2d1d1eb1e4
compiler bug. * autoload.cc (TryEnterCriticalSection): Remove. * dcrt0.cc (dll_crt0_0): Delete inappropriate setting of _my_tls.stackptr to NULL since it has really bad consequences. Make 'si' an automatic variable. * cygtls.cc (_threadinfo::init_thread): Correct thinko which caused thread list to be allocated every time. * cygtls.h (CYGTLS_PADSIZE): Define as const int. * sync.h: Make multiple inclusion safe. (muto::next): Eliminate. (muto::exiting_thread): New variable. (muto::set_exiting_thread): New function. (new_muto): Change to use different section for mutos since c++ give inexplicable warning in some cases otherwise. (new_muto1): Ditto. * dcrt0.cc (do_exit): Call muto::set_exiting_thread here. * sync.cc (muto_start): Eliminate. (muto::acquire): Always give exiting thread a lock. Never give thread a lock if exiting. (muto::release): Ditto for releasing. * dtable.cc (dtable::init_lock): Unline function and define here. * dtable.h (lock_cs): Define as a muto since critical sections seem to work oddly on Windows Me. (lock): Accommodate switch to muto. (unlock): Ditto. * exceptions.cc (setup_handler): Don't worry about acquiring mutos since that hasn't mattered for a long time. (signal_exit): Ditto: muto stuff will be handled automatically on exit now. * Makefile.in (DLL_IMPORTS): Link advapi32 to ensure proper DLL initialization. * autoload.cc (RegCloseKey): Arbitrarily choose this function as a "seed" to pull the advapi32 link library in. So, comment out the autoloading. * cygtls.cc (_threadinfo::init_thread): Just clear CYGTLS_PADSIZE. (_threadinfo::remove): Add debugging. (_threadinfo::find_tls): Ditto. * cygtls.h (_threadinfo::padding): Make zero length (for now?). * dcrt0.cc (dll_crt0_0): Move more initialization here from dll_crt0_1. (dll_crt0_1): See above. * dtable.h (dtable::lock): Remove commented out critical section locking. * dtable.h (dtable::init_lock): Remove commented out critical section locking. * dtable.h (dtable::unlock): Remove commented out critical section locking. * exceptions.cc (interruptible): bool'ize. * init.cc (threadfunc_fe): Revert to storing threadfunc at stack bottom. (munge_threadfunc): Ditto. Avoid adding overhead to calibration_thread. (prime_threads): Don't initialize tls stuff. (dll_entry): Make minor change to initialization order. * tlsoffsets.h: Regenerate. * sigproc.cc (wait_sig): Add sanity check for end of process thread exit. * select.h: Make minor formatting change. * Makefile.in: Add still more -fomit-frame-pointer functions. * dtable.h (dtable::lock): New function. (dtable::unlock): New function. (dtable::init_lock): New function. * cygheap.h (HEAP_TLS): Declare new enum value. (init_cygheap::threadlist): Declare new array. (init_cygheap::sthreads): Declare new variable. (cygheap_fdmanip::~cygheap_fdmanip): Use new dtable lock/unlock functions. (cygheap_fdnew::cygheap_fdnew): Ditto. (cygheap_fdget::cygheap_fdget): Ditto. * dtable.cc (dtable_init): Initialize fdtab critical section. (dtable::fixup_after_fork): Ditto. (dtable::fixup_after_exec): Ditto. (dtable::dup2): Use lock/unlock calls to protect access to fdtab. (dtable::find_fifo): Ditto. (dtable::fixup_before_fork): Ditto. (dtable::fixup_before_exec): Ditto. (dtable::set_file_pointers_for_exec): Ditto. (dtable::vfork_child_dup): Ditto. (dtable::vfork_parent_restore): Ditto. * syscalls.cc (close_all_files): Ditto. * sync.h (muto::acquired): Declare new function. (new_muto1): Declare new macro used to specify name of muto storage. * sync.cc (muto::acquired): Define new function. * cygthread.cc (cygthread::stub): Remove signal chain removal call since it is handled during initialization now. * cygthread.cc (cygthread::simplestub): Remove signal chain removal call since it is handled during initialization now. * cygtls.cc (sentry): New class used for locking. Use throughout. (_threadinfo::reset_exception): Don't pop stack. (_threadinfo::find_tls): Move from exceptions.cc. (_threadinfo::init_thread): Initialize array of threads rather than linked list. Take second argument indicating thread function for this thread. (_threadinfo::remove): Search thread array rather than linked list. Use sentry to lock. Only unlock if we got the lock. (_threadinfo::find_tls): Ditto for first two. (handle_threadlist_exception): Handle exceptions when manipulating the thread list in case of premature thread termination. (_threadinfo::init_threadlist_exceptions): Ditto. * cygtls.h (TLS_STACK_SIZE): Decrease size. (_threadinfo::padding): Add element to avoid overwriting lower part of stack. (_threadinfo::remove): Add a "wait" argument to control how long we wait for a lock before removing. * exceptions.cc (init_exception_handler): Make global. Take argument to control exception handler being set. (ctrl_c_handler): Wait forever when removing self from signal chain. (_threadinfo::find_tls): Move to cygtls.cc. (sig_handle): Reorganize detection for thread-specific signals. * heap.cc (heap_init): Rework slightly. Make fatal error more verbose. Remove malloc initialization since it can't happen during dll attach. * init.cc (search_for): Move address to search for on stack here. (threadfunc_ix): Ditto for stack offset. Make shared so that stack walk potentially only has to be done once when cygwin processes are running. (threadfunc_fe): Use standard tls to store thread function (may change back later). (calibration_thread): New function. Potentially called to find threadfunc_ix. (munge_threadfunc): Search for "search_for" value on stack. Output warning when thread func not found on stack. Use standard tls to store thread function. (prime_threads): New function. Called to prime thread front end. (dll_entry): Call dll_crt0_0 here when DLL_PROCESS_ATTACH. Call prime_threads here. Try to remove thread from signal list here. * sigproc.cc (wait_sig): Initialize threadlist exception stuff here. * thread.cc (pthread::exit): Pass argument to signal list remove function. * thread.h: Remove obsolete *ResourceLock defines. * tlsoffsets.h: Regenerate. * winsup.h (spf): Define temporary debug macro to be deleted later. * dcrt0.cc (dll_crt0_0): New function, called during DLL initialization. Mainly consists of code pulled from dll_crt0_1. (dll_crt0_1): See above. (_dll_crt0): Wait for initial calibration thread to complete, if appropriate. Move some stuff to dll_crt0_0. (initialize_main_tls): Accommodate argument change to _thread_info::init_thread. * fork.cc (fork_child): Ditto. (sync_with_child): Fix debug message. * external.cc (cygwin_internal): Remove special considerations for uninitialized dll since initialization happens during dll attach now. * dlfcn.cc (dlopen): Remove obsolete *ResourceLock calls. (dlclose): Ditto. * cygheap.h (init_cygheap::close_ctty): Declare new function. * cygheap.cc (init_cygheap::close_ctty): Define new function. * syscalls.cc (close_all_files): Use close_ctty. (setsid): Ditto. * cygthread.cc (cygthread::stub): Remove exception initialization. * cygthread.cc (cygthread::stub): Remove exception initialization. (cygthread::simplestub): Ditto. * thread.cc (pthread::thread_init_wrapper): Ditto. * cygtls.cc (_last_thread): Make static. (_threadinfo::call2): Initialize exception handler here. (_threadinfo::find_tls): Move here. * exceptions.cc (_threadinfo::find_tls): Move. * dcrt0.cc (__api_fatal): Add prefix info to message here rather than including it in every call to function. * winsup.h (api_fatal): Accommodate above change. * debug.cc (add_handle): Don't do anything if cygheap not around. (mark_closed): Ditto. * dll_init.cc (dll_list::detach): Fix debug output. * fork.cc (sync_with_child): Ditto. (vfork): Improve debug output. * heap.cc (heap_init): Ditto. * exceptions.cc (try_to_debug): Clarify message when debugger attaches.
165 lines
5.2 KiB
C++
165 lines
5.2 KiB
C++
/* heap.cc: Cygwin heap manager.
|
|
|
|
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
|
|
|
|
This file is part of Cygwin.
|
|
|
|
This software is a copyrighted work licensed under the terms of the
|
|
Cygwin license. Please consult the file "CYGWIN_LICENSE" for
|
|
details. */
|
|
|
|
#include "winsup.h"
|
|
#include "cygerrno.h"
|
|
#include "sigproc.h"
|
|
#include "pinfo.h"
|
|
#include "heap.h"
|
|
#include "shared_info.h"
|
|
#include "security.h"
|
|
#include "path.h"
|
|
#include "fhandler.h"
|
|
#include "dtable.h"
|
|
#include "cygheap.h"
|
|
#include "registry.h"
|
|
#include "cygwin_version.h"
|
|
|
|
#define assert(x)
|
|
|
|
static unsigned page_const;
|
|
|
|
extern "C" size_t getpagesize ();
|
|
|
|
#define MINHEAP_SIZE (4 * 1024 * 1024)
|
|
|
|
/* Initialize the heap at process start up. */
|
|
void
|
|
heap_init ()
|
|
{
|
|
/* If we're the forkee, we must allocate the heap at exactly the same place
|
|
as our parent. If not, we don't care where it ends up. */
|
|
|
|
page_const = system_info.dwPageSize;
|
|
if (!cygheap->user_heap.base)
|
|
{
|
|
cygheap->user_heap.chunk = cygwin_shared->heap_chunk_size ();
|
|
while (cygheap->user_heap.chunk >= MINHEAP_SIZE)
|
|
{
|
|
/* Initialize page mask and default heap size. Preallocate a heap
|
|
* to assure contiguous memory. */
|
|
cygheap->user_heap.ptr = cygheap->user_heap.top =
|
|
cygheap->user_heap.base =
|
|
VirtualAlloc (NULL, cygheap->user_heap.chunk, MEM_RESERVE, PAGE_NOACCESS);
|
|
if (cygheap->user_heap.base)
|
|
break;
|
|
cygheap->user_heap.chunk -= 1 * 1024 * 1024;
|
|
}
|
|
if (cygheap->user_heap.base == NULL)
|
|
api_fatal ("unable to allocate heap, heap_chunk_size %d, %E",
|
|
cygheap->user_heap.chunk);
|
|
cygheap->user_heap.max = (char *) cygheap->user_heap.base + cygheap->user_heap.chunk;
|
|
}
|
|
else
|
|
{
|
|
DWORD chunk = cygheap->user_heap.chunk; /* allocation chunk */
|
|
/* total size commited in parent */
|
|
DWORD allocsize = (char *) cygheap->user_heap.top -
|
|
(char *) cygheap->user_heap.base;
|
|
|
|
/* Loop until we've managed to reserve an adequate amount of memory. */
|
|
char *p;
|
|
DWORD reserve_size = chunk * ((allocsize + (chunk - 1)) / chunk);
|
|
while (1)
|
|
{
|
|
p = (char *) VirtualAlloc (cygheap->user_heap.base, reserve_size,
|
|
MEM_RESERVE, PAGE_READWRITE);
|
|
if (p)
|
|
break;
|
|
if ((reserve_size -= page_const) <= allocsize)
|
|
break;
|
|
}
|
|
if (!p)
|
|
api_fatal ("couldn't allocate cygwin heap, %E, base %p, top %p, "
|
|
"reserve_size %d, allocsize %d, page_const %d",
|
|
cygheap->user_heap.base, cygheap->user_heap.top,
|
|
reserve_size, allocsize, page_const);
|
|
if (p != cygheap->user_heap.base)
|
|
api_fatal ("heap allocated at wrong address %p (mapped) != %p (expected)", p, cygheap->user_heap.base);
|
|
if (!VirtualAlloc (cygheap->user_heap.base, allocsize, MEM_COMMIT, PAGE_READWRITE))
|
|
api_fatal ("MEM_COMMIT failed, %E");
|
|
}
|
|
|
|
debug_printf ("heap base %p, heap top %p", cygheap->user_heap.base,
|
|
cygheap->user_heap.top);
|
|
page_const--;
|
|
// malloc_init ();
|
|
}
|
|
|
|
#define pround(n) (((size_t)(n) + page_const) & ~page_const)
|
|
|
|
/* FIXME: This function no longer handles "split heaps". */
|
|
|
|
extern "C" void *
|
|
sbrk (int n)
|
|
{
|
|
char *newtop, *newbrk;
|
|
unsigned commitbytes, newbrksize;
|
|
|
|
if (n == 0)
|
|
return cygheap->user_heap.ptr; /* Just wanted to find current cygheap->user_heap.ptr address */
|
|
|
|
newbrk = (char *) cygheap->user_heap.ptr + n; /* Where new cygheap->user_heap.ptr will be */
|
|
newtop = (char *) pround (newbrk); /* Actual top of allocated memory -
|
|
on page boundary */
|
|
|
|
if (newtop == cygheap->user_heap.top)
|
|
goto good;
|
|
|
|
if (n < 0)
|
|
{ /* Freeing memory */
|
|
assert (newtop < cygheap->user_heap.top);
|
|
n = (char *) cygheap->user_heap.top - newtop;
|
|
if (VirtualFree (newtop, n, MEM_DECOMMIT)) /* Give it back to OS */
|
|
goto good; /* Didn't take */
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
assert (newtop > cygheap->user_heap.top);
|
|
|
|
/* Find the number of bytes to commit, rounded up to the nearest page. */
|
|
commitbytes = pround (newtop - (char *) cygheap->user_heap.top);
|
|
|
|
/* Need to grab more pages from the OS. If this fails it may be because
|
|
we have used up previously reserved memory. Or, we're just plumb out
|
|
of memory. Only attempt to commit memory that we know we've previously
|
|
reserved. */
|
|
if (newtop <= cygheap->user_heap.max)
|
|
{
|
|
if (VirtualAlloc (cygheap->user_heap.top, commitbytes, MEM_COMMIT, PAGE_READWRITE) != NULL)
|
|
goto good;
|
|
}
|
|
|
|
/* Couldn't allocate memory. Maybe we can reserve some more.
|
|
Reserve either the maximum of the standard cygwin_shared->heap_chunk_size ()
|
|
or the requested amount. Then attempt to actually allocate it. */
|
|
if ((newbrksize = cygheap->user_heap.chunk) < commitbytes)
|
|
newbrksize = commitbytes;
|
|
|
|
if ((VirtualAlloc (cygheap->user_heap.top, newbrksize, MEM_RESERVE, PAGE_NOACCESS)
|
|
|| VirtualAlloc (cygheap->user_heap.top, newbrksize = commitbytes, MEM_RESERVE, PAGE_NOACCESS))
|
|
&& VirtualAlloc (cygheap->user_heap.top, commitbytes, MEM_COMMIT, PAGE_READWRITE) != NULL)
|
|
{
|
|
cygheap->user_heap.max = (char *) cygheap->user_heap.max + pround (newbrksize);
|
|
goto good;
|
|
}
|
|
|
|
err:
|
|
set_errno (ENOMEM);
|
|
return (void *) -1;
|
|
|
|
good:
|
|
void *oldbrk = cygheap->user_heap.ptr;
|
|
cygheap->user_heap.ptr = newbrk;
|
|
cygheap->user_heap.top = newtop;
|
|
return oldbrk;
|
|
}
|