24fb7750f3
* bfin/Makefile.in: Add BF60x support. * bfin/basiccrt.S: Add core1 support. * bfin/bf606.ld: New file. * bfin/bf606c0.ld: New file. * bfin/bf606c1.ld: New file. * bfin/bf606m.ld: New file. * bfin/bf607.ld: New file. * bfin/bf607c0.ld: New file. * bfin/bf607c1.ld: New file. * bfin/bf607m.ld: New file. * bfin/bf608.ld: New file. * bfin/bf608c0.ld: New file. * bfin/bf608c1.ld: New file. * bfin/bf608m.ld: New file. * bfin/bf609.ld: New file. * bfin/bf609c0.ld: New file. * bfin/bf609c1.ld: New file. * bfin/bf609m.ld: New file. * bfin/bfin-common-mc0.ld: New file. * bfin/include/cdefBF606.h : New file. * bfin/include/cdefBF607.h : New file. * bfin/include/cdefBF608.h : New file. * bfin/include/cdefBF609.h : New file. * bfin/include/defBF606.h : New file. * bfin/include/defBF607.h : New file. * bfin/include/defBF608.h : New file. * bfin/include/defBF609.h : New file. * bfin/include/sys/_adi_platform.h: Add BF60x support. * bfin/include/sys/anomaly_macros_rtl.h : Clean up.
340 lines
12 KiB
C
340 lines
12 KiB
C
/*
|
|
* The authors hereby grant permission to use, copy, modify, distribute,
|
|
* and license this software and its documentation for any purpose, provided
|
|
* that existing copyright notices are retained in all copies and that this
|
|
* notice is included verbatim in any distributions. No written agreement,
|
|
* license, or royalty fee is required for any of the authorized uses.
|
|
* Modifications to this software may be copyrighted by their authors
|
|
* and need not follow the licensing terms described here, provided that
|
|
* the new terms are clearly indicated on the first page of each file where
|
|
* they apply.
|
|
*/
|
|
|
|
/************************************************************************
|
|
*
|
|
* anomaly_macros_rtl.h : $Revision$
|
|
*
|
|
* (c) Copyright 2005-2011 Analog Devices, Inc. All rights reserved.
|
|
*
|
|
* This file defines macros used within the run-time libraries to enable
|
|
* certain anomaly workarounds for the appropriate chips and silicon
|
|
* revisions. Certain macros are defined for silicon-revision none - this
|
|
* is to ensure behaviour is unchanged from libraries supplied with
|
|
* earlier tools versions, where a small number of anomaly workarounds
|
|
* were applied in all library flavours. __FORCE_LEGACY_WORKAROUNDS__
|
|
* is defined in this case.
|
|
*
|
|
* This file defines macros for a subset of all anomalies that may impact
|
|
* the run-time libraries.
|
|
*
|
|
************************************************************************/
|
|
|
|
|
|
#ifdef _MISRA_RULES
|
|
#pragma diag(push)
|
|
#pragma diag(suppress:misra_rule_2_4:"Assembly code in comment used to illustrate anomalous behaviour")
|
|
#endif /* _MISRA_RULES */
|
|
|
|
#if !defined(__SILICON_REVISION__)
|
|
#define __FORCE_LEGACY_WORKAROUNDS__
|
|
#endif
|
|
|
|
|
|
/* 050000245 - "False Hardware Error from an Access in the Shadow of a
|
|
** Conditional Branch"
|
|
**
|
|
** If a load accesses reserved or illegal memory on the opposite control
|
|
** flow of a conditional jump to the taken path, a false hardware error
|
|
** will occur.
|
|
**
|
|
** This macro is used by System Services/Device Drivers.
|
|
**
|
|
** This is for all Blackfin LP parts.
|
|
*/
|
|
#define WA_05000245 \
|
|
(defined(__ADSPLPBLACKFIN__) && defined(__SILICON_REVISION__))
|
|
|
|
|
|
/* 05-00-0229 - "SPI Slave Boot Mode Modifies Registers".
|
|
* When the SPI slave boot completes, the final DMA IRQ is cleared
|
|
* but the DMA5_CONFIG and SPI_CTL registers are not reset to their
|
|
* default states.
|
|
*
|
|
* We work around this by resetting the registers to their default
|
|
* values at the beginning of the CRT. The only issue would be when
|
|
* users boot from flash and make use of the DMA or serial port.
|
|
* In this case, users would need to modify the CRT.
|
|
*
|
|
* This problem impacts all revisions of ADSP-BF531/2/3/8/9
|
|
*/
|
|
#define WA_05000229 \
|
|
(defined(__ADSPBLACKFIN__) && defined (__SILICON_REVISION__) && \
|
|
(defined(__ADSPBF531__) || defined(__ADSPBF532__) || \
|
|
defined(__ADSPBF533__) || defined(__ADSPBF538__) || \
|
|
defined(__ADSPBF539__)))
|
|
|
|
|
|
/* 05-00-0283 - "A system MMR write is stalled indefinitely when killed in a
|
|
* particular stage".
|
|
*
|
|
* Where an interrupt occurs killing a stalled system MMR write, and the ISR
|
|
* executes an SSYNC, execution execution may stall indefinitely".
|
|
*
|
|
* The workaround is to execute a mispredicted jump over a dummy MMR read,
|
|
* thus killing the read. Also to avoid a system MMR write in two slots
|
|
* after a not predicted conditional jump.
|
|
*
|
|
* This problem impacts:
|
|
* BF531/2/3 - < 0.6
|
|
* BF534/6/7 - < 0.3
|
|
* BF538/9 - < 0.4
|
|
* BF561/6 - < 0.5
|
|
*
|
|
* Since this impacts 538/9 0.3 but not 534 0.3 (the libraries that they use)
|
|
* we have to enable this workaround for the 534 0.3 libraries (see bottom
|
|
* two lines).
|
|
*/
|
|
#define WA_05000283 \
|
|
(defined (__SILICON_REVISION__) && \
|
|
(((defined(__ADSPBF531__) || \
|
|
defined(__ADSPBF532__) || \
|
|
defined(__ADSPBF533__)) && \
|
|
(__SILICON_REVISION__ == 0xffff || \
|
|
__SILICON_REVISION__ < 0x6)) || \
|
|
((defined(__ADSPBF534__) || \
|
|
defined(__ADSPBF536__) || \
|
|
defined(__ADSPBF537__)) && \
|
|
(__SILICON_REVISION__ == 0xffff || \
|
|
__SILICON_REVISION__ < 0x3)) || \
|
|
((defined(__ADSPBF538__) || \
|
|
defined(__ADSPBF539__)) && \
|
|
(__SILICON_REVISION__ == 0xffff || \
|
|
__SILICON_REVISION__ < 0x4)) || \
|
|
(defined(__ADSPBF561__)) || \
|
|
(defined(__ADSPBF534__) && __SILICON_REVISION__ == 0x3 && \
|
|
defined(__ADI_LIB_BUILD__))))
|
|
|
|
|
|
/* 05-00-0311 - Erroneous Flag (GPIO) Pin Operations under Specific Sequences
|
|
**
|
|
** Impacted:
|
|
** ADSP-BF53[123] - 0.0-0.5 (fixed in 0.6)
|
|
**
|
|
** Use by System Services/Device Drivers.
|
|
*/
|
|
#define WA_05000311 \
|
|
(defined(__ADSPBF533_FAMILY__) && \
|
|
(defined(__SILICON_REVISION__) && \
|
|
(__SILICON_REVISION__ <= 0x5 || __SILICON_REVISION__ == 0xffff)))
|
|
|
|
|
|
/* 05-00-0312 - Errors when SSYNC, CSYNC, or Loads to LT, LB and LC Registers
|
|
** Are Interrupted
|
|
**
|
|
** Impacted:
|
|
** ADSP-BF53[123] - 0.0-0.5 (fixed in 0.6)
|
|
** ADSP-BF53[467] - all supported revisions
|
|
** ADSP-BF53[89] - 0.0-0.4 (fixed in 0.5)
|
|
** ADSP-BF561 - all supported revisions
|
|
** ADSP-BF54[24789] - 0.0 (fixed in 0.1)
|
|
**
|
|
** Used by VDK
|
|
*/
|
|
#define WA_05000312 \
|
|
(defined(__SILICON_REVISION__) && \
|
|
((defined(__ADSPBF533_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x5 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF537_FAMILY__)) || \
|
|
(defined(__ADSPBF538_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x4 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF548_FAMILY__) && \
|
|
(__SILICON_REVISION__ == 0x0 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF561_FAMILY__))))
|
|
|
|
|
|
/* 05-00-0323 - Erroneous Flag (GPIO) Pin Operations under Specific Sequences
|
|
**
|
|
** Impacted:
|
|
** ADSP-BF561 - all supported revisions
|
|
**
|
|
** Use by System Services/Device Drivers.
|
|
*/
|
|
#define WA_05000323 \
|
|
(defined(__ADSPBF561__) && defined(__SILICON_REVISION__))
|
|
|
|
|
|
/* 05-00-0365 - DMAs that Go Urgent during Tight Core Writes to External
|
|
** Memory Are Blocked
|
|
**
|
|
** Impacted:
|
|
** ADSP-BF54[24789] - all supported revisions
|
|
** ADSP-BF54[24789]M - all supported revisions
|
|
**
|
|
** Use by System Services/Device Drivers.
|
|
*/
|
|
#define WA_05000365 \
|
|
((defined(__ADSPBF548_FAMILY__) || defined(__ADSPBF548M_FAMILY__)) && \
|
|
defined(__SILICON_REVISION__))
|
|
|
|
|
|
/* 05-00-0371 - Possible RETS Register Corruption when Subroutine Is under
|
|
** 5 Cycles in Duration
|
|
**
|
|
** This problem impacts:
|
|
** BF531/2/3 - 0.0-0.5 (fixed in 0.6)
|
|
** BF534/6/7 - 0.0-0.3
|
|
** BF538/9 - 0.0-0.4 (fixed in 0.5)
|
|
** BF561 - 0.0-0.5
|
|
** BF542/4/7/8/9 - 0.0-0.1 (fixed in 0.2)
|
|
** BF523/5/7 - 0.0-0.1 (fixed in 0.2)
|
|
**
|
|
*/
|
|
#define WA_05000371 \
|
|
(defined(__SILICON_REVISION__) && \
|
|
((defined(__ADSPBF533_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x5 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF537_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x3 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF538_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x4 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF548_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x1 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF527_FAMILY__) && \
|
|
(__SILICON_REVISION__ <= 0x1 || __SILICON_REVISION__ == 0xffff)) || \
|
|
(defined(__ADSPBF561__) || defined(__ADSPBF566__))))
|
|
|
|
|
|
/* 05-00-0412 - "TESTSET Instruction Causes Data Corruption with Writeback Data
|
|
* Cache Enabled"
|
|
*
|
|
* If you use the testset instruction to operate on L2 memory and you have data
|
|
* in external memory that is cached using WB mode, data in external memory
|
|
* and/or L2 memory can be corrupted.
|
|
*
|
|
* Workaround: Either do not use writeback cache or precede the TESTSET
|
|
* instruction with an SSYNC instruction. If preceding the TESTSET instruction
|
|
* by an SSYNC instruction, do the following:
|
|
*
|
|
* CLI R0
|
|
* R1 = [P0] // perform a dummy read to make sure CPLB is installed
|
|
* NOP
|
|
* NOP
|
|
* SSYNC
|
|
* TESTSET (P0)
|
|
* STI R0
|
|
*
|
|
* This problem impacts:
|
|
* BF561/6 - rev 0.0-0.5
|
|
*
|
|
*/
|
|
#define WA_05000412 \
|
|
(defined (__SILICON_REVISION__) && defined(__ADSPBF561__))
|
|
|
|
|
|
/* 05-00-0426 - Speculative Fetches of Indirect-Pointer Instructions Can
|
|
** Cause False Hardware Errors
|
|
**
|
|
**
|
|
** A false hardware error is generated if there is an indirect jump or
|
|
** call through a pointer which may point to reserved or illegal memory
|
|
** on the opposite control flow of a conditional jump to the taken path.
|
|
** This commonly occurs when using function pointers, which can be
|
|
** invalid (e.g., set to -1).
|
|
**
|
|
** Workaround: If instruction cache is on or the ICPLBs are enabled,
|
|
** this anomaly does not apply. If instruction cache is off and ICPLBs
|
|
** are disabled, the indirect pointer instructions must be 2 instructions
|
|
** away from the branch instruction, which can be implemented using NOPs:
|
|
**
|
|
**
|
|
** Impacted:
|
|
** All parts and revisions other than BF535 based parts.
|
|
**
|
|
** Used by System Services/Device Drivers.
|
|
*/
|
|
#define WA_05000426 \
|
|
(defined(__ADSPLPBLACKFIN__) && defined(__SILICON_REVISION__))
|
|
|
|
|
|
/* 05-00-0428 - "Lost/Corrupted Write to L2 Memory Following Speculative Read
|
|
* by Core B from L2 Memory"
|
|
*
|
|
* This issue occurs only when the accesses are performed by core B of a BF561.
|
|
*
|
|
* When a write to internal L2 memory follows a speculative read from internal
|
|
* L2 memory, the L2 write may be lost or corrupted. For this anomaly to occur,
|
|
* the speculative read must be caused by a read in the shadow of a branch. The
|
|
* accesses do not have to be consecutive accesses. In other words, the problem
|
|
* can occur even if there are multiple instructions between the speculative
|
|
* read and the write, as shown in the following example:
|
|
*
|
|
* R1 = 1; R2 = 1;
|
|
* CC = R1 == R2;
|
|
* IF CC JUMP X; // Always true...
|
|
* R0 = [P0]; // If any of these three loads accesses L2 memory from Core
|
|
* R1 = [P1]; // B, speculative execution in the pipeline causes the
|
|
* R2 = [P2]; // anomaly trigger condition.
|
|
* X:
|
|
* ... // Any number of instructions...
|
|
* [P0] = R0; // This write can be corrupted or lost.
|
|
*
|
|
* The issue does not occur if the speculative read access is caused by an
|
|
* interrupt or exception.
|
|
*
|
|
* The workaround required depends upon the conditional branch instruction.
|
|
* If the evaluated condition is true and the branch is predicted, then the
|
|
* workaround is to ensure that the target instruction is not be a load
|
|
* instruction, for example:
|
|
*
|
|
* IF CC JUMP X (BP);
|
|
* ...
|
|
* X: <load that might be from L2 memory>
|
|
*
|
|
* If the evaluated condition is false and the branch is not predicted, then
|
|
* the workaround is to make sure that none of the three instructions that
|
|
* are executed after the conditional JUMP are load instructions, for example:
|
|
*
|
|
* IF CC JUMP ...;
|
|
* <load that might be from L2 memory>
|
|
* <load that might be from L2 memory>
|
|
* <load that might be from L2 memory>
|
|
*
|
|
* This problem impacts:
|
|
* BF561 - rev 0.4,0.5
|
|
*
|
|
*/
|
|
#define WA_05000428 \
|
|
(defined(__SILICON_REVISION__) && \
|
|
defined(__ADSPBF561__) && \
|
|
((__SILICON_REVISION__ == 0xffff) || \
|
|
(__SILICON_REVISION__ == 0x4) || \
|
|
(__SILICON_REVISION__ == 0x5)))
|
|
|
|
|
|
/* 05-00-0443 - IFLUSH Instruction at End of Hardware Loop Causes Infinite Stall
|
|
**
|
|
** Impacted:
|
|
** All parts and revisions other than BF535 based parts.
|
|
**
|
|
** Used by System Services/Device Drivers.
|
|
*/
|
|
#define WA_05000443 \
|
|
(defined(__ADSPLPBLACKFIN__) && defined(__SILICON_REVISION__))
|
|
|
|
|
|
/* 16-00-0005 - "Using L1 Instruction Cache with Parity Enabled is Unreliable."
|
|
**
|
|
** Using L1 instruction cache with parity enabled is unreliable and may cause
|
|
** unpredictable results.
|
|
**
|
|
** Impacted:
|
|
** BF6xx.
|
|
*/
|
|
#define WA_16000005 \
|
|
(defined(__ADSPBF60x__) && defined(__SILICON_REVISION__))
|
|
|
|
#ifdef _MISRA_RULES
|
|
#pragma diag(pop)
|
|
#endif /* _MISRA_RULES */
|
|
|