.RegTypeInt {
@ -32,12 +240,12 @@ func (m *machine) Swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
if !tmp.Valid() {
r2 := x2.RealReg()
// Temporarily spill x1 to stack.
cur = m.InsertStoreRegisterAt(x1, cur, true).prev
cur = m.insertStoreRegisterAt(x1, cur, true).prev
// Then move x2 to x1.
cur = linkInstr(cur, m.allocateInstr().asFpuMov128(x1, x2))
linkInstr(cur, prevNext)
// Then reload the original value on x1 from stack to r2.
m.InsertReloadRegisterAt(x1.SetRealReg(r2), cur, true)
m.insertReloadRegisterAt(x1.SetRealReg(r2), cur, true)
} else {
mov1 = m.allocateInstr().asFpuMov128(tmp, x1)
mov2 = m.allocateInstr().asFpuMov128(x1, x2)
@ -50,8 +258,7 @@ func (m *machine) Swap(cur *instruction, x1, x2, tmp regalloc.VReg) {
}
}
// InsertMoveBefore implements backend.RegAllocFunctionMachine.
func (m *machine) InsertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
func (m *machine) insertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
typ := src.RegType()
if typ != dst.RegType() {
panic("BUG: src and dst must have the same type")
@ -70,13 +277,7 @@ func (m *machine) InsertMoveBefore(dst, src regalloc.VReg, instr *instruction) {
linkInstr(cur, prevNext)
}
// SSABlockLabel implements backend.RegAllocFunctionMachine.
func (m *machine) SSABlockLabel(id ssa.BasicBlockID) backend.Label {
return m.executableContext.SsaBlockIDToLabels[id]
}
// InsertStoreRegisterAt implements backend.RegAllocFunctionMachine.
func (m *machine) InsertStoreRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
func (m *machine) insertStoreRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
if !v.IsRealReg() {
panic("BUG: VReg must be backed by real reg to be stored")
}
@ -100,8 +301,7 @@ func (m *machine) InsertStoreRegisterAt(v regalloc.VReg, instr *instruction, aft
return linkInstr(cur, prevNext)
}
// InsertReloadRegisterAt implements backend.RegAllocFunctionMachine.
func (m *machine) InsertReloadRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
func (m *machine) insertReloadRegisterAt(v regalloc.VReg, instr *instruction, after bool) *instruction {
if !v.IsRealReg() {
panic("BUG: VReg must be backed by real reg to be stored")
}
@ -134,8 +334,7 @@ func (m *machine) InsertReloadRegisterAt(v regalloc.VReg, instr *instruction, af
return linkInstr(cur, prevNext)
}
// LastInstrForInsertion implements backend.RegAllocFunctionMachine.
func (m *machine) LastInstrForInsertion(begin, end *instruction) *instruction {
func lastInstrForInsertion(begin, end *instruction) *instruction {
cur := end
for cur.kind == nop0 {
cur = cur.prev

View File

@ -14,7 +14,7 @@ func UnwindStack(sp, _, top uintptr, returnAddresses []uintptr) []uintptr {
var stackBuf []byte
{
// TODO: use unsafe.Slice after floor version is set to Go 1.20.
//nolint:staticcheck
hdr := (*reflect.SliceHeader)(unsafe.Pointer(&stackBuf))
hdr.Data = sp
hdr.Len = l
@ -78,13 +78,7 @@ func GoCallStackView(stackPointerBeforeGoCall *uint64) []uint64 {
// +-----------------+ <---- stackPointerBeforeGoCall
// (low address)
ptr := unsafe.Pointer(stackPointerBeforeGoCall)
data := (*uint64)(unsafe.Add(ptr, 16)) // skips the (frame_size, sliceSize).
size := *(*uint64)(unsafe.Add(ptr, 8))
var view []uint64
{
sh := (*reflect.SliceHeader)(unsafe.Pointer(&view))
sh.Data = uintptr(unsafe.Add(ptr, 16)) // skips the (frame_size, sliceSize).
sh.Len = int(size)
sh.Cap = int(size)
}
return view
return unsafe.Slice(data, size)
}

View File

@ -11,7 +11,24 @@ import (
type (
// Machine is a backend for a specific ISA machine.
Machine interface {
ExecutableContext() ExecutableContext
// StartLoweringFunction is called when the compilation of the given function is started.
// The maxBlockID is the maximum ssa.BasicBlockID in the function.
StartLoweringFunction(maxBlockID ssa.BasicBlockID)
// LinkAdjacentBlocks is called after finished lowering all blocks in order to create one single instruction list.
LinkAdjacentBlocks(prev, next ssa.BasicBlock)
// StartBlock is called when the compilation of the given block is started.
// The order of this being called is the reverse post order of the ssa.BasicBlock(s) as we iterate with
// ssa.Builder BlockIteratorReversePostOrderBegin and BlockIteratorReversePostOrderEnd.
StartBlock(ssa.BasicBlock)
// EndBlock is called when the compilation of the current block is finished.
EndBlock()
// FlushPendingInstructions flushes the pending instructions to the buffer.
// This will be called after the lowering of each SSA Instruction.
FlushPendingInstructions()
// DisableStackCheck disables the stack check for the current compilation for debugging/testing.
DisableStackCheck()

View File

@ -1,321 +0,0 @@
package backend
import (
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend/regalloc"
"github.com/tetratelabs/wazero/internal/engine/wazevo/ssa"
)
// RegAllocFunctionMachine is the interface for the machine specific logic that will be used in RegAllocFunction.
type RegAllocFunctionMachine[I regalloc.InstrConstraint] interface {
// InsertMoveBefore inserts the move instruction from src to dst before the given instruction.
InsertMoveBefore(dst, src regalloc.VReg, instr I)
// InsertStoreRegisterAt inserts the instruction(s) to store the given virtual register at the given instruction.
// If after is true, the instruction(s) will be inserted after the given instruction, otherwise before.
InsertStoreRegisterAt(v regalloc.VReg, instr I, after bool) I
// InsertReloadRegisterAt inserts the instruction(s) to reload the given virtual register at the given instruction.
// If after is true, the instruction(s) will be inserted after the given instruction, otherwise before.
InsertReloadRegisterAt(v regalloc.VReg, instr I, after bool) I
// ClobberedRegisters is called when the register allocation is done and the clobbered registers are known.
ClobberedRegisters(regs []regalloc.VReg)
// Swap swaps the two virtual registers after the given instruction.
Swap(cur I, x1, x2, tmp regalloc.VReg)
// LastInstrForInsertion implements LastInstrForInsertion of regalloc.Function. See its comment for details.
LastInstrForInsertion(begin, end I) I
// SSABlockLabel returns the label of the given ssa.BasicBlockID.
SSABlockLabel(id ssa.BasicBlockID) Label
}
type (
// RegAllocFunction implements regalloc.Function.
RegAllocFunction[I regalloc.InstrConstraint, m RegAllocFunctionMachine[I]] struct {
m m
ssb ssa.Builder
c Compiler
// iter is the iterator for reversePostOrderBlocks
iter int
reversePostOrderBlocks []RegAllocBlock[I, m]
// labelToRegAllocBlockIndex maps label to the index of reversePostOrderBlocks.
labelToRegAllocBlockIndex [] /* Label to */ int
loopNestingForestRoots []ssa.BasicBlock
}
// RegAllocBlock implements regalloc.Block.
RegAllocBlock[I regalloc.InstrConstraint, m RegAllocFunctionMachine[I]] struct {
// f is the function this instruction belongs to. Used to reuse the regAllocFunctionImpl.predsSlice slice for Defs() and Uses().
f *RegAllocFunction[I, m]
sb ssa.BasicBlock
l Label
begin, end I
loopNestingForestChildren []ssa.BasicBlock
cur I
id int
cachedLastInstrForInsertion I
}
)
// NewRegAllocFunction returns a new RegAllocFunction.
func NewRegAllocFunction[I regalloc.InstrConstraint, M RegAllocFunctionMachine[I]](m M, ssb ssa.Builder, c Compiler) *RegAllocFunction[I, M] {
return &RegAllocFunction[I, M]{
m: m,
ssb: ssb,
c: c,
}
}
// AddBlock adds a new block to the function.
func (f *RegAllocFunction[I, M]) AddBlock(sb ssa.BasicBlock, l Label, begin, end I) {
i := len(f.reversePostOrderBlocks)
f.reversePostOrderBlocks = append(f.reversePostOrderBlocks, RegAllocBlock[I, M]{
f: f,
sb: sb,
l: l,
begin: begin,
end: end,
id: int(sb.ID()),
})
if len(f.labelToRegAllocBlockIndex) <= int(l) {
f.labelToRegAllocBlockIndex = append(f.labelToRegAllocBlockIndex, make([]int, int(l)-len(f.labelToRegAllocBlockIndex)+1)...)
}
f.labelToRegAllocBlockIndex[l] = i
}
// Reset resets the function for the next compilation.
func (f *RegAllocFunction[I, M]) Reset() {
f.reversePostOrderBlocks = f.reversePostOrderBlocks[:0]
f.iter = 0
}
// StoreRegisterAfter implements regalloc.Function StoreRegisterAfter.
func (f *RegAllocFunction[I, M]) StoreRegisterAfter(v regalloc.VReg, instr regalloc.Instr) {
m := f.m
m.InsertStoreRegisterAt(v, instr.(I), true)
}
// ReloadRegisterBefore implements regalloc.Function ReloadRegisterBefore.
func (f *RegAllocFunction[I, M]) ReloadRegisterBefore(v regalloc.VReg, instr regalloc.Instr) {
m := f.m
m.InsertReloadRegisterAt(v, instr.(I), false)
}
// ReloadRegisterAfter implements regalloc.Function ReloadRegisterAfter.
func (f *RegAllocFunction[I, M]) ReloadRegisterAfter(v regalloc.VReg, instr regalloc.Instr) {
m := f.m
m.InsertReloadRegisterAt(v, instr.(I), true)
}
// StoreRegisterBefore implements regalloc.Function StoreRegisterBefore.
func (f *RegAllocFunction[I, M]) StoreRegisterBefore(v regalloc.VReg, instr regalloc.Instr) {
m := f.m
m.InsertStoreRegisterAt(v, instr.(I), false)
}
// ClobberedRegisters implements regalloc.Function ClobberedRegisters.
func (f *RegAllocFunction[I, M]) ClobberedRegisters(regs []regalloc.VReg) {
f.m.ClobberedRegisters(regs)
}
// SwapBefore implements regalloc.Function SwapBefore.
func (f *RegAllocFunction[I, M]) SwapBefore(x1, x2, tmp regalloc.VReg, instr regalloc.Instr) {
f.m.Swap(instr.Prev().(I), x1, x2, tmp)
}
// PostOrderBlockIteratorBegin implements regalloc.Function PostOrderBlockIteratorBegin.
func (f *RegAllocFunction[I, M]) PostOrderBlockIteratorBegin() regalloc.Block {
f.iter = len(f.reversePostOrderBlocks) - 1
return f.PostOrderBlockIteratorNext()
}
// PostOrderBlockIteratorNext implements regalloc.Function PostOrderBlockIteratorNext.
func (f *RegAllocFunction[I, M]) PostOrderBlockIteratorNext() regalloc.Block {
if f.iter < 0 {
return nil
}
b := &f.reversePostOrderBlocks[f.iter]
f.iter--
return b
}
// ReversePostOrderBlockIteratorBegin implements regalloc.Function ReversePostOrderBlockIteratorBegin.
func (f *RegAllocFunction[I, M]) ReversePostOrderBlockIteratorBegin() regalloc.Block {
f.iter = 0
return f.ReversePostOrderBlockIteratorNext()
}
// ReversePostOrderBlockIteratorNext implements regalloc.Function ReversePostOrderBlockIteratorNext.
func (f *RegAllocFunction[I, M]) ReversePostOrderBlockIteratorNext() regalloc.Block {
if f.iter >= len(f.reversePostOrderBlocks) {
return nil
}
b := &f.reversePostOrderBlocks[f.iter]
f.iter++
return b
}
// LoopNestingForestRoots implements regalloc.Function LoopNestingForestRoots.
func (f *RegAllocFunction[I, M]) LoopNestingForestRoots() int {
f.loopNestingForestRoots = f.ssb.LoopNestingForestRoots()
return len(f.loopNestingForestRoots)
}
// LoopNestingForestRoot implements regalloc.Function LoopNestingForestRoot.
func (f *RegAllocFunction[I, M]) LoopNestingForestRoot(i int) regalloc.Block {
blk := f.loopNestingForestRoots[i]
l := f.m.SSABlockLabel(blk.ID())
index := f.labelToRegAllocBlockIndex[l]
return &f.reversePostOrderBlocks[index]
}
// InsertMoveBefore implements regalloc.Function InsertMoveBefore.
func (f *RegAllocFunction[I, M]) InsertMoveBefore(dst, src regalloc.VReg, instr regalloc.Instr) {
f.m.InsertMoveBefore(dst, src, instr.(I))
}
// LowestCommonAncestor implements regalloc.Function LowestCommonAncestor.
func (f *RegAllocFunction[I, M]) LowestCommonAncestor(blk1, blk2 regalloc.Block) regalloc.Block {
ret := f.ssb.LowestCommonAncestor(blk1.(*RegAllocBlock[I, M]).sb, blk2.(*RegAllocBlock[I, M]).sb)
l := f.m.SSABlockLabel(ret.ID())
index := f.labelToRegAllocBlockIndex[l]
return &f.reversePostOrderBlocks[index]
}
// Idom implements regalloc.Function Idom.
func (f *RegAllocFunction[I, M]) Idom(blk regalloc.Block) regalloc.Block {
builder := f.ssb
idom := builder.Idom(blk.(*RegAllocBlock[I, M]).sb)
if idom == nil {
panic("BUG: idom must not be nil")
}
l := f.m.SSABlockLabel(idom.ID())
index := f.labelToRegAllocBlockIndex[l]
return &f.reversePostOrderBlocks[index]
}
// ID implements regalloc.Block.
func (r *RegAllocBlock[I, m]) ID() int32 { return int32(r.id) }
// BlockParams implements regalloc.Block.
func (r *RegAllocBlock[I, m]) BlockParams(regs *[]regalloc.VReg) []regalloc.VReg {
c := r.f.c
*regs = (*regs)[:0]
for i := 0; i < r.sb.Params(); i++ {
v := c.VRegOf(r.sb.Param(i))
*regs = append(*regs, v)
}
return *regs
}
// InstrIteratorBegin implements regalloc.Block.
func (r *RegAllocBlock[I, m]) InstrIteratorBegin() regalloc.Instr {
r.cur = r.begin
return r.cur
}
// InstrIteratorNext implements regalloc.Block.
func (r *RegAllocBlock[I, m]) InstrIteratorNext() regalloc.Instr {
for {
if r.cur == r.end {
return nil
}
instr := r.cur.Next()
r.cur = instr.(I)
if instr == nil {
return nil
} else if instr.AddedBeforeRegAlloc() {
// Only concerned about the instruction added before regalloc.
return instr
}
}
}
// InstrRevIteratorBegin implements regalloc.Block.
func (r *RegAllocBlock[I, m]) InstrRevIteratorBegin() regalloc.Instr {
r.cur = r.end
return r.cur
}
// InstrRevIteratorNext implements regalloc.Block.
func (r *RegAllocBlock[I, m]) InstrRevIteratorNext() regalloc.Instr {
for {
if r.cur == r.begin {
return nil
}
instr := r.cur.Prev()
r.cur = instr.(I)
if instr == nil {
return nil
} else if instr.AddedBeforeRegAlloc() {
// Only concerned about the instruction added before regalloc.
return instr
}
}
}
// FirstInstr implements regalloc.Block.
func (r *RegAllocBlock[I, m]) FirstInstr() regalloc.Instr {
return r.begin
}
// EndInstr implements regalloc.Block.
func (r *RegAllocBlock[I, m]) EndInstr() regalloc.Instr {
return r.end
}
// LastInstrForInsertion implements regalloc.Block.
func (r *RegAllocBlock[I, m]) LastInstrForInsertion() regalloc.Instr {
var nil I
if r.cachedLastInstrForInsertion == nil {
r.cachedLastInstrForInsertion = r.f.m.LastInstrForInsertion(r.begin, r.end)
}
return r.cachedLastInstrForInsertion
}
// Preds implements regalloc.Block.
func (r *RegAllocBlock[I, m]) Preds() int { return r.sb.Preds() }
// Pred implements regalloc.Block.
func (r *RegAllocBlock[I, m]) Pred(i int) regalloc.Block {
sb := r.sb
pred := sb.Pred(i)
l := r.f.m.SSABlockLabel(pred.ID())
index := r.f.labelToRegAllocBlockIndex[l]
return &r.f.reversePostOrderBlocks[index]
}
// Entry implements regalloc.Block.
func (r *RegAllocBlock[I, m]) Entry() bool { return r.sb.EntryBlock() }
// Succs implements regalloc.Block.
func (r *RegAllocBlock[I, m]) Succs() int {
return r.sb.Succs()
}
// Succ implements regalloc.Block.
func (r *RegAllocBlock[I, m]) Succ(i int) regalloc.Block {
sb := r.sb
succ := sb.Succ(i)
if succ.ReturnBlock() {
return nil
}
l := r.f.m.SSABlockLabel(succ.ID())
index := r.f.labelToRegAllocBlockIndex[l]
return &r.f.reversePostOrderBlocks[index]
}
// LoopHeader implements regalloc.Block.
func (r *RegAllocBlock[I, m]) LoopHeader() bool {
return r.sb.LoopHeader()
}
// LoopNestingForestChildren implements regalloc.Block.
func (r *RegAllocBlock[I, m]) LoopNestingForestChildren() int {
r.loopNestingForestChildren = r.sb.LoopNestingForestChildren()
return len(r.loopNestingForestChildren)
}
// LoopNestingForestChild implements regalloc.Block.
func (r *RegAllocBlock[I, m]) LoopNestingForestChild(i int) regalloc.Block {
blk := r.loopNestingForestChildren[i]
l := r.f.m.SSABlockLabel(blk.ID())
index := r.f.labelToRegAllocBlockIndex[l]
return &r.f.reversePostOrderBlocks[index]
}

View File

@ -4,104 +4,100 @@ import "fmt"
// These interfaces are implemented by ISA-specific backends to abstract away the details, and allow the register
// allocators to work on any ISA.
//
// TODO: the interfaces are not stabilized yet, especially x64 will need some changes. E.g. x64 has an addressing mode
// where index can be in memory. That kind of info will be useful to reduce the register pressure, and should be leveraged
// by the register allocators, like https://docs.rs/regalloc2/latest/regalloc2/enum.OperandConstraint.html
type (
// Function is the top-level interface to do register allocation, which corresponds to a CFG containing
// Blocks(s).
Function interface {
//
// I is the type of the instruction, and B is the type of the basic block.
Function[I Instr, B Block[I]] interface {
// PostOrderBlockIteratorBegin returns the first block in the post-order traversal of the CFG.
// In other words, the last blocks in the CFG will be returned first.
PostOrderBlockIteratorBegin() Block
PostOrderBlockIteratorBegin() B
// PostOrderBlockIteratorNext returns the next block in the post-order traversal of the CFG.
PostOrderBlockIteratorNext() Block
PostOrderBlockIteratorNext() B
// ReversePostOrderBlockIteratorBegin returns the first block in the reverse post-order traversal of the CFG.
// In other words, the first blocks in the CFG will be returned first.
ReversePostOrderBlockIteratorBegin() Block
ReversePostOrderBlockIteratorBegin() B
// ReversePostOrderBlockIteratorNext returns the next block in the reverse post-order traversal of the CFG.
ReversePostOrderBlockIteratorNext() Block
ReversePostOrderBlockIteratorNext() B
// ClobberedRegisters tell the clobbered registers by this function.
ClobberedRegisters([]VReg)
// LoopNestingForestRoots returns the number of roots of the loop nesting forest in a function.
LoopNestingForestRoots() int
// LoopNestingForestRoot returns the i-th root of the loop nesting forest in a function.
LoopNestingForestRoot(i int) Block
LoopNestingForestRoot(i int) B
// LowestCommonAncestor returns the lowest common ancestor of two blocks in the dominator tree.
LowestCommonAncestor(blk1, blk2 Block) Block
LowestCommonAncestor(blk1, blk2 B) B
// Idom returns the immediate dominator of the given block.
Idom(blk Block) Block
Idom(blk B) B
// LoopNestingForestChild returns the i-th child of the block in the loop nesting forest.
LoopNestingForestChild(b B, i int) B
// Pred returns the i-th predecessor of the block in the CFG.
Pred(b B, i int) B
// Succ returns the i-th successor of the block in the CFG.
Succ(b B, i int) B
// BlockParams returns the virtual registers used as the parameters of this block.
BlockParams(B, *[]VReg) []VReg
// Followings are for rewriting the function.
// SwapAtEndOfBlock swaps the two virtual registers at the end of the given block.
SwapBefore(x1, x2, tmp VReg, instr Instr)
// SwapBefore swaps the two virtual registers at the end of the given block.
SwapBefore(x1, x2, tmp VReg, instr I)
// StoreRegisterBefore inserts store instruction(s) before the given instruction for the given virtual register.
StoreRegisterBefore(v VReg, instr Instr)
StoreRegisterBefore(v VReg, instr I)
// StoreRegisterAfter inserts store instruction(s) after the given instruction for the given virtual register.
StoreRegisterAfter(v VReg, instr Instr)
StoreRegisterAfter(v VReg, instr I)
// ReloadRegisterBefore inserts reload instruction(s) before the given instruction for the given virtual register.
ReloadRegisterBefore(v VReg, instr Instr)
ReloadRegisterBefore(v VReg, instr I)
// ReloadRegisterAfter inserts reload instruction(s) after the given instruction for the given virtual register.
ReloadRegisterAfter(v VReg, instr Instr)
ReloadRegisterAfter(v VReg, instr I)
// InsertMoveBefore inserts move instruction(s) before the given instruction for the given virtual registers.
InsertMoveBefore(dst, src VReg, instr Instr)
InsertMoveBefore(dst, src VReg, instr I)
}
// Block is a basic block in the CFG of a function, and it consists of multiple instructions, and predecessor Block(s).
Block interface {
// Right now, this corresponds to a ssa.BasicBlock lowered to the machine level.
Block[I Instr] interface {
comparable
// ID returns the unique identifier of this block which is ordered in the reverse post-order traversal of the CFG.
ID() int32
// BlockParams returns the virtual registers used as the parameters of this block.
BlockParams(*[]VReg) []VReg
// InstrIteratorBegin returns the first instruction in this block. Instructions added after lowering must be skipped.
// Note: multiple Instr(s) will not be held at the same time, so it's safe to use the same impl for the return Instr.
InstrIteratorBegin() Instr
InstrIteratorBegin() I
// InstrIteratorNext returns the next instruction in this block. Instructions added after lowering must be skipped.
// Note: multiple Instr(s) will not be held at the same time, so it's safe to use the same impl for the return Instr.
InstrIteratorNext() Instr
InstrIteratorNext() I
// InstrRevIteratorBegin is the same as InstrIteratorBegin, but in the reverse order.
InstrRevIteratorBegin() Instr
InstrRevIteratorBegin() I
// InstrRevIteratorNext is the same as InstrIteratorNext, but in the reverse order.
InstrRevIteratorNext() Instr
InstrRevIteratorNext() I
// FirstInstr returns the fist instruction in this block where instructions will be inserted after it.
FirstInstr() Instr
// EndInstr returns the end instruction in this block.
EndInstr() Instr
FirstInstr() I
// LastInstrForInsertion returns the last instruction in this block where instructions will be inserted before it.
// Such insertions only happen when we need to insert spill/reload instructions to adjust the merge edges.
// At the time of register allocation, all the critical edges are already split, so there is no need
// to worry about the case where branching instruction has multiple successors.
// Therefore, usually, it is the nop instruction, but if the block ends with an unconditional branching, then it returns
// the unconditional branch, not the nop. In other words it is either nop or unconditional branch.
LastInstrForInsertion() Instr
LastInstrForInsertion() I
// Preds returns the number of predecessors of this block in the CFG.
Preds() int
// Pred returns the i-th predecessor of this block in the CFG.
Pred(i int) Block
// Entry returns true if the block is for the entry block.
Entry() bool
// Succs returns the number of successors of this block in the CFG.
Succs() int
// Succ returns the i-th successor of this block in the CFG.
Succ(i int) Block
// LoopHeader returns true if this block is a loop header.
LoopHeader() bool
// LoopNestingForestChildren returns the number of children of this block in the loop nesting forest.
LoopNestingForestChildren() int
// LoopNestingForestChild returns the i-th child of this block in the loop nesting forest.
LoopNestingForestChild(i int) Block
}
// Instr is an instruction in a block, abstracting away the underlying ISA.
Instr interface {
comparable
fmt.Stringer
// Next returns the next instruction in the same block.
Next() Instr
// Prev returns the previous instruction in the same block.
Prev() Instr
// Defs returns the virtual registers defined by this instruction.
Defs(*[]VReg) []VReg
// Uses returns the virtual registers used by this instruction.
@ -124,13 +120,5 @@ type (
IsIndirectCall() bool
// IsReturn returns true if this instruction is a return instruction.
IsReturn() bool
// AddedBeforeRegAlloc returns true if this instruction is added before register allocation.
AddedBeforeRegAlloc() bool
}
// InstrConstraint is an interface for arch-specific instruction constraints.
InstrConstraint interface {
comparable
Instr
}
)

File diff suppressed because it is too large Load Diff

View File

@ -46,52 +46,50 @@ func (rs RegSet) Range(f func(allocatedRealReg RealReg)) {
}
}
type regInUseSet [64]VReg
type regInUseSet[I Instr, B Block[I], F Function[I, B]] [64]*vrState[I, B, F]
func newRegInUseSet() regInUseSet {
var ret regInUseSet
func newRegInUseSet[I Instr, B Block[I], F Function[I, B]]() regInUseSet[I, B, F] {
var ret regInUseSet[I, B, F]
ret.reset()
return ret
}
func (rs *regInUseSet) reset() {
for i := range rs {
rs[i] = VRegInvalid
}
func (rs *regInUseSet[I, B, F]) reset() {
clear(rs[:])
}
func (rs *regInUseSet) format(info *RegisterInfo) string { //nolint:unused
func (rs *regInUseSet[I, B, F]) format(info *RegisterInfo) string { //nolint:unused
var ret []string
for i, vr := range rs {
if vr != VRegInvalid {
ret = append(ret, fmt.Sprintf("(%s->v%d)", info.RealRegName(RealReg(i)), vr.ID()))
if vr != nil {
ret = append(ret, fmt.Sprintf("(%s->v%d)", info.RealRegName(RealReg(i)), vr.v.ID()))
}
}
return strings.Join(ret, ", ")
}
func (rs *regInUseSet) has(r RealReg) bool {
return r < 64 && rs[r] != VRegInvalid
func (rs *regInUseSet[I, B, F]) has(r RealReg) bool {
return r < 64 && rs[r] != nil
}
func (rs *regInUseSet) get(r RealReg) VReg {
func (rs *regInUseSet[I, B, F]) get(r RealReg) *vrState[I, B, F] {
return rs[r]
}
func (rs *regInUseSet) remove(r RealReg) {
rs[r] = VRegInvalid
func (rs *regInUseSet[I, B, F]) remove(r RealReg) {
rs[r] = nil
}
func (rs *regInUseSet) add(r RealReg, vr VReg) {
func (rs *regInUseSet[I, B, F]) add(r RealReg, vr *vrState[I, B, F]) {
if r >= 64 {
return
}
rs[r] = vr
}
func (rs *regInUseSet) range_(f func(allocatedRealReg RealReg, vr VReg)) {
func (rs *regInUseSet[I, B, F]) range_(f func(allocatedRealReg RealReg, vr *vrState[I, B, F])) {
for i, vr := range rs {
if vr != VRegInvalid {
if vr != nil {
f(RealReg(i), vr)
}
}

View File

@ -1,43 +1,19 @@
package backend
import (
"github.com/tetratelabs/wazero/internal/engine/wazevo/backend/regalloc"
"github.com/tetratelabs/wazero/internal/engine/wazevo/ssa"
)
// SSAValueDefinition represents a definition of an SSA value.
type SSAValueDefinition struct {
// BlockParamValue is valid if Instr == nil
BlockParamValue ssa.Value
// BlkParamVReg is valid if Instr == nil
BlkParamVReg regalloc.VReg
V ssa.Value
// Instr is not nil if this is a definition from an instruction.
Instr *ssa.Instruction
// N is the index of the return value in the instr's return values list.
N int
// RefCount is the number of references to the result.
RefCount int
RefCount uint32
}
// IsFromInstr returns true if this definition is from an instruction.
func (d *SSAValueDefinition) IsFromInstr() bool {
return d.Instr != nil
}
func (d *SSAValueDefinition) IsFromBlockParam() bool {
return d.Instr == nil
}
func (d *SSAValueDefinition) SSAValue() ssa.Value {
if d.IsFromBlockParam() {
return d.BlockParamValue
} else {
r, rs := d.Instr.Returns()
if d.N == 0 {
return r
} else {
return rs[d.N-1]
}
}
}