mirror of
https://github.com/superseriousbusiness/gotosocial
synced 2024-12-13 09:08:24 +01:00
410 lines
13 KiB
Go
410 lines
13 KiB
Go
|
// Copyright 2017 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"sort"
|
||
|
|
||
|
"github.com/golang/geo/r2"
|
||
|
)
|
||
|
|
||
|
// CrossingEdgeQuery is used to find the Edge IDs of Shapes that are crossed by
|
||
|
// a given edge(s).
|
||
|
//
|
||
|
// Note that if you need to query many edges, it is more efficient to declare
|
||
|
// a single CrossingEdgeQuery instance and reuse it.
|
||
|
//
|
||
|
// If you want to find *all* the pairs of crossing edges, it is more efficient to
|
||
|
// use the not yet implemented VisitCrossings in shapeutil.
|
||
|
type CrossingEdgeQuery struct {
|
||
|
index *ShapeIndex
|
||
|
|
||
|
// temporary values used while processing a query.
|
||
|
a, b r2.Point
|
||
|
iter *ShapeIndexIterator
|
||
|
|
||
|
// candidate cells generated when finding crossings.
|
||
|
cells []*ShapeIndexCell
|
||
|
}
|
||
|
|
||
|
// NewCrossingEdgeQuery creates a CrossingEdgeQuery for the given index.
|
||
|
func NewCrossingEdgeQuery(index *ShapeIndex) *CrossingEdgeQuery {
|
||
|
c := &CrossingEdgeQuery{
|
||
|
index: index,
|
||
|
iter: index.Iterator(),
|
||
|
}
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Crossings returns the set of edge of the shape S that intersect the given edge AB.
|
||
|
// If the CrossingType is Interior, then only intersections at a point interior to both
|
||
|
// edges are reported, while if it is CrossingTypeAll then edges that share a vertex
|
||
|
// are also reported.
|
||
|
func (c *CrossingEdgeQuery) Crossings(a, b Point, shape Shape, crossType CrossingType) []int {
|
||
|
edges := c.candidates(a, b, shape)
|
||
|
if len(edges) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
crosser := NewEdgeCrosser(a, b)
|
||
|
out := 0
|
||
|
n := len(edges)
|
||
|
|
||
|
for in := 0; in < n; in++ {
|
||
|
b := shape.Edge(edges[in])
|
||
|
sign := crosser.CrossingSign(b.V0, b.V1)
|
||
|
if crossType == CrossingTypeAll && (sign == MaybeCross || sign == Cross) || crossType != CrossingTypeAll && sign == Cross {
|
||
|
edges[out] = edges[in]
|
||
|
out++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if out < n {
|
||
|
edges = edges[0:out]
|
||
|
}
|
||
|
return edges
|
||
|
}
|
||
|
|
||
|
// EdgeMap stores a sorted set of edge ids for each shape.
|
||
|
type EdgeMap map[Shape][]int
|
||
|
|
||
|
// CrossingsEdgeMap returns the set of all edges in the index that intersect the given
|
||
|
// edge AB. If crossType is CrossingTypeInterior, then only intersections at a
|
||
|
// point interior to both edges are reported, while if it is CrossingTypeAll
|
||
|
// then edges that share a vertex are also reported.
|
||
|
//
|
||
|
// The edges are returned as a mapping from shape to the edges of that shape
|
||
|
// that intersect AB. Every returned shape has at least one crossing edge.
|
||
|
func (c *CrossingEdgeQuery) CrossingsEdgeMap(a, b Point, crossType CrossingType) EdgeMap {
|
||
|
edgeMap := c.candidatesEdgeMap(a, b)
|
||
|
if len(edgeMap) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
crosser := NewEdgeCrosser(a, b)
|
||
|
for shape, edges := range edgeMap {
|
||
|
out := 0
|
||
|
n := len(edges)
|
||
|
for in := 0; in < n; in++ {
|
||
|
edge := shape.Edge(edges[in])
|
||
|
sign := crosser.CrossingSign(edge.V0, edge.V1)
|
||
|
if (crossType == CrossingTypeAll && (sign == MaybeCross || sign == Cross)) || (crossType != CrossingTypeAll && sign == Cross) {
|
||
|
edgeMap[shape][out] = edges[in]
|
||
|
out++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if out == 0 {
|
||
|
delete(edgeMap, shape)
|
||
|
} else {
|
||
|
if out < n {
|
||
|
edgeMap[shape] = edgeMap[shape][0:out]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return edgeMap
|
||
|
}
|
||
|
|
||
|
// candidates returns a superset of the edges of the given shape that intersect
|
||
|
// the edge AB.
|
||
|
func (c *CrossingEdgeQuery) candidates(a, b Point, shape Shape) []int {
|
||
|
var edges []int
|
||
|
|
||
|
// For small loops it is faster to use brute force. The threshold below was
|
||
|
// determined using benchmarks.
|
||
|
const maxBruteForceEdges = 27
|
||
|
maxEdges := shape.NumEdges()
|
||
|
if maxEdges <= maxBruteForceEdges {
|
||
|
edges = make([]int, maxEdges)
|
||
|
for i := 0; i < maxEdges; i++ {
|
||
|
edges[i] = i
|
||
|
}
|
||
|
return edges
|
||
|
}
|
||
|
|
||
|
// Compute the set of index cells intersected by the query edge.
|
||
|
c.getCellsForEdge(a, b)
|
||
|
if len(c.cells) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Gather all the edges that intersect those cells and sort them.
|
||
|
// TODO(roberts): Shapes don't track their ID, so we need to range over
|
||
|
// the index to find the ID manually.
|
||
|
var shapeID int32
|
||
|
for k, v := range c.index.shapes {
|
||
|
if v == shape {
|
||
|
shapeID = k
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for _, cell := range c.cells {
|
||
|
if cell == nil {
|
||
|
continue
|
||
|
}
|
||
|
clipped := cell.findByShapeID(shapeID)
|
||
|
if clipped == nil {
|
||
|
continue
|
||
|
}
|
||
|
edges = append(edges, clipped.edges...)
|
||
|
}
|
||
|
|
||
|
if len(c.cells) > 1 {
|
||
|
edges = uniqueInts(edges)
|
||
|
}
|
||
|
|
||
|
return edges
|
||
|
}
|
||
|
|
||
|
// uniqueInts returns the sorted uniqued values from the given input.
|
||
|
func uniqueInts(in []int) []int {
|
||
|
var edges []int
|
||
|
m := make(map[int]bool)
|
||
|
for _, i := range in {
|
||
|
if m[i] {
|
||
|
continue
|
||
|
}
|
||
|
m[i] = true
|
||
|
edges = append(edges, i)
|
||
|
}
|
||
|
sort.Ints(edges)
|
||
|
return edges
|
||
|
}
|
||
|
|
||
|
// candidatesEdgeMap returns a map from shapes to the superse of edges for that
|
||
|
// shape that intersect the edge AB.
|
||
|
//
|
||
|
// CAVEAT: This method may return shapes that have an empty set of candidate edges.
|
||
|
// However the return value is non-empty only if at least one shape has a candidate edge.
|
||
|
func (c *CrossingEdgeQuery) candidatesEdgeMap(a, b Point) EdgeMap {
|
||
|
edgeMap := make(EdgeMap)
|
||
|
|
||
|
// If there are only a few edges then it's faster to use brute force. We
|
||
|
// only bother with this optimization when there is a single shape.
|
||
|
if len(c.index.shapes) == 1 {
|
||
|
// Typically this method is called many times, so it is worth checking
|
||
|
// whether the edge map is empty or already consists of a single entry for
|
||
|
// this shape, and skip clearing edge map in that case.
|
||
|
shape := c.index.Shape(0)
|
||
|
|
||
|
// Note that we leave the edge map non-empty even if there are no candidates
|
||
|
// (i.e., there is a single entry with an empty set of edges).
|
||
|
edgeMap[shape] = c.candidates(a, b, shape)
|
||
|
return edgeMap
|
||
|
}
|
||
|
|
||
|
// Compute the set of index cells intersected by the query edge.
|
||
|
c.getCellsForEdge(a, b)
|
||
|
if len(c.cells) == 0 {
|
||
|
return edgeMap
|
||
|
}
|
||
|
|
||
|
// Gather all the edges that intersect those cells and sort them.
|
||
|
for _, cell := range c.cells {
|
||
|
for _, clipped := range cell.shapes {
|
||
|
s := c.index.Shape(clipped.shapeID)
|
||
|
for j := 0; j < clipped.numEdges(); j++ {
|
||
|
edgeMap[s] = append(edgeMap[s], clipped.edges[j])
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if len(c.cells) > 1 {
|
||
|
for s, edges := range edgeMap {
|
||
|
edgeMap[s] = uniqueInts(edges)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return edgeMap
|
||
|
}
|
||
|
|
||
|
// getCells returns the set of ShapeIndexCells that might contain edges intersecting
|
||
|
// the edge AB in the given cell root. This method is used primarily by loop and shapeutil.
|
||
|
func (c *CrossingEdgeQuery) getCells(a, b Point, root *PaddedCell) []*ShapeIndexCell {
|
||
|
aUV, bUV, ok := ClipToFace(a, b, root.id.Face())
|
||
|
if ok {
|
||
|
c.a = aUV
|
||
|
c.b = bUV
|
||
|
edgeBound := r2.RectFromPoints(c.a, c.b)
|
||
|
if root.Bound().Intersects(edgeBound) {
|
||
|
c.computeCellsIntersected(root, edgeBound)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if len(c.cells) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
return c.cells
|
||
|
}
|
||
|
|
||
|
// getCellsForEdge populates the cells field to the set of index cells intersected by an edge AB.
|
||
|
func (c *CrossingEdgeQuery) getCellsForEdge(a, b Point) {
|
||
|
c.cells = nil
|
||
|
|
||
|
segments := FaceSegments(a, b)
|
||
|
for _, segment := range segments {
|
||
|
c.a = segment.a
|
||
|
c.b = segment.b
|
||
|
|
||
|
// Optimization: rather than always starting the recursive subdivision at
|
||
|
// the top level face cell, instead we start at the smallest S2CellId that
|
||
|
// contains the edge (the edge root cell). This typically lets us skip
|
||
|
// quite a few levels of recursion since most edges are short.
|
||
|
edgeBound := r2.RectFromPoints(c.a, c.b)
|
||
|
pcell := PaddedCellFromCellID(CellIDFromFace(segment.face), 0)
|
||
|
edgeRoot := pcell.ShrinkToFit(edgeBound)
|
||
|
|
||
|
// Now we need to determine how the edge root cell is related to the cells
|
||
|
// in the spatial index (cellMap). There are three cases:
|
||
|
//
|
||
|
// 1. edgeRoot is an index cell or is contained within an index cell.
|
||
|
// In this case we only need to look at the contents of that cell.
|
||
|
// 2. edgeRoot is subdivided into one or more index cells. In this case
|
||
|
// we recursively subdivide to find the cells intersected by AB.
|
||
|
// 3. edgeRoot does not intersect any index cells. In this case there
|
||
|
// is nothing to do.
|
||
|
relation := c.iter.LocateCellID(edgeRoot)
|
||
|
if relation == Indexed {
|
||
|
// edgeRoot is an index cell or is contained by an index cell (case 1).
|
||
|
c.cells = append(c.cells, c.iter.IndexCell())
|
||
|
} else if relation == Subdivided {
|
||
|
// edgeRoot is subdivided into one or more index cells (case 2). We
|
||
|
// find the cells intersected by AB using recursive subdivision.
|
||
|
if !edgeRoot.isFace() {
|
||
|
pcell = PaddedCellFromCellID(edgeRoot, 0)
|
||
|
}
|
||
|
c.computeCellsIntersected(pcell, edgeBound)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// computeCellsIntersected computes the index cells intersected by the current
|
||
|
// edge that are descendants of pcell and adds them to this queries set of cells.
|
||
|
func (c *CrossingEdgeQuery) computeCellsIntersected(pcell *PaddedCell, edgeBound r2.Rect) {
|
||
|
|
||
|
c.iter.seek(pcell.id.RangeMin())
|
||
|
if c.iter.Done() || c.iter.CellID() > pcell.id.RangeMax() {
|
||
|
// The index does not contain pcell or any of its descendants.
|
||
|
return
|
||
|
}
|
||
|
if c.iter.CellID() == pcell.id {
|
||
|
// The index contains this cell exactly.
|
||
|
c.cells = append(c.cells, c.iter.IndexCell())
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Otherwise, split the edge among the four children of pcell.
|
||
|
center := pcell.Middle().Lo()
|
||
|
|
||
|
if edgeBound.X.Hi < center.X {
|
||
|
// Edge is entirely contained in the two left children.
|
||
|
c.clipVAxis(edgeBound, center.Y, 0, pcell)
|
||
|
return
|
||
|
} else if edgeBound.X.Lo >= center.X {
|
||
|
// Edge is entirely contained in the two right children.
|
||
|
c.clipVAxis(edgeBound, center.Y, 1, pcell)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
childBounds := c.splitUBound(edgeBound, center.X)
|
||
|
if edgeBound.Y.Hi < center.Y {
|
||
|
// Edge is entirely contained in the two lower children.
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 0, 0), childBounds[0])
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 1, 0), childBounds[1])
|
||
|
} else if edgeBound.Y.Lo >= center.Y {
|
||
|
// Edge is entirely contained in the two upper children.
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 0, 1), childBounds[0])
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, 1, 1), childBounds[1])
|
||
|
} else {
|
||
|
// The edge bound spans all four children. The edge itself intersects
|
||
|
// at most three children (since no padding is being used).
|
||
|
c.clipVAxis(childBounds[0], center.Y, 0, pcell)
|
||
|
c.clipVAxis(childBounds[1], center.Y, 1, pcell)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// clipVAxis computes the intersected cells recursively for a given padded cell.
|
||
|
// Given either the left (i=0) or right (i=1) side of a padded cell pcell,
|
||
|
// determine whether the current edge intersects the lower child, upper child,
|
||
|
// or both children, and call c.computeCellsIntersected recursively on those children.
|
||
|
// The center is the v-coordinate at the center of pcell.
|
||
|
func (c *CrossingEdgeQuery) clipVAxis(edgeBound r2.Rect, center float64, i int, pcell *PaddedCell) {
|
||
|
if edgeBound.Y.Hi < center {
|
||
|
// Edge is entirely contained in the lower child.
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 0), edgeBound)
|
||
|
} else if edgeBound.Y.Lo >= center {
|
||
|
// Edge is entirely contained in the upper child.
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 1), edgeBound)
|
||
|
} else {
|
||
|
// The edge intersects both children.
|
||
|
childBounds := c.splitVBound(edgeBound, center)
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 0), childBounds[0])
|
||
|
c.computeCellsIntersected(PaddedCellFromParentIJ(pcell, i, 1), childBounds[1])
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// splitUBound returns the bound for two children as a result of spliting the
|
||
|
// current edge at the given value U.
|
||
|
func (c *CrossingEdgeQuery) splitUBound(edgeBound r2.Rect, u float64) [2]r2.Rect {
|
||
|
v := edgeBound.Y.ClampPoint(interpolateFloat64(u, c.a.X, c.b.X, c.a.Y, c.b.Y))
|
||
|
// diag indicates which diagonal of the bounding box is spanned by AB:
|
||
|
// it is 0 if AB has positive slope, and 1 if AB has negative slope.
|
||
|
var diag int
|
||
|
if (c.a.X > c.b.X) != (c.a.Y > c.b.Y) {
|
||
|
diag = 1
|
||
|
}
|
||
|
return splitBound(edgeBound, 0, diag, u, v)
|
||
|
}
|
||
|
|
||
|
// splitVBound returns the bound for two children as a result of spliting the
|
||
|
// current edge into two child edges at the given value V.
|
||
|
func (c *CrossingEdgeQuery) splitVBound(edgeBound r2.Rect, v float64) [2]r2.Rect {
|
||
|
u := edgeBound.X.ClampPoint(interpolateFloat64(v, c.a.Y, c.b.Y, c.a.X, c.b.X))
|
||
|
var diag int
|
||
|
if (c.a.X > c.b.X) != (c.a.Y > c.b.Y) {
|
||
|
diag = 1
|
||
|
}
|
||
|
return splitBound(edgeBound, diag, 0, u, v)
|
||
|
}
|
||
|
|
||
|
// splitBound returns the bounds for the two childrenn as a result of spliting
|
||
|
// the current edge into two child edges at the given point (u,v). uEnd and vEnd
|
||
|
// indicate which bound endpoints of the first child will be updated.
|
||
|
func splitBound(edgeBound r2.Rect, uEnd, vEnd int, u, v float64) [2]r2.Rect {
|
||
|
var childBounds = [2]r2.Rect{
|
||
|
edgeBound,
|
||
|
edgeBound,
|
||
|
}
|
||
|
|
||
|
if uEnd == 1 {
|
||
|
childBounds[0].X.Lo = u
|
||
|
childBounds[1].X.Hi = u
|
||
|
} else {
|
||
|
childBounds[0].X.Hi = u
|
||
|
childBounds[1].X.Lo = u
|
||
|
}
|
||
|
|
||
|
if vEnd == 1 {
|
||
|
childBounds[0].Y.Lo = v
|
||
|
childBounds[1].Y.Hi = v
|
||
|
} else {
|
||
|
childBounds[0].Y.Hi = v
|
||
|
childBounds[1].Y.Lo = v
|
||
|
}
|
||
|
|
||
|
return childBounds
|
||
|
}
|