This pull requests complements pull request #2178 by reducing general computational time for the method getTimeString.
On my local machine (Desktop PC with Java) my tests with a sample size of 10000 calls to the method with param 86400001 showed a performance improvement of about 50%.
See sample code below to reproduce:
private static final StringBuilder stringBuilder = new StringBuilder();
private static final Formatter stringFormatter = new Formatter(stringBuilder, Locale.getDefault());
public static String getTimeString(int milliSeconds) {
int seconds = (milliSeconds % 60000) / 1000;
int minutes = (milliSeconds % 3600000) / 60000;
int hours = (milliSeconds % 86400000) / 3600000;
int days = (milliSeconds % (86400000 * 7)) / 86400000;
stringBuilder.setLength(0);
return days > 0 ? stringFormatter.format("%d:%02d:%02d:%02d", days, hours, minutes, seconds).toString()
: hours > 0 ? stringFormatter.format("%d:%02d:%02d", hours, minutes, seconds).toString()
: stringFormatter.format("%02d:%02d", minutes, seconds).toString();
}
public static String getTimeStringL(int milliSeconds) {
long seconds = (milliSeconds % 60000L) / 1000L;
long minutes = (milliSeconds % 3600000L) / 60000L;
long hours = (milliSeconds % 86400000L) / 3600000L;
long days = (milliSeconds % (86400000L * 7L)) / 86400000L;
stringBuilder.setLength(0);
return days > 0 ? stringFormatter.format("%d:%02d:%02d:%02d", days, hours, minutes, seconds).toString()
: hours > 0 ? stringFormatter.format("%d:%02d:%02d", hours, minutes, seconds).toString()
: stringFormatter.format("%02d:%02d", minutes, seconds).toString();
}
public static void main(String[] args) throws Exception {
final int SAMPLE_SIZE = 25000;
long[] results = new long[SAMPLE_SIZE];
for(int i = 0; i < SAMPLE_SIZE; i++) {
long now = System.nanoTime();
getTimeString(86400001);
results[i] = System.nanoTime() - now;
}
long sum = 0;
for(int i = 0; i < SAMPLE_SIZE; i++) {
sum += results[i];
}
System.out.println("Average execution time: " + (sum/SAMPLE_SIZE));
results = new long[SAMPLE_SIZE];
for(int i = 0; i < SAMPLE_SIZE; i++) {
long now = System.nanoTime();
getTimeStringL(86400001);
results[i] = System.nanoTime() - now;
}
sum = 0;
for(int i = 0; i < SAMPLE_SIZE; i++) {
sum += results[i];
}
System.out.println("Average execution time: " + (sum/SAMPLE_SIZE));
In VideoPlayer the Duration String is cached effectively by setting it to the playbackSeekBar. As the playbackSeekBar doesn't exist in BackgroundPlayer, using two addition variables will reduce performance impact of notification updates by almost 50% and thus perform similar to VideoPlayer.
This addresses issue #2170
Scenario: listening to a video on NewPipe over Bluetooth and a Notification Sound causes audio focus event AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK.
Problem: With the current implementation animateAudio would cause the audio to reach the target volume AFTER the notification sound is played, which is irritating and annoying.
Solution: animateAudio should just be used on focusGain where it is sensible to increase audio gradually. On ducking event the reaction should be immediate.
This very simple fix does this. Please approve.