4096 lines
129 KiB
C
4096 lines
129 KiB
C
/*
|
||
* To do:
|
||
* - strdup? maybe shouldn't bother yet, it seems difficult to get includes
|
||
* right using dlmalloc.h
|
||
* - add STD_C prototyping
|
||
* - adhere to comment conventions
|
||
* - maybe fix ALLOCFILL vs. MOATFILL in do_init_realloced_chunk()
|
||
* - keep a list of mmaped regions for checking in malloc_update_mallinfo()
|
||
* - I think memalign() is wrong: it aligns the chunk rather than the memory
|
||
* portion of the chunk.
|
||
* - "& -alignment" in memalign() is suspect: should use "& ~alignment"
|
||
* instead?
|
||
* - malloc.h doesn't need malloc_COPY or probably a bunch of other stuff
|
||
* - add mallopt options for e.g. fill?
|
||
* - come up with a non-BBC version of M_C
|
||
* - document necessity of checking chunk address in do_check_chunk prior to
|
||
* accessing any of its fields
|
||
* Done:
|
||
* minor speedup due to extend check before mremap
|
||
* minor speedup due to returning malloc() result in memalign() if aligned
|
||
* made malloc_update_mallinfo() check alloced regions at start of sbrk area
|
||
* fixed bug: After discovering foreign sbrk, if old_top was MINSIZE, would
|
||
* reduce old_top_size to 0, thus making inuse(old_top) return 0; other
|
||
* functions would consequently attempt to access old_top->{fd,bk}, which
|
||
* were invalid. This is in malloc_extend_top(), in the "double
|
||
* fencepost" section.
|
||
* Documentation:
|
||
* malloc_usable_size(P) is equivalent to realloc(P, malloc_usable_size(P))
|
||
*
|
||
* $Log$
|
||
* Revision 1.7 2003/09/25 00:37:16 cgf
|
||
* * devices.cc: New file.
|
||
* * devices.gperf: New file.
|
||
* * devices.shilka: New file.
|
||
* * cygwin-gperf: New file.
|
||
* * cygwin-shilka: New file.
|
||
* * fhandler_fifo.cc: New file.
|
||
* * fhandler_nodevice.cc : New file. Reorganize headers so that path.h precedes
|
||
* fhandler.h throughout. Remove device argument and unit arguments from fhandler
|
||
* constructors throughout. Remove pc arguments to fhandler functions and use
|
||
* internal pc element instead, throughout. Use dev element in pc throughout.
|
||
* Use major/minor elements rather than units and device numbers previously in
|
||
* fhandler class. Use correct methods for fhandler file names rather than
|
||
* directly accessing file name variables, throughout.
|
||
* * Makefile.in (DLL_OFILES): Add devices.o, fhandler_fifo.o
|
||
* * dcrt0.cc (dll_crt0_1): Call device::init.
|
||
* * devices.h: Renumber devices based on more Linux-like major/minor numbers.
|
||
* Add more devices. Declare standard device storage.
|
||
* (device): Declare struct.
|
||
* * dir.cc (opendir): Use new 'build_fh_name' to construct a fhandler_* type.
|
||
* * dtable.cc (dtable::get_debugger_info): Ditto.
|
||
* (cygwin_attach_handle_to_fd): Ditto.
|
||
* (dtable::release): Remove special FH_SOCKET case in favor of generic
|
||
* "need_fixup_before" test.
|
||
* (dtable::init_std_file_from_handle): Use either build_fh_dev or build_fh_name
|
||
* to build standard fhandler.
|
||
* (dtable::build_fh_name): Renamed from dtable::build_fhandler_from_name. Move
|
||
* out of dtable class. Don't accept a path_conv argument. Just build it here
|
||
* and pass it to:
|
||
* (build_fh_pc): Renamed from dtable::build_fhandler. Move out of dtable class.
|
||
* Use intrinsic device type in path_conv to create new fhandler.
|
||
* (build_fh_dev): Renamed from dtable::build_fhandler. Move out of dtable class.
|
||
* Simplify arguments to just take new 'device' type and a name. Just return
|
||
* pointer to fhandler rather than trying to insert into dtable.
|
||
* (dtable::dup_worker): Accommodate above build_fh name changes.
|
||
* (dtable::find_fifo): New (currently broken) function.
|
||
* (handle_to_fn): Use strechr for efficiency.
|
||
* * dtable.h: Reflect above build_fh name changes and argument differences.
|
||
* (fhandler_base *&operator []): Return self rather than copy of self.
|
||
* * fhandler.cc (fhandler_base::operator =): Use pc element to set normalized
|
||
* path.
|
||
* (fhandler_base::set_name): Ditto.
|
||
* (fhandler_base::raw_read): Use method to access name.
|
||
* (fhandler_base::write): Correctly use get_output_handle rather than get_handle.
|
||
* (handler_base::device_access_denied): New function.
|
||
* (fhandler_base::open): Eliminate pc argument and use pc element of
|
||
* fhandler_base throughout.
|
||
* (fhandler_base::fstat): Detect if device is based in filesystem and use
|
||
* fstat_fs to calculate stat, if so.
|
||
* (fhandler_base::fhandler_base): Eliminate handling of file names and, instead,
|
||
* just free appropriate component from pc.
|
||
* (fhandler_base::opendir): Remove path_conv parameter.
|
||
* * fhandler.h: Remove all device flags.
|
||
* (fhandler_base::pc): New element.
|
||
* (fhandler_base::set_name): Change argument to path_conv.
|
||
* (fhandler_base::error): New function.
|
||
* (fhandler_base::exists): New function.
|
||
* (fhandler_base::pc_binmode): New function.
|
||
* (fhandler_base::dev): New function.
|
||
* (fhandler_base::open_fs): New function.
|
||
* (fhandler_base::fstat_fs): New function.
|
||
* (fhandler_base::fstat_by_name): New function.
|
||
* (fhandler_base::fstat_by_handle): New function.
|
||
* (fhandler_base::isfifo): New function.
|
||
* (fhandler_base::is_slow): New function.
|
||
* (fhandler_base::is_auto_device): New function.
|
||
* (fhandler_base::is_fs_special): New function.
|
||
* (fhandler_base::device_access_denied): New function.
|
||
* (fhandler_base::operator DWORD&): New operator.
|
||
* (fhandler_base::get_name): Return normalized path from pc.
|
||
* (fhandler_base::get_win32_name): Return windows path from pc.
|
||
* (fhandler_base::isdevice): Renamed from is_device.
|
||
* (fhandler_base::get_native_name): Return device format.
|
||
* (fhandler_fifo): New class.
|
||
* (fhandler_nodevice): New class.
|
||
* (select_stuff::device_specific): Remove array.
|
||
* (select_stuff::device_specific_pipe): New class element.
|
||
* (select_stuff::device_specific_socket): New class element.
|
||
* (select_stuff::device_specific_serial): New class element.
|
||
* (select_stuff::select_stuff): Initialize new elements.
|
||
* * fhandler_disk_file.cc (fhandler_base::fstat_by_handle): Move to base class
|
||
* from fhandler_disk_file.
|
||
* (fhandler_base::fstat_by_name): Ditto.
|
||
* (fhandler_base::fstat_by_name): Ditto.
|
||
* (fhandler_disk_file::open): Move most functionality into
|
||
* fhandler_base::open_fs.
|
||
* (fhandler_base::open_fs): New function.
|
||
* (fhandler_disk_file::close): Move most functionality into
|
||
* fhandler_base::close_fs.
|
||
* (fhandler_base::close_fs): New function.
|
||
* * fhandler_mem.cc (fhandler_dev_mem::open): Use device name in debugging
|
||
* output.
|
||
* * fhandler_socket.cc (fhandler_socket::set_connect_secret): Copy standard
|
||
* urandom device into appropriate place.
|
||
* (fhandler_socket::accept): Reflect change in fdsock return value.
|
||
* * fhandler_tty.cc: See "throughouts" above.
|
||
* * net.cc: Accommodate fdsock change throughout.
|
||
* (fdsock): Return success or failure, accept fd argument and device argument.
|
||
* * path.cc (symlink_info::major): New element.
|
||
* (symlink_info::minor): New element.
|
||
* (symlink_info::parse_device): Declare new function.
|
||
* (fs_info::update): Accommodate changes in path_conv class.
|
||
* (path_conv::fillin): Ditto.
|
||
* (path_conv::return_and_clear_normalized_path): Eliminate.
|
||
* (path_conv::set_normalized_path): New function.
|
||
* (path_conv::path_conv): Set info in dev element. Use path_conv methods Check
|
||
* for FH_FS rather than FH_BAD to indicate when to fill in filesystem stuff.
|
||
* where appropriate rather than direct access. Use set_normalized_path to set
|
||
* normalized path.
|
||
* (windows_device_names): Eliminate.
|
||
* (get_dev): Ditto.
|
||
* (get_raw_device_number): Ditto.
|
||
* (get_device_number): Ditto.
|
||
* (win32_device_name): Call new device name parser to do most of the heavy
|
||
* lifting.
|
||
* (mount_info::conv_to_win32_path): Fill in dev field as appropriate.
|
||
* (symlink_worker): Handle new device files.
|
||
* (symlink_info::check): Ditto.
|
||
* (symlink_info::parse_device): Define new function.
|
||
* * path.h (executable_states): Move here from fhandler.h.
|
||
* (fs_info): Rename variables to *_storage and create methods for accessing same.
|
||
* (path_conv): Add dev element, remove devn and unit and adjust inline methods to
|
||
* accommodate.
|
||
* (set_normalized_path): Declare new function.
|
||
* * pinfo.cc (_pinfo::commune_recv): Add broken support for handling fifos.
|
||
* (_pinfo::commune_send): Ditto.
|
||
* * pipe.cc (fhandler_pipe::close): check for existence of handle before closing
|
||
* it.
|
||
* (handler_pipe::create): Rename from make_pipe. Change arguments to accept
|
||
* fhandler_pipe array. Accommodate fifos.
|
||
* (pipe): Rework to deal with fhandler_pipe::create changes.
|
||
* (_pipe): Ditto.
|
||
* * select.cc: Use individual device_specific types throughout rather than
|
||
* indexing with obsolete device number.
|
||
* (set_bits): Use is_socket call rather than checking device number.
|
||
* * shared_info.h (CURR_MOUNT_MAGIC): Update.
|
||
* (conv_to_win32_path): Reflect addition of device argument.
|
||
* * syscalls.cc (mknod_worker): New function.
|
||
* (open): Use build_fh_name to build fhandler.
|
||
* (chown_worker): Detect if this is an 'auto' device rather than an on-filesystem
|
||
* device and handle appropriately.
|
||
* (chmod_device): New function.
|
||
* (chmod): Detect if this is an 'auto' device rather than an on-filesystem device
|
||
* and handle appropriately. Use chmod_device to set mode of in-filesystem
|
||
* devices.
|
||
* (stat_worker): Eliminate path_conv argument. Call build_fh_name to construct
|
||
* fhandler. Use fh->error() rather than pc->error to detect errors in fhandler
|
||
* construction.
|
||
* (access_worker): New function pulled from access. Accommodate in-filesystem
|
||
* devices.
|
||
* (access): Use access_worker.
|
||
* (fpathconf): Detect if this is an 'auto' device rather than an on-filesystem
|
||
* device and handle appropriately.
|
||
* (mknod_worker): New function.
|
||
* (mknod32): New function.
|
||
* (chroot): Free normalized path -- assuming it was actually cmalloced.
|
||
* * tty.cc (create_tty_master): Tweak for new device class.
|
||
* (tty::common_init): Ditto.
|
||
* * winsup.h (stat_worker): Remove.
|
||
* (symlink_worker): Declare.
|
||
* * exceptions.cc (set_process_mask): Just call sig_dispatch_pending and don't
|
||
* worry about pending_signals since sig_dispatch_pending should always do the
|
||
* right thing now.
|
||
* (sig_handle): Reorganize SIGCONT handling to more closely conform to SUSv3.
|
||
* * pinfo.h: Move __SIG enum to sigproc.h.
|
||
* (PICOM_FIFO): New enum element.
|
||
* (_pinfo): Remove 'thread2signal' stuff throughout class.
|
||
* (_pinfo::commune_send): Make varargs.
|
||
* (_pinfo::sigtodo): Eliminate.
|
||
* (_pinfo::thread2signal): Ditto.
|
||
* * signal.cc (kill_worker): Eliminate call to setthread2signal.
|
||
* * sigproc.cc (local_sigtodo): Eliminate.
|
||
* (getlocal_sigtodo): Ditto.
|
||
* (sigelem): New class.
|
||
* (pending_signals): New class.
|
||
* (sigqueue): New variable, start of sigqueue linked list.
|
||
* (sigcatch_nonmain): Eliminate.
|
||
* (sigcatch_main): Eliminate.
|
||
* (sigcatch_nosync): Eliminate.
|
||
* (sigcomplete_nonmain): Eliminate.
|
||
* (pending_signals): Eliminate.
|
||
* (sig_clear): Call signal thread to clear pending signals, unless already in
|
||
* signal thread.
|
||
* (sigpending): Call signal thread to get pending signals.
|
||
* (sig_dispatch_pending): Eliminate use of pending_signals and just check
|
||
* sigqueue.
|
||
* (sigproc_terminate): Eliminate all of the obsolete semaphore stuff. Close
|
||
* signal pipe handle.
|
||
* (sig_send): Eliminate all of the obsolete semaphore stuff and use pipe to send
|
||
* signals.
|
||
* (getevent): Eliminate.
|
||
* (pending_signals::add): New function.
|
||
* (pending_signals::del): New function.
|
||
* (pending_signals::next): New function.
|
||
* (wait_sig): Eliminate all of the obsolete semaphore stuff. Use pipe to
|
||
* communicate and maintain a linked list of signals.
|
||
* * sigproc.h: Move __SIG defines here. Add __SIGPENDING.
|
||
* (sig_dispatch_pending): Remove "C" specifier.
|
||
* (sig_handle): Accept a mask argument.
|
||
* * thread.cc: Remove signal handling considerations throughout.
|
||
*
|
||
* Revision 1.5.52.1 2003/09/02 02:31:08 cgf
|
||
* merge from trunk
|
||
*
|
||
* Revision 1.6 2003/08/31 18:26:58 cgf
|
||
* * Makefile.in (MALLOC_OFILES): Always fill in with correct malloc object.
|
||
* * configure.in: Fill in MALLOC_OFILES with either debugging or regular malloc.
|
||
* * configure: Regenerate.
|
||
* * dlmalloc.c: Make various fruitless changes to attempt to get to work.
|
||
* * dlmalloc.h: Ditto.
|
||
* * malloc.cc (free): Check malloc pool when debugging.
|
||
* * path.cc (win32_device_name): Eliminate compiler warning.
|
||
* * sigproc.cc (sig_dispatch_pending): Remove use of was_pending. Let
|
||
* thisframe.call_signal_handler decide if handler should be called rather than
|
||
* using bogus was_pending check.
|
||
* * exceptions.cc (interrupt_setup): Remove accidentally checked in debugging
|
||
* code.
|
||
* * heap.cc (sbrk): Save rounded addess in user_heap_max.
|
||
*
|
||
* Revision 1.5 2001/10/03 03:49:25 cgf
|
||
* * cygheap.cc (cfree): Remove malloc debugging probe.
|
||
* * dlmalloc.c (errprint): Remove abort() call which causes interesting error
|
||
* message printing to abort prematurely.
|
||
* * environ.cc: Sprinkle MALLOC_CHECKs liberally throughout.
|
||
* (_addenv): Allocate two empty elements at end of environ to
|
||
* (apparently) work around problems with some buggy applications.
|
||
* (winenv): Avoid calling alloca if no forced environment variable is present.
|
||
*
|
||
* * exceptions.cc (open_stackdumpfile): Don't print "Dumping stack trace to..."
|
||
* when running in a cygwin environment (i.e., the parent is a cygwin process).
|
||
*
|
||
* * dtable.cc (dtable::init_std_file_from_handle): Move device type detection
|
||
* code from build_fhandler here since it is only used by this function.
|
||
* (dtable::build_fhandler_from_name): New method. Renamed from
|
||
* dtable::build_fhandler.
|
||
* (dtable::build_fhandler): Use build_fhandler_from_name.
|
||
* (cygwin_attach_handle_to_fd): Ditto.
|
||
* * syscalls.cc (_open): Ditto.
|
||
* (stat_worker): Ditto.
|
||
* * dtable.h (dtable::build_fhandler_from_name): Rename declaration from
|
||
* dtable::build_fhandler.
|
||
*
|
||
* Revision 1.4 2001/09/07 21:32:04 cgf
|
||
* * cygheap.h (init_cygheap): Move heap pointers here.
|
||
* * include/sys/cygwin.h (perprocess): Remove heap pointers.
|
||
* * dcrt0.cc (__cygwin_user_data): Reflect obsolete perprocess stuff.
|
||
* (_dll_crt0): Don't initialize heap pointers.
|
||
* (cygwin_dll_init): Ditto.
|
||
* (release_upto): Use heap pointers from cygheap.
|
||
* * heap.h: Ditto.
|
||
* * fork.cc (fork_parent): Ditto. Don't set heap pointers in ch.
|
||
* (fork_child): Remove obsolete sigproc_fixup_after_fork.
|
||
* * shared.cc (memory_init): Reorganize so that cygheap initialization is called
|
||
* prior to regular heap since regular heap uses cygheap now.
|
||
* * sigproc.cc (proc_subproc): Eliminate zombies allocation.
|
||
* (sigproc_init): Move zombies alloation here. Don't free up array on fork, just
|
||
* reuse it.
|
||
* (sigproc_fixup_after_fork): Eliminate.
|
||
* * sigproc.h: Ditto.
|
||
* * include/cygwin/version.h: Reflect change to perprocess structure.
|
||
*
|
||
* Revision 1.3 2001/06/26 14:47:48 cgf
|
||
* * mmap.cc: Clean up *ResourceLock calls throughout.
|
||
* * thread.cc (pthread_cond::TimedWait): Check for WAIT_TIMEOUT as well as
|
||
* WAIT_ABANDONED.
|
||
* (__pthread_cond_timedwait): Calculate a relative wait from the abstime
|
||
* parameter.
|
||
*
|
||
* Revision 1.2 2001/06/24 22:26:49 cgf
|
||
* forced commit
|
||
*
|
||
* Revision 1.1 2001/04/24 15:25:30 duda
|
||
* * dlmalloc.c: New file. Port of Doug Lea's malloc
|
||
* * dlmalloc.h: Ditto.
|
||
* * Makefile.in: Add support for MALLOC_DEBUG
|
||
* * config.h.in: Ditto.
|
||
* * winsup.h: Ditto.
|
||
* * configure.in: Add --enable-malloc-debugging option.
|
||
* * configure: Regenerate.
|
||
* * debug.h: Include declarations for debugging malloc.
|
||
* * tty.cc (grantpt): Fix definition.
|
||
* (unlockpt): Ditto.
|
||
*
|
||
* Revision 1.1 1997/12/24 18:34:47 nsd
|
||
* Initial revision
|
||
*
|
||
*/
|
||
/* ---------- To make a malloc.h, start cutting here ------------ */
|
||
|
||
/*
|
||
A version of malloc/free/realloc written by Doug Lea and released to the
|
||
public domain. Send questions/comments/complaints/performance data
|
||
to dl@cs.oswego.edu
|
||
|
||
* VERSION 2.6.4 Thu Nov 28 07:54:55 1996 Doug Lea (dl at gee)
|
||
|
||
Note: There may be an updated version of this malloc obtainable at
|
||
ftp://g.oswego.edu/pub/misc/malloc.c
|
||
Check before installing!
|
||
|
||
* Why use this malloc?
|
||
|
||
This is not the fastest, most space-conserving, most portable, or
|
||
most tunable malloc ever written. However it is among the fastest
|
||
while also being among the most space-conserving, portable and tunable.
|
||
Consistent balance across these factors results in a good general-purpose
|
||
allocator. For a high-level description, see
|
||
http://g.oswego.edu/dl/html/malloc.html
|
||
|
||
* Synopsis of public routines
|
||
|
||
(Much fuller descriptions are contained in the program documentation below.)
|
||
|
||
malloc(size_t n);
|
||
Return a pointer to a newly allocated chunk of at least n bytes, or null
|
||
if no space is available.
|
||
free(Void_t* p);
|
||
Release the chunk of memory pointed to by p, or no effect if p is null.
|
||
realloc(Void_t* p, size_t n);
|
||
Return a pointer to a chunk of size n that contains the same data
|
||
as does chunk p up to the minimum of (n, p's size) bytes, or null
|
||
if no space is available. The returned pointer may or may not be
|
||
the same as p. If p is null, equivalent to malloc. Unless the
|
||
#define realloc_ZERO_BYTES_FREES below is set, realloc with a
|
||
size argument of zero (re)allocates a minimum-sized chunk.
|
||
memalign(size_t alignment, size_t n);
|
||
Return a pointer to a newly allocated chunk of n bytes, aligned
|
||
in accord with the alignment argument, which must be a power of
|
||
two.
|
||
valloc(size_t n);
|
||
Equivalent to memalign(pagesize, n), where pagesize is the page
|
||
size of the system (or as near to this as can be figured out from
|
||
all the includes/defines below.)
|
||
pvalloc(size_t n);
|
||
Equivalent to valloc(minimum-page-that-holds(n)), that is,
|
||
round up n to nearest pagesize.
|
||
calloc(size_t unit, size_t quantity);
|
||
Returns a pointer to quantity * unit bytes, with all locations
|
||
set to zero.
|
||
cfree(Void_t* p);
|
||
Equivalent to free(p).
|
||
malloc_trim(size_t pad);
|
||
Release all but pad bytes of freed top-most memory back
|
||
to the system. Return 1 if successful, else 0.
|
||
malloc_usable_size(Void_t* p);
|
||
Report the number usable allocated bytes associated with allocated
|
||
chunk p. This may or may not report more bytes than were requested,
|
||
due to alignment and minimum size constraints.
|
||
malloc_stats();
|
||
Prints brief summary statistics on stderr.
|
||
mallinfo()
|
||
Returns (by copy) a struct containing various summary statistics.
|
||
mallopt(int parameter_number, int parameter_value)
|
||
Changes one of the tunable parameters described below. Returns
|
||
1 if successful in changing the parameter, else 0.
|
||
|
||
* Vital statistics:
|
||
|
||
Alignment: 8-byte
|
||
8 byte alignment is currently hardwired into the design. This
|
||
seems to suffice for all current machines and C compilers.
|
||
|
||
Assumed pointer representation: 4 or 8 bytes
|
||
Code for 8-byte pointers is untested by me but has worked
|
||
reliably by Wolfram Gloger, who contributed most of the
|
||
changes supporting this.
|
||
|
||
Assumed size_t representation: 4 or 8 bytes
|
||
Note that size_t is allowed to be 4 bytes even if pointers are 8.
|
||
|
||
Minimum overhead per allocated chunk: 4 or 8 bytes
|
||
Each malloced chunk has a hidden overhead of 4 bytes holding size
|
||
and status information.
|
||
|
||
Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
|
||
8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
|
||
|
||
When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
|
||
ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
|
||
needed; 4 (8) for a trailing size field
|
||
and 8 (16) bytes for free list pointers. Thus, the minimum
|
||
allocatable size is 16/24/32 bytes.
|
||
|
||
Even a request for zero bytes (i.e., malloc(0)) returns a
|
||
pointer to something of the minimum allocatable size.
|
||
|
||
Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
|
||
8-byte size_t: 2^63 - 16 bytes
|
||
|
||
It is assumed that (possibly signed) size_t bit values suffice to
|
||
represent chunk sizes. `Possibly signed' is due to the fact
|
||
that `size_t' may be defined on a system as either a signed or
|
||
an unsigned type. To be conservative, values that would appear
|
||
as negative numbers are avoided.
|
||
Requests for sizes with a negative sign bit will return a
|
||
minimum-sized chunk.
|
||
|
||
Maximum overhead wastage per allocated chunk: normally 15 bytes
|
||
|
||
Alignnment demands, plus the minimum allocatable size restriction
|
||
make the normal worst-case wastage 15 bytes (i.e., up to 15
|
||
more bytes will be allocated than were requested in malloc), with
|
||
two exceptions:
|
||
1. Because requests for zero bytes allocate non-zero space,
|
||
the worst case wastage for a request of zero bytes is 24 bytes.
|
||
2. For requests >= mmap_threshold that are serviced via
|
||
mmap(), the worst case wastage is 8 bytes plus the remainder
|
||
from a system page (the minimal mmap unit); typically 4096 bytes.
|
||
|
||
* Limitations
|
||
|
||
Here are some features that are NOT currently supported
|
||
|
||
* No user-definable hooks for callbacks and the like.
|
||
* No automated mechanism for fully checking that all accesses
|
||
to malloced memory stay within their bounds.
|
||
* No support for compaction.
|
||
|
||
* Synopsis of compile-time options:
|
||
|
||
People have reported using previous versions of this malloc on all
|
||
versions of Unix, sometimes by tweaking some of the defines
|
||
below. It has been tested most extensively on Solaris and
|
||
Linux. It is also reported to work on WIN32 platforms.
|
||
People have also reported adapting this malloc for use in
|
||
stand-alone embedded systems.
|
||
|
||
The implementation is in straight, hand-tuned ANSI C. Among other
|
||
consequences, it uses a lot of macros. Because of this, to be at
|
||
all usable, this code should be compiled using an optimizing compiler
|
||
(for example gcc -O2) that can simplify expressions and control
|
||
paths.
|
||
|
||
__STD_C (default: derived from C compiler defines)
|
||
Nonzero if using ANSI-standard C compiler, a C++ compiler, or
|
||
a C compiler sufficiently close to ANSI to get away with it.
|
||
DEBUG (default: NOT defined)
|
||
Define to enable debugging. Adds fairly extensive assertion-based
|
||
checking to help track down memory errors, but noticeably slows down
|
||
execution.
|
||
realloc_ZERO_BYTES_FREES (default: NOT defined)
|
||
Define this if you think that realloc(p, 0) should be equivalent
|
||
to free(p). Otherwise, since malloc returns a unique pointer for
|
||
malloc(0), so does realloc(p, 0).
|
||
HAVE_memcpy (default: defined)
|
||
Define if you are not otherwise using ANSI STD C, but still
|
||
have memcpy and memset in your C library and want to use them.
|
||
Otherwise, simple internal versions are supplied.
|
||
USE_memcpy (default: 1 if HAVE_memcpy is defined, 0 otherwise)
|
||
Define as 1 if you want the C library versions of memset and
|
||
memcpy called in realloc and calloc (otherwise macro versions are used).
|
||
At least on some platforms, the simple macro versions usually
|
||
outperform libc versions.
|
||
HAVE_MMAP (default: defined as 1)
|
||
Define to non-zero to optionally make malloc() use mmap() to
|
||
allocate very large blocks.
|
||
HAVE_MREMAP (default: defined as 0 unless Linux libc set)
|
||
Define to non-zero to optionally make realloc() use mremap() to
|
||
reallocate very large blocks.
|
||
malloc_getpagesize (default: derived from system #includes)
|
||
Either a constant or routine call returning the system page size.
|
||
HAVE_USR_INCLUDE_malloc_H (default: NOT defined)
|
||
Optionally define if you are on a system with a /usr/include/malloc.h
|
||
that declares struct mallinfo. It is not at all necessary to
|
||
define this even if you do, but will ensure consistency.
|
||
INTERNAL_SIZE_T (default: size_t)
|
||
Define to a 32-bit type (probably `unsigned int') if you are on a
|
||
64-bit machine, yet do not want or need to allow malloc requests of
|
||
greater than 2^31 to be handled. This saves space, especially for
|
||
very small chunks.
|
||
INTERNAL_LINUX_C_LIB (default: NOT defined)
|
||
Defined only when compiled as part of Linux libc.
|
||
Also note that there is some odd internal name-mangling via defines
|
||
(for example, internally, `malloc' is named `mALLOc') needed
|
||
when compiling in this case. These look funny but don't otherwise
|
||
affect anything.
|
||
WIN32 (default: undefined)
|
||
Define this on MS win (95, nt) platforms to compile in sbrk emulation.
|
||
LACKS_UNISTD_H (default: undefined)
|
||
Define this if your system does not have a <unistd.h>.
|
||
MORECORE (default: sbrk)
|
||
The name of the routine to call to obtain more memory from the system.
|
||
MORECORE_FAILURE (default: -1)
|
||
The value returned upon failure of MORECORE.
|
||
MORECORE_CLEARS (default 0)
|
||
True (1) if the routine mapped to MORECORE zeroes out memory (which
|
||
holds for sbrk).
|
||
DEFAULT_TRIM_THRESHOLD
|
||
DEFAULT_TOP_PAD
|
||
DEFAULT_MMAP_THRESHOLD
|
||
DEFAULT_MMAP_MAX
|
||
Default values of tunable parameters (described in detail below)
|
||
controlling interaction with host system routines (sbrk, mmap, etc).
|
||
These values may also be changed dynamically via mallopt(). The
|
||
preset defaults are those that give best performance for typical
|
||
programs/systems.
|
||
|
||
|
||
*/
|
||
|
||
|
||
|
||
|
||
/* Preliminaries */
|
||
|
||
#include "winsup.h"
|
||
|
||
#ifndef __STD_C
|
||
#ifdef __STDC__
|
||
#define __STD_C 1
|
||
#else
|
||
#if __cplusplus
|
||
#define __STD_C 1
|
||
#else
|
||
#define __STD_C 0
|
||
#endif /*__cplusplus*/
|
||
#endif /*__STDC__*/
|
||
#endif /*__STD_C*/
|
||
|
||
#ifndef Void_t
|
||
#if __STD_C
|
||
#define Void_t void
|
||
#else
|
||
#define Void_t char
|
||
#endif
|
||
#endif /*Void_t*/
|
||
|
||
#define __MALLOC_H_INCLUDED
|
||
|
||
#if __STD_C
|
||
#include <stddef.h> /* for size_t */
|
||
#else
|
||
#include <sys/types.h>
|
||
#endif
|
||
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
#include <stdio.h> /* needed for malloc_stats */
|
||
|
||
|
||
/*
|
||
Compile-time options
|
||
*/
|
||
|
||
|
||
/*
|
||
Debugging:
|
||
|
||
Because freed chunks may be overwritten with link fields, this
|
||
malloc will often die when freed memory is overwritten by user
|
||
programs. This can be very effective (albeit in an annoying way)
|
||
in helping track down dangling pointers.
|
||
|
||
If you compile with -DDEBUG, a number of assertion checks are
|
||
enabled that will catch more memory errors. You probably won't be
|
||
able to make much sense of the actual assertion errors, but they
|
||
should help you locate incorrectly overwritten memory. The
|
||
checking is fairly extensive, and will slow down execution
|
||
noticeably. Calling malloc_stats or mallinfo with DEBUG set will
|
||
attempt to check every non-mmapped allocated and free chunk in the
|
||
course of computing the summmaries. (By nature, mmapped regions
|
||
cannot be checked very much automatically.)
|
||
|
||
Setting DEBUG may also be helpful if you are trying to modify
|
||
this code. The assertions in the check routines spell out in more
|
||
detail the assumptions and invariants underlying the algorithms.
|
||
|
||
*/
|
||
|
||
#ifdef MALLOC_DEBUG
|
||
#define DEBUG 1
|
||
#define DEBUG1 1
|
||
#define DEBUG2 1
|
||
#define DEBUG3 1
|
||
#endif
|
||
|
||
#if DEBUG
|
||
#include <assert.h>
|
||
#else
|
||
#define assert(x) ((void)0)
|
||
#endif
|
||
|
||
/*
|
||
INTERNAL_SIZE_T is the word-size used for internal bookkeeping
|
||
of chunk sizes. On a 64-bit machine, you can reduce malloc
|
||
overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
|
||
at the expense of not being able to handle requests greater than
|
||
2^31. This limitation is hardly ever a concern; you are encouraged
|
||
to set this. However, the default version is the same as size_t.
|
||
*/
|
||
|
||
#ifndef INTERNAL_SIZE_T
|
||
#define INTERNAL_SIZE_T size_t
|
||
#endif
|
||
|
||
/*
|
||
realloc_ZERO_BYTES_FREES should be set if a call to
|
||
realloc with zero bytes should be the same as a call to free.
|
||
Some people think it should. Otherwise, since this malloc
|
||
returns a unique pointer for malloc(0), so does realloc(p, 0).
|
||
*/
|
||
|
||
|
||
/* #define realloc_ZERO_BYTES_FREES */
|
||
|
||
|
||
/*
|
||
WIN32 causes an emulation of sbrk to be compiled in
|
||
mmap-based options are not currently supported in WIN32.
|
||
*/
|
||
|
||
/* #define WIN32 */
|
||
#ifdef WIN32
|
||
#define MORECORE wsbrk
|
||
#define HAVE_MMAP 0
|
||
#endif
|
||
|
||
|
||
/*
|
||
HAVE_memcpy should be defined if you are not otherwise using
|
||
ANSI STD C, but still have memcpy and memset in your C library
|
||
and want to use them in calloc and realloc. Otherwise simple
|
||
macro versions are defined here.
|
||
|
||
USE_memcpy should be defined as 1 if you actually want to
|
||
have memset and memcpy called. People report that the macro
|
||
versions are often enough faster than libc versions on many
|
||
systems that it is better to use them.
|
||
|
||
*/
|
||
|
||
#define HAVE_memcpy
|
||
|
||
#ifndef USE_memcpy
|
||
#ifdef HAVE_memcpy
|
||
#define USE_memcpy 1
|
||
#else
|
||
#define USE_memcpy 0
|
||
#endif
|
||
#endif
|
||
|
||
#if (__STD_C || defined(HAVE_memcpy))
|
||
|
||
#if __STD_C
|
||
void* memset(void*, int, size_t);
|
||
void* memcpy(void*, const void*, size_t);
|
||
#else
|
||
Void_t* memset();
|
||
Void_t* memcpy();
|
||
#endif
|
||
#endif
|
||
|
||
#ifndef DEBUG3
|
||
|
||
#if USE_memcpy
|
||
|
||
/* The following macros are only invoked with (2n+1)-multiples of
|
||
INTERNAL_SIZE_T units, with a positive integer n. This is exploited
|
||
for fast inline execution when n is small. */
|
||
|
||
#define malloc_ZERO(charp, nbytes) \
|
||
do { \
|
||
INTERNAL_SIZE_T mzsz = (nbytes); \
|
||
if(mzsz <= 9*sizeof(mzsz)) { \
|
||
INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
|
||
if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
|
||
*mz++ = 0; \
|
||
if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
|
||
*mz++ = 0; \
|
||
if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
|
||
*mz++ = 0; }}} \
|
||
*mz++ = 0; \
|
||
*mz++ = 0; \
|
||
*mz = 0; \
|
||
} else memset((charp), 0, mzsz); \
|
||
} while(0)
|
||
|
||
#define malloc_COPY(dest,src,nbytes) \
|
||
do { \
|
||
INTERNAL_SIZE_T mcsz = (nbytes); \
|
||
if(mcsz <= 9*sizeof(mcsz)) { \
|
||
INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
|
||
INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
|
||
if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
|
||
*mcdst++ = *mcsrc++; \
|
||
if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
|
||
*mcdst++ = *mcsrc++; \
|
||
if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
|
||
*mcdst++ = *mcsrc++; }}} \
|
||
*mcdst++ = *mcsrc++; \
|
||
*mcdst++ = *mcsrc++; \
|
||
*mcdst = *mcsrc ; \
|
||
} else memcpy(dest, src, mcsz); \
|
||
} while(0)
|
||
|
||
#else /* !USE_memcpy */
|
||
|
||
/* Use Duff's device for good zeroing/copying performance. */
|
||
|
||
#define malloc_ZERO(charp, nbytes) \
|
||
do { \
|
||
INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
|
||
long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
|
||
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
|
||
switch (mctmp) { \
|
||
case 0: for(;;) { *mzp++ = 0; \
|
||
case 7: *mzp++ = 0; \
|
||
case 6: *mzp++ = 0; \
|
||
case 5: *mzp++ = 0; \
|
||
case 4: *mzp++ = 0; \
|
||
case 3: *mzp++ = 0; \
|
||
case 2: *mzp++ = 0; \
|
||
case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
|
||
} \
|
||
} while(0)
|
||
|
||
#define malloc_COPY(dest,src,nbytes) \
|
||
do { \
|
||
INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
|
||
INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
|
||
long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
|
||
if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
|
||
switch (mctmp) { \
|
||
case 0: for(;;) { *mcdst++ = *mcsrc++; \
|
||
case 7: *mcdst++ = *mcsrc++; \
|
||
case 6: *mcdst++ = *mcsrc++; \
|
||
case 5: *mcdst++ = *mcsrc++; \
|
||
case 4: *mcdst++ = *mcsrc++; \
|
||
case 3: *mcdst++ = *mcsrc++; \
|
||
case 2: *mcdst++ = *mcsrc++; \
|
||
case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
|
||
} \
|
||
} while(0)
|
||
|
||
#endif
|
||
|
||
#else /* DEBUG3 */
|
||
|
||
/* The trailing moat invalidates the above prediction about the nbytes
|
||
parameter to malloc_ZERO and malloc_COPY. */
|
||
|
||
#define malloc_ZERO(charp, nbytes) \
|
||
do { \
|
||
char *mzp = (char *)(charp); \
|
||
long mzn = (nbytes); \
|
||
while (mzn--) \
|
||
*mzp++ = '\0'; \
|
||
} while(0)
|
||
|
||
#define malloc_COPY(dest,src,nbytes) \
|
||
do { \
|
||
char *mcsrc = (char *)(src); \
|
||
char *mcdst = (char *)(dest); \
|
||
long mcn = (nbytes); \
|
||
while (mcn--) \
|
||
*mcdst++ = *mcsrc++; \
|
||
} while(0)
|
||
|
||
#endif /* DEBUG3 */
|
||
|
||
/*
|
||
Define HAVE_MMAP to optionally make malloc() use mmap() to
|
||
allocate very large blocks. These will be returned to the
|
||
operating system immediately after a free().
|
||
*/
|
||
|
||
#ifndef HAVE_MMAP
|
||
#define HAVE_MMAP 1
|
||
#endif
|
||
|
||
/*
|
||
Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
|
||
large blocks. This is currently only possible on Linux with
|
||
kernel versions newer than 1.3.77.
|
||
*/
|
||
|
||
#ifndef HAVE_MREMAP
|
||
#ifdef INTERNAL_LINUX_C_LIB
|
||
#define HAVE_MREMAP 1
|
||
#else
|
||
#define HAVE_MREMAP 0
|
||
#endif
|
||
#endif
|
||
|
||
#if HAVE_MMAP
|
||
|
||
#include <unistd.h>
|
||
#include <fcntl.h>
|
||
#include <sys/mman.h>
|
||
|
||
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
|
||
#define MAP_ANONYMOUS MAP_ANON
|
||
#endif
|
||
|
||
#endif /* HAVE_MMAP */
|
||
|
||
/*
|
||
Access to system page size. To the extent possible, this malloc
|
||
manages memory from the system in page-size units.
|
||
|
||
The following mechanics for getpagesize were adapted from
|
||
bsd/gnu getpagesize.h
|
||
*/
|
||
|
||
#ifndef LACKS_UNISTD_H
|
||
# include <unistd.h>
|
||
#endif
|
||
|
||
#ifndef malloc_getpagesize
|
||
# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
|
||
# ifndef _SC_PAGE_SIZE
|
||
# define _SC_PAGE_SIZE _SC_PAGESIZE
|
||
# endif
|
||
# endif
|
||
# ifdef _SC_PAGE_SIZE
|
||
# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
|
||
# else
|
||
# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
|
||
# if __STD_C
|
||
extern size_t getpagesize(void);
|
||
# else
|
||
extern size_t getpagesize();
|
||
# endif
|
||
# define malloc_getpagesize getpagesize()
|
||
# else
|
||
# include <sys/param.h>
|
||
# ifdef EXEC_PAGESIZE
|
||
# define malloc_getpagesize EXEC_PAGESIZE
|
||
# else
|
||
# ifdef NBPG
|
||
# ifndef CLSIZE
|
||
# define malloc_getpagesize NBPG
|
||
# else
|
||
# define malloc_getpagesize (NBPG * CLSIZE)
|
||
# endif
|
||
# else
|
||
# ifdef NBPC
|
||
# define malloc_getpagesize NBPC
|
||
# else
|
||
# ifdef PAGESIZE
|
||
# define malloc_getpagesize PAGESIZE
|
||
# else
|
||
# define malloc_getpagesize (4096) /* just guess */
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
# endif
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
|
||
This version of malloc supports the standard SVID/XPG mallinfo
|
||
routine that returns a struct containing the same kind of
|
||
information you can get from malloc_stats. It should work on
|
||
any SVID/XPG compliant system that has a /usr/include/malloc.h
|
||
defining struct mallinfo. (If you'd like to install such a thing
|
||
yourself, cut out the preliminary declarations as described above
|
||
and below and save them in a malloc.h file. But there's no
|
||
compelling reason to bother to do this.)
|
||
|
||
The main declaration needed is the mallinfo struct that is returned
|
||
(by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
|
||
bunch of fields, most of which are not even meaningful in this
|
||
version of malloc. Some of these fields are are instead filled by
|
||
mallinfo() with other numbers that might possibly be of interest.
|
||
|
||
HAVE_USR_INCLUDE_malloc_H should be set if you have a
|
||
/usr/include/malloc.h file that includes a declaration of struct
|
||
mallinfo. If so, it is included; else an SVID2/XPG2 compliant
|
||
version is declared below. These must be precisely the same for
|
||
mallinfo() to work.
|
||
|
||
*/
|
||
|
||
/* #define HAVE_USR_INCLUDE_malloc_H */
|
||
|
||
#if HAVE_USR_INCLUDE_malloc_H
|
||
#include "/usr/include/malloc.h"
|
||
#else
|
||
|
||
/* SVID2/XPG mallinfo structure */
|
||
|
||
struct mallinfo {
|
||
int arena; /* total space allocated from system */
|
||
int ordblks; /* number of non-inuse chunks */
|
||
int smblks; /* unused -- always zero */
|
||
int hblks; /* number of mmapped regions */
|
||
int hblkhd; /* total space in mmapped regions */
|
||
int usmblks; /* unused -- always zero */
|
||
int fsmblks; /* unused -- always zero */
|
||
int uordblks; /* total allocated space */
|
||
int fordblks; /* total non-inuse space */
|
||
int keepcost; /* top-most, releasable (via malloc_trim) space */
|
||
};
|
||
|
||
/* SVID2/XPG mallopt options */
|
||
|
||
#define M_MXFAST 1 /* UNUSED in this malloc */
|
||
#define M_NLBLKS 2 /* UNUSED in this malloc */
|
||
#define M_GRAIN 3 /* UNUSED in this malloc */
|
||
#define M_KEEP 4 /* UNUSED in this malloc */
|
||
|
||
#endif
|
||
|
||
/* mallopt options that actually do something */
|
||
|
||
#define M_TRIM_THRESHOLD -1
|
||
#define M_TOP_PAD -2
|
||
#define M_MMAP_THRESHOLD -3
|
||
#define M_MMAP_MAX -4
|
||
#define M_SCANHEAP -5
|
||
#define M_FILL
|
||
|
||
|
||
|
||
#ifndef DEFAULT_TRIM_THRESHOLD
|
||
#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
|
||
#endif
|
||
|
||
/*
|
||
M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
|
||
to keep before releasing via malloc_trim in free().
|
||
|
||
Automatic trimming is mainly useful in long-lived programs.
|
||
Because trimming via sbrk can be slow on some systems, and can
|
||
sometimes be wasteful (in cases where programs immediately
|
||
afterward allocate more large chunks) the value should be high
|
||
enough so that your overall system performance would improve by
|
||
releasing.
|
||
|
||
The trim threshold and the mmap control parameters (see below)
|
||
can be traded off with one another. Trimming and mmapping are
|
||
two different ways of releasing unused memory back to the
|
||
system. Between these two, it is often possible to keep
|
||
system-level demands of a long-lived program down to a bare
|
||
minimum. For example, in one test suite of sessions measuring
|
||
the XF86 X server on Linux, using a trim threshold of 128K and a
|
||
mmap threshold of 192K led to near-minimal long term resource
|
||
consumption.
|
||
|
||
If you are using this malloc in a long-lived program, it should
|
||
pay to experiment with these values. As a rough guide, you
|
||
might set to a value close to the average size of a process
|
||
(program) running on your system. Releasing this much memory
|
||
would allow such a process to run in memory. Generally, it's
|
||
worth it to tune for trimming rather tham memory mapping when a
|
||
program undergoes phases where several large chunks are
|
||
allocated and released in ways that can reuse each other's
|
||
storage, perhaps mixed with phases where there are no such
|
||
chunks at all. And in well-behaved long-lived programs,
|
||
controlling release of large blocks via trimming versus mapping
|
||
is usually faster.
|
||
|
||
However, in most programs, these parameters serve mainly as
|
||
protection against the system-level effects of carrying around
|
||
massive amounts of unneeded memory. Since frequent calls to
|
||
sbrk, mmap, and munmap otherwise degrade performance, the default
|
||
parameters are set to relatively high values that serve only as
|
||
safeguards.
|
||
|
||
The default trim value is high enough to cause trimming only in
|
||
fairly extreme (by current memory consumption standards) cases.
|
||
It must be greater than page size to have any useful effect. To
|
||
disable trimming completely, you can set to (unsigned long)(-1);
|
||
|
||
|
||
*/
|
||
|
||
|
||
#ifndef DEFAULT_TOP_PAD
|
||
#define DEFAULT_TOP_PAD (0)
|
||
#endif
|
||
|
||
/*
|
||
M_TOP_PAD is the amount of extra `padding' space to allocate or
|
||
retain whenever sbrk is called. It is used in two ways internally:
|
||
|
||
* When sbrk is called to extend the top of the arena to satisfy
|
||
a new malloc request, this much padding is added to the sbrk
|
||
request.
|
||
|
||
* When malloc_trim is called automatically from free(),
|
||
it is used as the `pad' argument.
|
||
|
||
In both cases, the actual amount of padding is rounded
|
||
so that the end of the arena is always a system page boundary.
|
||
|
||
The main reason for using padding is to avoid calling sbrk so
|
||
often. Having even a small pad greatly reduces the likelihood
|
||
that nearly every malloc request during program start-up (or
|
||
after trimming) will invoke sbrk, which needlessly wastes
|
||
time.
|
||
|
||
Automatic rounding-up to page-size units is normally sufficient
|
||
to avoid measurable overhead, so the default is 0. However, in
|
||
systems where sbrk is relatively slow, it can pay to increase
|
||
this value, at the expense of carrying around more memory than
|
||
the program needs.
|
||
|
||
*/
|
||
|
||
|
||
#ifndef DEFAULT_MMAP_THRESHOLD
|
||
#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
|
||
#endif
|
||
|
||
/*
|
||
|
||
M_MMAP_THRESHOLD is the request size threshold for using mmap()
|
||
to service a request. Requests of at least this size that cannot
|
||
be allocated using already-existing space will be serviced via mmap.
|
||
(If enough normal freed space already exists it is used instead.)
|
||
|
||
Using mmap segregates relatively large chunks of memory so that
|
||
they can be individually obtained and released from the host
|
||
system. A request serviced through mmap is never reused by any
|
||
other request (at least not directly; the system may just so
|
||
happen to remap successive requests to the same locations).
|
||
|
||
Segregating space in this way has the benefit that mmapped space
|
||
can ALWAYS be individually released back to the system, which
|
||
helps keep the system level memory demands of a long-lived
|
||
program low. Mapped memory can never become `locked' between
|
||
other chunks, as can happen with normally allocated chunks, which
|
||
menas that even trimming via malloc_trim would not release them.
|
||
|
||
However, it has the disadvantages that:
|
||
|
||
1. The space cannot be reclaimed, consolidated, and then
|
||
used to service later requests, as happens with normal chunks.
|
||
2. It can lead to more wastage because of mmap page alignment
|
||
requirements
|
||
3. It causes malloc performance to be more dependent on host
|
||
system memory management support routines which may vary in
|
||
implementation quality and may impose arbitrary
|
||
limitations. Generally, servicing a request via normal
|
||
malloc steps is faster than going through a system's mmap.
|
||
|
||
All together, these considerations should lead you to use mmap
|
||
only for relatively large requests.
|
||
|
||
|
||
*/
|
||
|
||
|
||
|
||
#ifndef DEFAULT_MMAP_MAX
|
||
#if HAVE_MMAP
|
||
#define DEFAULT_MMAP_MAX (64)
|
||
#else
|
||
#define DEFAULT_MMAP_MAX (0)
|
||
#endif
|
||
#endif
|
||
|
||
/*
|
||
M_MMAP_MAX is the maximum number of requests to simultaneously
|
||
service using mmap. This parameter exists because:
|
||
|
||
1. Some systems have a limited number of internal tables for
|
||
use by mmap.
|
||
2. In most systems, overreliance on mmap can degrade overall
|
||
performance.
|
||
3. If a program allocates many large regions, it is probably
|
||
better off using normal sbrk-based allocation routines that
|
||
can reclaim and reallocate normal heap memory. Using a
|
||
small value allows transition into this mode after the
|
||
first few allocations.
|
||
|
||
Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
|
||
the default value is 0, and attempts to set it to non-zero values
|
||
in mallopt will fail.
|
||
*/
|
||
|
||
|
||
|
||
|
||
/*
|
||
|
||
Special defines for linux libc
|
||
|
||
Except when compiled using these special defines for Linux libc
|
||
using weak aliases, this malloc is NOT designed to work in
|
||
multithreaded applications. No semaphores or other concurrency
|
||
control are provided to ensure that multiple malloc or free calls
|
||
don't run at the same time, which could be disasterous. A single
|
||
semaphore could be used across malloc, realloc, and free (which is
|
||
essentially the effect of the linux weak alias approach). It would
|
||
be hard to obtain finer granularity.
|
||
|
||
*/
|
||
|
||
|
||
#ifdef INTERNAL_LINUX_C_LIB
|
||
|
||
#if __STD_C
|
||
|
||
Void_t * __default_morecore_init (ptrdiff_t);
|
||
Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
|
||
|
||
#else
|
||
|
||
Void_t * __default_morecore_init ();
|
||
Void_t *(*__morecore)() = __default_morecore_init;
|
||
|
||
#endif
|
||
|
||
#define MORECORE (*__morecore)
|
||
#define MORECORE_FAILURE 0
|
||
#define MORECORE_CLEARS 1
|
||
|
||
#else /* INTERNAL_LINUX_C_LIB */
|
||
|
||
#if __STD_C
|
||
/* extern Void_t* sbrk(ptrdiff_t);*/
|
||
#else
|
||
extern Void_t* sbrk();
|
||
#endif
|
||
|
||
#ifndef MORECORE
|
||
#define MORECORE sbrk
|
||
#endif
|
||
|
||
#ifndef MORECORE_FAILURE
|
||
#define MORECORE_FAILURE -1
|
||
#endif
|
||
|
||
#ifndef MORECORE_CLEARS
|
||
#define MORECORE_CLEARS 0
|
||
#endif
|
||
|
||
#endif /* INTERNAL_LINUX_C_LIB */
|
||
|
||
#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
|
||
|
||
#define cALLOc __libc_calloc
|
||
#define fREe __libc_free
|
||
#define mALLOc __libc_malloc
|
||
#define mEMALIGn __libc_memalign
|
||
#define rEALLOc __libc_realloc
|
||
#define vALLOc __libc_valloc
|
||
#define pvALLOc __libc_pvalloc
|
||
#define mALLINFo __libc_mallinfo
|
||
#define mALLOPt __libc_mallopt
|
||
|
||
#pragma weak calloc = __libc_calloc
|
||
#pragma weak free = __libc_free
|
||
#pragma weak cfree = __libc_free
|
||
#pragma weak malloc = __libc_malloc
|
||
#pragma weak memalign = __libc_memalign
|
||
#pragma weak realloc = __libc_realloc
|
||
#pragma weak valloc = __libc_valloc
|
||
#pragma weak pvalloc = __libc_pvalloc
|
||
#pragma weak mallinfo = __libc_mallinfo
|
||
#pragma weak mallopt = __libc_mallopt
|
||
|
||
#else
|
||
|
||
#ifndef cALLOc
|
||
#define cALLOc dlcalloc
|
||
#endif
|
||
#ifndef fREe
|
||
#define fREe dlfree
|
||
#endif
|
||
#ifndef mALLOc
|
||
#define mALLOc dlmalloc
|
||
#endif
|
||
#ifndef mEMALIGn
|
||
#define mEMALIGn dlmemalign
|
||
#endif
|
||
#ifndef rEALLOc
|
||
#define rEALLOc dlrealloc
|
||
#endif
|
||
#ifndef vALLOc
|
||
#define vALLOc dlvalloc
|
||
#endif
|
||
#ifndef pvALLOc
|
||
#define pvALLOc dlpvalloc
|
||
#endif
|
||
#ifndef mALLINFo
|
||
#define mALLINFo dlmallinfo
|
||
#endif
|
||
#ifndef mALLOPt
|
||
#define mALLOPt dlmallopt
|
||
#endif
|
||
|
||
#endif
|
||
|
||
/* Public routines */
|
||
|
||
#ifdef DEBUG2
|
||
#define malloc(size) malloc_dbg(size, __FILE__, __LINE__)
|
||
#define free(p) free_dbg(p, __FILE__, __LINE__)
|
||
#define realloc(p, size) realloc_dbg(p, size, __FILE__, __LINE__)
|
||
#define calloc(n, size) calloc_dbg(n, size, __FILE__, __LINE__)
|
||
#define memalign(align, size) memalign_dbg(align, size, __FILE__, __LINE__)
|
||
#define valloc(size) valloc_dbg(size, __FILE__, __LINE__)
|
||
#define pvalloc(size) pvalloc_dbg(size, __FILE__, __LINE__)
|
||
#define malloc_trim(pad) malloc_trim_dbg(pad, __FILE__, __LINE__)
|
||
#define malloc_usable_size(p) malloc_usable_size_dbg(p, __FILE__, __LINE__)
|
||
#define malloc_stats(void) malloc_stats_dbg(__FILE__, __LINE__)
|
||
#define mallopt(flag, val) mallopt_dbg(flag, val, __FILE__, __LINE__)
|
||
#define mallinfo(void) mallinfo_dbg(__FILE__, __LINE__)
|
||
|
||
#if __STD_C
|
||
Void_t* malloc_dbg(size_t, const char *, int);
|
||
void free_dbg(Void_t*, const char *, int);
|
||
Void_t* realloc_dbg(Void_t*, size_t, const char *, int);
|
||
Void_t* calloc_dbg(size_t, size_t, const char *, int);
|
||
Void_t* memalign_dbg(size_t, size_t, const char *, int);
|
||
Void_t* valloc_dbg(size_t, const char *, int);
|
||
Void_t* pvalloc_dbg(size_t, const char *, int);
|
||
int malloc_trim_dbg(size_t, const char *, int);
|
||
size_t malloc_usable_size_dbg(Void_t*, const char *, int);
|
||
void malloc_stats_dbg(const char *, int);
|
||
int mallopt_dbg(int, int, const char *, int);
|
||
struct mallinfo mallinfo_dbg(const char *, int);
|
||
#else
|
||
Void_t* malloc_dbg();
|
||
void free_dbg();
|
||
Void_t* realloc_dbg();
|
||
Void_t* calloc_dbg();
|
||
Void_t* memalign_dbg();
|
||
Void_t* valloc_dbg();
|
||
Void_t* pvalloc_dbg();
|
||
int malloc_trim_dbg();
|
||
size_t malloc_usable_size_dbg();
|
||
void malloc_stats_dbg();
|
||
int mallopt_dbg();
|
||
struct mallinfo mallinfo_dbg();
|
||
#endif /* !__STD_C */
|
||
|
||
#else /* !DEBUG2 */
|
||
|
||
#if __STD_C
|
||
|
||
Void_t* mALLOc(size_t);
|
||
void fREe(Void_t*);
|
||
Void_t* rEALLOc(Void_t*, size_t);
|
||
Void_t* cALLOc(size_t, size_t);
|
||
Void_t* mEMALIGn(size_t, size_t);
|
||
Void_t* vALLOc(size_t);
|
||
Void_t* pvALLOc(size_t);
|
||
int malloc_trim(size_t);
|
||
size_t malloc_usable_size(Void_t*);
|
||
void malloc_stats(void);
|
||
int mALLOPt(int, int);
|
||
struct mallinfo mALLINFo(void);
|
||
#else
|
||
Void_t* mALLOc();
|
||
void fREe();
|
||
Void_t* rEALLOc();
|
||
Void_t* cALLOc();
|
||
Void_t* mEMALIGn();
|
||
Void_t* vALLOc();
|
||
Void_t* pvALLOc();
|
||
int malloc_trim();
|
||
size_t malloc_usable_size();
|
||
void malloc_stats();
|
||
int mALLOPt();
|
||
struct mallinfo mALLINFo();
|
||
#endif
|
||
#endif /* !DEBUG2 */
|
||
|
||
#ifdef __cplusplus
|
||
}; /* end of extern "C" */
|
||
#endif
|
||
|
||
/* ---------- To make a malloc.h, end cutting here ------------ */
|
||
|
||
#ifdef DEBUG2
|
||
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
#undef malloc
|
||
#undef free
|
||
#undef realloc
|
||
#undef calloc
|
||
#undef memalign
|
||
#undef valloc
|
||
#undef pvalloc
|
||
#undef malloc_trim
|
||
#undef malloc_usable_size
|
||
#undef malloc_stats
|
||
#undef mallopt
|
||
#undef mallinfo
|
||
|
||
#if __STD_C
|
||
Void_t* mALLOc(size_t);
|
||
void fREe(Void_t*);
|
||
Void_t* rEALLOc(Void_t*, size_t);
|
||
Void_t* cALLOc(size_t, size_t);
|
||
Void_t* mEMALIGn(size_t, size_t);
|
||
Void_t* vALLOc(size_t);
|
||
Void_t* pvALLOc(size_t);
|
||
int malloc_trim(size_t);
|
||
size_t malloc_usable_size(Void_t*);
|
||
void malloc_stats(void);
|
||
int mALLOPt(int, int);
|
||
struct mallinfo mALLINFo(void);
|
||
#else
|
||
Void_t* mALLOc();
|
||
void fREe();
|
||
Void_t* rEALLOc();
|
||
Void_t* cALLOc();
|
||
Void_t* mEMALIGn();
|
||
Void_t* vALLOc();
|
||
Void_t* pvALLOc();
|
||
int malloc_trim();
|
||
size_t malloc_usable_size();
|
||
void malloc_stats();
|
||
int mALLOPt();
|
||
struct mallinfo mALLINFo();
|
||
#endif
|
||
|
||
#include <ctype.h> /* isprint() */
|
||
#ifdef DEBUG3
|
||
#include <stdlib.h> /* atexit() */
|
||
#endif
|
||
|
||
#ifdef __cplusplus
|
||
}; /* end of extern "C" */
|
||
#endif
|
||
|
||
#endif /* DEBUG2 */
|
||
|
||
/*
|
||
Emulation of sbrk for WIN32
|
||
All code within the ifdef WIN32 is untested by me.
|
||
*/
|
||
|
||
|
||
#ifdef WIN32
|
||
|
||
#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
|
||
~(malloc_getpagesize-1))
|
||
|
||
/* resrve 64MB to insure large contiguous space */
|
||
#define RESERVED_SIZE (1024*1024*64)
|
||
#define NEXT_SIZE (2048*1024)
|
||
#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
|
||
|
||
struct GmListElement;
|
||
typedef struct GmListElement GmListElement;
|
||
|
||
struct GmListElement
|
||
{
|
||
GmListElement* next;
|
||
void* base;
|
||
};
|
||
|
||
static GmListElement* head = 0;
|
||
static unsigned int gNextAddress = 0;
|
||
static unsigned int gAddressBase = 0;
|
||
static unsigned int gAllocatedSize = 0;
|
||
|
||
static
|
||
GmListElement* makeGmListElement (void* bas)
|
||
{
|
||
GmListElement* this;
|
||
this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
|
||
ASSERT (this);
|
||
if (this)
|
||
{
|
||
this->base = bas;
|
||
this->next = head;
|
||
head = this;
|
||
}
|
||
return this;
|
||
}
|
||
|
||
void gcleanup ()
|
||
{
|
||
BOOL rval;
|
||
ASSERT ( (head == NULL) || (head->base == (void*)gAddressBase));
|
||
if (gAddressBase && (gNextAddress - gAddressBase))
|
||
{
|
||
rval = VirtualFree ((void*)gAddressBase,
|
||
gNextAddress - gAddressBase,
|
||
MEM_DECOMMIT);
|
||
ASSERT (rval);
|
||
}
|
||
while (head)
|
||
{
|
||
GmListElement* next = head->next;
|
||
rval = VirtualFree (head->base, 0, MEM_RELEASE);
|
||
ASSERT (rval);
|
||
LocalFree (head);
|
||
head = next;
|
||
}
|
||
}
|
||
|
||
static
|
||
void* findRegion (void* start_address, unsigned long size)
|
||
{
|
||
MEMORY_BASIC_INFORMATION info;
|
||
while ((unsigned long)start_address < TOP_MEMORY)
|
||
{
|
||
VirtualQuery (start_address, &info, sizeof (info));
|
||
if (info.State != MEM_FREE)
|
||
start_address = (char*)info.BaseAddress + info.RegionSize;
|
||
else if (info.RegionSize >= size)
|
||
return start_address;
|
||
else
|
||
start_address = (char*)info.BaseAddress + info.RegionSize;
|
||
}
|
||
return NULL;
|
||
|
||
}
|
||
|
||
|
||
void* wsbrk (long size)
|
||
{
|
||
void* tmp;
|
||
if (size > 0)
|
||
{
|
||
if (gAddressBase == 0)
|
||
{
|
||
gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
|
||
gNextAddress = gAddressBase =
|
||
(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
|
||
MEM_RESERVE, PAGE_NOACCESS);
|
||
} else if (AlignPage (gNextAddress + size) > (gAddressBase +
|
||
gAllocatedSize))
|
||
{
|
||
long new_size = max (NEXT_SIZE, AlignPage (size));
|
||
void* new_address = (void*)(gAddressBase+gAllocatedSize);
|
||
do
|
||
{
|
||
new_address = findRegion (new_address, new_size);
|
||
|
||
if (new_address == 0)
|
||
return (void*)-1;
|
||
|
||
gAddressBase = gNextAddress =
|
||
(unsigned int)VirtualAlloc (new_address, new_size,
|
||
MEM_RESERVE, PAGE_NOACCESS);
|
||
// repeat in case of race condition
|
||
// The region that we found has been snagged
|
||
// by another thread
|
||
}
|
||
while (gAddressBase == 0);
|
||
|
||
ASSERT (new_address == (void*)gAddressBase);
|
||
|
||
gAllocatedSize = new_size;
|
||
|
||
if (!makeGmListElement ((void*)gAddressBase))
|
||
return (void*)-1;
|
||
}
|
||
if ((size + gNextAddress) > AlignPage (gNextAddress))
|
||
{
|
||
void* res;
|
||
res = VirtualAlloc ((void*)AlignPage (gNextAddress),
|
||
(size + gNextAddress -
|
||
AlignPage (gNextAddress)),
|
||
MEM_COMMIT, PAGE_READWRITE);
|
||
if (res == 0)
|
||
return (void*)-1;
|
||
}
|
||
tmp = (void*)gNextAddress;
|
||
gNextAddress = (unsigned int)tmp + size;
|
||
return tmp;
|
||
}
|
||
else if (size < 0)
|
||
{
|
||
unsigned int alignedGoal = AlignPage (gNextAddress + size);
|
||
/* Trim by releasing the virtual memory */
|
||
if (alignedGoal >= gAddressBase)
|
||
{
|
||
VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
|
||
MEM_DECOMMIT);
|
||
gNextAddress = gNextAddress + size;
|
||
return (void*)gNextAddress;
|
||
}
|
||
else
|
||
{
|
||
VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
|
||
MEM_DECOMMIT);
|
||
gNextAddress = gAddressBase;
|
||
return (void*)-1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
return (void*)gNextAddress;
|
||
}
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
Type declarations
|
||
*/
|
||
|
||
#ifdef DEBUG3
|
||
# define MOATWIDTH 4 /* number of guard bytes at each end of
|
||
allocated region */
|
||
# define MOATFILL 5 /* moat fill character */
|
||
# define ALLOCFILL 1 /* fill char for allocated */
|
||
# define FREEFILL 2 /* and freed regions */
|
||
#endif
|
||
|
||
typedef struct malloc_chunk
|
||
{
|
||
INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
|
||
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
|
||
struct malloc_chunk* fd; /* double links -- used only if free. */
|
||
struct malloc_chunk* bk;
|
||
#ifdef DEBUG3
|
||
const char *file; /* file and */
|
||
int line; /* line number of [re]allocation */
|
||
size_t pad; /* nr pad bytes at mem end, excluding moat */
|
||
int alloced; /* whether the chunk is allocated -- less prone
|
||
to segv than inuse(chunk) */
|
||
char moat[MOATWIDTH]; /* actual leading moat is last MOATWIDTH bytes
|
||
of chunk header; those bytes may follow this
|
||
field due to header alignment padding */
|
||
#endif
|
||
} Chunk;
|
||
|
||
typedef Chunk* mchunkptr;
|
||
|
||
/*
|
||
|
||
malloc_chunk details:
|
||
|
||
(The following includes lightly edited explanations by Colin Plumb.)
|
||
|
||
Chunks of memory are maintained using a `boundary tag' method as
|
||
described in e.g., Knuth or Standish. (See the paper by Paul
|
||
Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
|
||
survey of such techniques.) Sizes of free chunks are stored both
|
||
in the front of each chunk and at the end. This makes
|
||
consolidating fragmented chunks into bigger chunks very fast. The
|
||
size fields also hold bits representing whether chunks are free or
|
||
in use.
|
||
|
||
An allocated chunk looks like this:
|
||
|
||
|
||
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Size of previous chunk, if allocated | |
|
||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Size of chunk, in bytes |P|
|
||
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| User data starts here... .
|
||
. .
|
||
. (malloc_usable_space() bytes) .
|
||
. |
|
||
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Size of chunk |
|
||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
|
||
|
||
Where "chunk" is the front of the chunk for the purpose of most of
|
||
the malloc code, but "mem" is the pointer that is returned to the
|
||
user. "Nextchunk" is the beginning of the next contiguous chunk.
|
||
|
||
Chunks always begin on even word boundries, so the mem portion
|
||
(which is returned to the user) is also on an even word boundary, and
|
||
thus double-word aligned.
|
||
|
||
Free chunks are stored in circular doubly-linked lists, and look like this:
|
||
|
||
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Size of previous chunk |
|
||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
`head:' | Size of chunk, in bytes |P|
|
||
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Forward pointer to next chunk in list |
|
||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Back pointer to previous chunk in list |
|
||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
| Unused space (may be 0 bytes long) .
|
||
. .
|
||
. |
|
||
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
`foot:' | Size of chunk, in bytes |
|
||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
||
|
||
The P (PREV_INUSE) bit, stored in the unused low-order bit of the
|
||
chunk size (which is always a multiple of two words), is an in-use
|
||
bit for the *previous* chunk. If that bit is *clear*, then the
|
||
word before the current chunk size contains the previous chunk
|
||
size, and can be used to find the front of the previous chunk.
|
||
(The very first chunk allocated always has this bit set,
|
||
preventing access to non-existent (or non-owned) memory.)
|
||
|
||
Note that the `foot' of the current chunk is actually represented
|
||
as the prev_size of the NEXT chunk. (This makes it easier to
|
||
deal with alignments etc).
|
||
|
||
The two exceptions to all this are
|
||
|
||
1. The special chunk `top', which doesn't bother using the
|
||
trailing size field since there is no
|
||
next contiguous chunk that would have to index off it. (After
|
||
initialization, `top' is forced to always exist. If it would
|
||
become less than MINSIZE bytes long, it is replenished via
|
||
malloc_extend_top.)
|
||
|
||
2. Chunks allocated via mmap, which have the second-lowest-order
|
||
bit (IS_MMAPPED) set in their size fields. Because they are
|
||
never merged or traversed from any other chunk, they have no
|
||
foot size or inuse information.
|
||
|
||
Available chunks are kept in any of several places (all declared below):
|
||
|
||
* `av': An array of chunks serving as bin headers for consolidated
|
||
chunks. Each bin is doubly linked. The bins are approximately
|
||
proportionally (log) spaced. There are a lot of these bins
|
||
(128). This may look excessive, but works very well in
|
||
practice. All procedures maintain the invariant that no
|
||
consolidated chunk physically borders another one. Chunks in
|
||
bins are kept in size order, with ties going to the
|
||
approximately least recently used chunk.
|
||
|
||
The chunks in each bin are maintained in decreasing sorted order by
|
||
size. This is irrelevant for the small bins, which all contain
|
||
the same-sized chunks, but facilitates best-fit allocation for
|
||
larger chunks. (These lists are just sequential. Keeping them in
|
||
order almost never requires enough traversal to warrant using
|
||
fancier ordered data structures.) Chunks of the same size are
|
||
linked with the most recently freed at the front, and allocations
|
||
are taken from the back. This results in LRU or FIFO allocation
|
||
order, which tends to give each chunk an equal opportunity to be
|
||
consolidated with adjacent freed chunks, resulting in larger free
|
||
chunks and less fragmentation.
|
||
|
||
* `top': The top-most available chunk (i.e., the one bordering the
|
||
end of available memory) is treated specially. It is never
|
||
included in any bin, is used only if no other chunk is
|
||
available, and is released back to the system if it is very
|
||
large (see M_TRIM_THRESHOLD).
|
||
|
||
* `last_remainder': A bin holding only the remainder of the
|
||
most recently split (non-top) chunk. This bin is checked
|
||
before other non-fitting chunks, so as to provide better
|
||
locality for runs of sequentially allocated chunks.
|
||
|
||
* Implicitly, through the host system's memory mapping tables.
|
||
If supported, requests greater than a threshold are usually
|
||
serviced via calls to mmap, and then later released via munmap.
|
||
|
||
*/
|
||
|
||
|
||
|
||
|
||
|
||
|
||
/* sizes, alignments */
|
||
|
||
#define SIZE_SZ sizeof(INTERNAL_SIZE_T)
|
||
#define ALIGNMENT (SIZE_SZ + SIZE_SZ)
|
||
#define ALIGN_MASK (ALIGNMENT - 1)
|
||
#ifndef DEBUG3
|
||
# define MEMOFFSET (2*SIZE_SZ)
|
||
# define OVERHEAD SIZE_SZ
|
||
# define MMAP_EXTRA SIZE_SZ /* for correct alignment */
|
||
# define MINSIZE sizeof(Chunk)
|
||
#else
|
||
typedef union {
|
||
char strut[(sizeof(Chunk) - 1) / ALIGNMENT + 1][ALIGNMENT];
|
||
Chunk chunk;
|
||
} PaddedChunk;
|
||
# define MEMOFFSET sizeof(PaddedChunk)
|
||
# define OVERHEAD (MEMOFFSET + MOATWIDTH)
|
||
# define MMAP_EXTRA 0
|
||
# define MINSIZE ((OVERHEAD + ALIGN_MASK) & ~ALIGN_MASK)
|
||
#endif
|
||
|
||
/* conversion from malloc headers to user pointers, and back */
|
||
|
||
#define chunk2mem(p) ((Void_t*)((char*)(p) + MEMOFFSET))
|
||
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - MEMOFFSET))
|
||
|
||
/* pad request bytes into a usable size, including overhead */
|
||
|
||
#define request2size(req) \
|
||
((long)((req) + OVERHEAD) < (long)MINSIZE ? MINSIZE : \
|
||
((req) + OVERHEAD + ALIGN_MASK) & ~ALIGN_MASK)
|
||
|
||
/* Check if m has acceptable alignment */
|
||
|
||
#define aligned_OK(m) (((unsigned long)((m)) & ALIGN_MASK) == 0)
|
||
|
||
|
||
|
||
|
||
/*
|
||
Physical chunk operations
|
||
*/
|
||
|
||
|
||
/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
|
||
|
||
#define PREV_INUSE 0x1
|
||
|
||
/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
|
||
|
||
#define IS_MMAPPED 0x2
|
||
|
||
/* Bits to mask off when extracting size */
|
||
|
||
#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
|
||
|
||
|
||
/* Ptr to next physical malloc_chunk. */
|
||
|
||
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
|
||
|
||
/* Ptr to previous physical malloc_chunk */
|
||
|
||
#define prev_chunk(p)\
|
||
((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
|
||
|
||
|
||
/* Treat space at ptr + offset as a chunk */
|
||
|
||
#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
|
||
|
||
|
||
|
||
|
||
/*
|
||
Dealing with use bits
|
||
*/
|
||
|
||
/* extract p's inuse bit */
|
||
|
||
#define inuse(p)\
|
||
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
|
||
|
||
/* extract inuse bit of previous chunk */
|
||
|
||
#define prev_inuse(p) ((p)->size & PREV_INUSE)
|
||
|
||
/* check for mmap()'ed chunk */
|
||
|
||
#if HAVE_MMAP
|
||
# define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
|
||
#else
|
||
# define chunk_is_mmapped(p) 0
|
||
#endif
|
||
|
||
/* set/clear chunk as in use without otherwise disturbing */
|
||
|
||
#define set_inuse(p)\
|
||
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
|
||
|
||
#define clear_inuse(p)\
|
||
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
|
||
|
||
/* check/set/clear inuse bits in known places */
|
||
|
||
#define inuse_bit_at_offset(p, s)\
|
||
(((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
|
||
|
||
#define set_inuse_bit_at_offset(p, s)\
|
||
(((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
|
||
|
||
#define clear_inuse_bit_at_offset(p, s)\
|
||
(((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
|
||
|
||
|
||
|
||
|
||
/*
|
||
Dealing with size fields
|
||
*/
|
||
|
||
/* Get size, ignoring use bits */
|
||
|
||
#define chunksize(p) ((p)->size & ~(SIZE_BITS))
|
||
|
||
/* Set size at head, without disturbing its use bit */
|
||
|
||
#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
|
||
|
||
/* Set size/use ignoring previous bits in header */
|
||
|
||
#define set_head(p, s) ((p)->size = (s))
|
||
|
||
/* Set size at footer (only when chunk is not in use) */
|
||
|
||
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
|
||
|
||
|
||
|
||
|
||
|
||
/*
|
||
Bins
|
||
|
||
The bins, `av_' are an array of pairs of pointers serving as the
|
||
heads of (initially empty) doubly-linked lists of chunks, laid out
|
||
in a way so that each pair can be treated as if it were in a
|
||
malloc_chunk. (This way, the fd/bk offsets for linking bin heads
|
||
and chunks are the same).
|
||
|
||
Bins for sizes < 512 bytes contain chunks of all the same size, spaced
|
||
8 bytes apart. Larger bins are approximately logarithmically
|
||
spaced. (See the table below.) The `av_' array is never mentioned
|
||
directly in the code, but instead via bin access macros.
|
||
|
||
Bin layout:
|
||
|
||
64 bins of size 8
|
||
32 bins of size 64
|
||
16 bins of size 512
|
||
8 bins of size 4096
|
||
4 bins of size 32768
|
||
2 bins of size 262144
|
||
1 bin of size what's left
|
||
|
||
There is actually a little bit of slop in the numbers in bin_index
|
||
for the sake of speed. This makes no difference elsewhere.
|
||
|
||
The special chunks `top' and `last_remainder' get their own bins,
|
||
(this is implemented via yet more trickery with the av_ array),
|
||
although `top' is never properly linked to its bin since it is
|
||
always handled specially.
|
||
|
||
*/
|
||
|
||
#define NAV 128 /* number of bins */
|
||
|
||
typedef Chunk* mbinptr;
|
||
|
||
/* access macros */
|
||
|
||
#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
|
||
#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
|
||
#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
|
||
|
||
/*
|
||
The first 2 bins are never indexed. The corresponding av_ cells are instead
|
||
used for bookkeeping. This is not to save space, but to simplify
|
||
indexing, maintain locality, and avoid some initialization tests.
|
||
*/
|
||
|
||
#define top (bin_at(0)->fd) /* The topmost chunk */
|
||
#define last_remainder (bin_at(1)) /* remainder from last split */
|
||
|
||
|
||
/*
|
||
Because top initially points to its own bin with initial
|
||
zero size, thus forcing extension on the first malloc request,
|
||
we avoid having any special code in malloc to check whether
|
||
it even exists yet. But we still need to in malloc_extend_top.
|
||
*/
|
||
|
||
#define initial_top ((mchunkptr)(bin_at(0)))
|
||
|
||
/* Helper macro to initialize bins */
|
||
|
||
#define IAV(i) bin_at(i), bin_at(i)
|
||
|
||
static mbinptr av_[NAV * 2 + 2] = {
|
||
0, 0,
|
||
IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
|
||
IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
|
||
IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
|
||
IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
|
||
IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
|
||
IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
|
||
IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
|
||
IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
|
||
IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
|
||
IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
|
||
IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
|
||
IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
|
||
IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
|
||
IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
|
||
IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
|
||
IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
|
||
};
|
||
|
||
|
||
|
||
/* field-extraction macros */
|
||
|
||
#define first(b) ((b)->fd)
|
||
#define last(b) ((b)->bk)
|
||
|
||
/*
|
||
Indexing into bins
|
||
*/
|
||
|
||
#define bin_index(sz) \
|
||
(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
|
||
((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
|
||
((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
|
||
((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
|
||
((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
|
||
((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
|
||
126)
|
||
/*
|
||
bins for chunks < 512 are all spaced 8 bytes apart, and hold
|
||
identically sized chunks. This is exploited in malloc.
|
||
*/
|
||
|
||
#define MAX_SMALLBIN 63
|
||
#define MAX_SMALLBIN_SIZE 512
|
||
#define SMALLBIN_WIDTH 8
|
||
|
||
#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
|
||
|
||
/*
|
||
Requests are `small' if both the corresponding and the next bin are small
|
||
*/
|
||
|
||
#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
|
||
|
||
|
||
|
||
/*
|
||
To help compensate for the large number of bins, a one-level index
|
||
structure is used for bin-by-bin searching. `binblocks' is a
|
||
one-word bitvector recording whether groups of BINBLOCKWIDTH bins
|
||
have any (possibly) non-empty bins, so they can be skipped over
|
||
all at once during during traversals. The bits are NOT always
|
||
cleared as soon as all bins in a block are empty, but instead only
|
||
when all are noticed to be empty during traversal in malloc.
|
||
*/
|
||
|
||
#define BINBLOCKWIDTH 4 /* bins per block */
|
||
|
||
#define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */
|
||
|
||
/* bin<->block macros */
|
||
|
||
#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
|
||
#define mark_binblock(ii) (binblocks |= idx2binblock(ii))
|
||
#define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii)))
|
||
|
||
|
||
|
||
|
||
|
||
/* Other static bookkeeping data */
|
||
|
||
/* variables holding tunable values */
|
||
|
||
static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
|
||
static unsigned long top_pad = DEFAULT_TOP_PAD;
|
||
static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
|
||
static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
|
||
#ifdef DEBUG2
|
||
static int scanheap = 1;
|
||
#endif
|
||
|
||
/* The first value returned from sbrk */
|
||
static char* sbrk_base = (char*)(-1);
|
||
|
||
/* The maximum memory obtained from system via sbrk */
|
||
static unsigned long max_sbrked_mem = 0;
|
||
|
||
/* The maximum via either sbrk or mmap */
|
||
static unsigned long max_total_mem = 0;
|
||
|
||
/* internal working copy of mallinfo */
|
||
static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
||
|
||
/* The total memory obtained from system via sbrk */
|
||
#define sbrked_mem (current_mallinfo.arena)
|
||
|
||
/* Tracking mmaps */
|
||
|
||
static unsigned int n_mmaps = 0;
|
||
static unsigned long mmapped_mem = 0;
|
||
#if HAVE_MMAP
|
||
static unsigned int max_n_mmaps = 0;
|
||
static unsigned long max_mmapped_mem = 0;
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
Debugging support
|
||
*/
|
||
|
||
#if DEBUG
|
||
|
||
#ifndef DEBUG2
|
||
# define unless(cond, err, p) assert(cond)
|
||
#else
|
||
# define unless(cond, err, p) do { if (!(cond)) malloc_err(err, p); } while (0)
|
||
|
||
/*
|
||
* When debug_file is non-null, it and debug_line respectively contain the
|
||
* file and line number of the current invocation of malloc(), calloc(),
|
||
* realloc(), or free().
|
||
*/
|
||
static const char *debug_file = NULL;
|
||
static int debug_line;
|
||
|
||
/*
|
||
* Avoid dereferencing invalid chunk.file pointers by tracking the range of
|
||
* valid ones. Could add an "unallocated" flag to init_freed_chunk() for
|
||
* more protection, but that's probably not necessary.
|
||
*/
|
||
static const char *debug_file_min = (char *)~0;
|
||
static const char *debug_file_max = NULL;
|
||
|
||
static char *itos(int n)
|
||
{
|
||
#define NDIGITS (sizeof(int) * 3)
|
||
static char s[NDIGITS + 1];
|
||
int i = NDIGITS;
|
||
do {
|
||
s[--i] = '0' + n % 10;
|
||
n /= 10;
|
||
} while (n);
|
||
return s + i;
|
||
#undef NDIGITS
|
||
}
|
||
|
||
static int recurs = 0;
|
||
|
||
static void errprint(const char *file, int line, const char *err)
|
||
{
|
||
if (recurs++) {
|
||
recurs--;
|
||
return;
|
||
}
|
||
|
||
if (file) {
|
||
write(2, file, strlen(file));
|
||
if (line) {
|
||
write(2, ":", 1);
|
||
write(2, itos(line), strlen(itos(line)));
|
||
}
|
||
write(2, ": ", 2);
|
||
}
|
||
write(2, err, strlen(err));
|
||
write(2, "\n", 1);
|
||
recurs--;
|
||
}
|
||
|
||
static void malloc_err(const char *err, mchunkptr p)
|
||
{
|
||
/*
|
||
* Display ERR on stderr, accompanying it with the caller's file and line
|
||
* number if available. If P is non-null, also attempt to display the file
|
||
* and line number at which P was most recently [re]allocated.
|
||
*
|
||
* This function's name begins with "malloc_" to make setting debugger
|
||
* breakpoints here more convenient.
|
||
*/
|
||
errprint(debug_file, debug_line, err);
|
||
|
||
# ifndef DEBUG3
|
||
p = 0; /* avoid "unused param" warning */
|
||
# else
|
||
if (p && p->file &&
|
||
/* avoid invalid pointers */
|
||
debug_file_min &&
|
||
p->file >= debug_file_min &&
|
||
p->file <= debug_file_max &&
|
||
/* try to avoid garbage file names */
|
||
isprint(*p->file))
|
||
errprint(p->file, p->line, "in block allocated here");
|
||
# endif
|
||
}
|
||
|
||
#undef malloc
|
||
#undef free
|
||
#undef realloc
|
||
#undef memalign
|
||
#undef valloc
|
||
#undef pvalloc
|
||
#undef calloc
|
||
#undef malloc_trim
|
||
#undef malloc_usable_size
|
||
#undef malloc_stats
|
||
#undef mallopt
|
||
#undef mallinfo
|
||
|
||
static void malloc_update_mallinfo(void);
|
||
|
||
/*
|
||
* Define front-end functions for all user-visible entry points that may
|
||
* trigger error().
|
||
*/
|
||
#define skel(retdecl, retassign, call, retstmt) \
|
||
retdecl \
|
||
debug_file = file; \
|
||
debug_line = line; \
|
||
if (debug_file < debug_file_min) \
|
||
debug_file_min = debug_file; \
|
||
if (debug_file > debug_file_max) \
|
||
debug_file_max = debug_file; \
|
||
if (scanheap) \
|
||
malloc_update_mallinfo(); \
|
||
retassign call; \
|
||
if (scanheap) \
|
||
malloc_update_mallinfo(); \
|
||
debug_file = NULL; \
|
||
retstmt
|
||
|
||
/*
|
||
* The final letter of the names of the following macros is either r or v,
|
||
* indicating that the macro handles functions with or without a return value,
|
||
* respectively.
|
||
*/
|
||
# define skelr(rettype, call) \
|
||
skel(rettype ret;, ret = , call, return ret)
|
||
/*
|
||
* AIX's xlc compiler doesn't like empty macro args, so specify useless but
|
||
* compilable retdecl, retassign, and retstmt args:
|
||
*/
|
||
#define skelv(call) \
|
||
skel(line += 0;, if (1), call, return)
|
||
|
||
#define dbgargs const char *file, int line
|
||
|
||
/*
|
||
* Front-end function definitions:
|
||
*/
|
||
Void_t* malloc_dbg(size_t bytes, dbgargs) {
|
||
skelr(Void_t*, malloc(bytes));
|
||
}
|
||
void free_dbg(Void_t *mem, dbgargs) {
|
||
skelv(free(mem));
|
||
}
|
||
Void_t* realloc_dbg(Void_t *oldmem, size_t bytes, dbgargs) {
|
||
skelr(Void_t*, realloc(oldmem, bytes));
|
||
}
|
||
Void_t* memalign_dbg(size_t alignment, size_t bytes, dbgargs) {
|
||
skelr(Void_t*, dlmemalign(alignment, bytes));
|
||
}
|
||
Void_t* valloc_dbg(size_t bytes, dbgargs) {
|
||
skelr(Void_t*, dlvalloc(bytes));
|
||
}
|
||
Void_t* pvalloc_dbg(size_t bytes, dbgargs) {
|
||
skelr(Void_t*, dlpvalloc(bytes));
|
||
}
|
||
Void_t* calloc_dbg(size_t n, size_t elem_size, dbgargs) {
|
||
skelr(Void_t*, calloc(n, elem_size));
|
||
}
|
||
int malloc_trim_dbg(size_t pad, dbgargs) {
|
||
skelr(int, malloc_trim(pad));
|
||
}
|
||
size_t malloc_usable_size_dbg(Void_t *mem, dbgargs) {
|
||
skelr(size_t, malloc_usable_size(mem));
|
||
}
|
||
void malloc_stats_dbg(dbgargs) {
|
||
skelv(malloc_stats());
|
||
}
|
||
int mallopt_dbg(int flag, int value, dbgargs) {
|
||
skelr(int, dlmallopt(flag, value));
|
||
}
|
||
struct mallinfo mallinfo_dbg(dbgargs) {
|
||
skelr(struct mallinfo, dlmallinfo());
|
||
}
|
||
|
||
#undef skel
|
||
#undef skelr
|
||
#undef skelv
|
||
#undef dbgargs
|
||
|
||
#endif /* DEBUG2 */
|
||
|
||
/*
|
||
These routines make a number of assertions about the states
|
||
of data structures that should be true at all times. If any
|
||
are not true, it's very likely that a user program has somehow
|
||
trashed memory. (It's also possible that there is a coding error
|
||
in malloc. In which case, please report it!)
|
||
*/
|
||
|
||
#ifdef DEBUG3
|
||
static int memtest(void *s, int c, size_t n)
|
||
{
|
||
/*
|
||
* Return whether the N-byte memory region starting at S consists
|
||
* entirely of bytes with value C.
|
||
*/
|
||
unsigned char *p = (unsigned char *)s;
|
||
size_t i;
|
||
for (i = 0; i < n; i++)
|
||
if (p[i] != (unsigned char)c)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
#endif /* DEBUG3 */
|
||
|
||
#ifndef DEBUG3
|
||
#define check_moats(P)
|
||
#else
|
||
#define check_moats do_check_moats
|
||
static void do_check_moats(mchunkptr p)
|
||
{
|
||
INTERNAL_SIZE_T sz = chunksize(p);
|
||
unless(memtest((char *)chunk2mem(p) - MOATWIDTH, MOATFILL,
|
||
MOATWIDTH), "region underflow", p);
|
||
unless(memtest((char *)p + sz - MOATWIDTH - p->pad, MOATFILL,
|
||
MOATWIDTH + p->pad), "region overflow", p);
|
||
}
|
||
#endif /* DEBUG3 */
|
||
|
||
#if __STD_C
|
||
static void do_check_chunk(mchunkptr p)
|
||
#else
|
||
static void do_check_chunk(p) mchunkptr p;
|
||
#endif
|
||
{
|
||
/* Try to ensure legal addresses before accessing any chunk fields, in the
|
||
* hope of issuing an informative message rather than causing a segv.
|
||
*
|
||
* The following chunk_is_mmapped() call accesses p->size #if HAVE_MMAP.
|
||
* This is unavoidable without maintaining a record of mmapped regions.
|
||
*/
|
||
if (!chunk_is_mmapped(p))
|
||
{
|
||
INTERNAL_SIZE_T sz;
|
||
|
||
unless((char*)p >= sbrk_base, "chunk precedes sbrk_base", p);
|
||
unless((char*)p + MINSIZE <= (char*)top + chunksize(top),
|
||
"chunk past sbrk area", p);
|
||
|
||
sz = chunksize(p);
|
||
if (p != top)
|
||
unless((char*)p + sz <= (char*)top, "chunk extends beyond top", p);
|
||
else
|
||
unless((char*)p + sz <= sbrk_base + sbrked_mem,
|
||
"chunk extends past sbrk area", p);
|
||
}
|
||
check_moats(p);
|
||
}
|
||
|
||
#if __STD_C
|
||
static void do_check_free_chunk(mchunkptr p)
|
||
#else
|
||
static void do_check_free_chunk(p) mchunkptr p;
|
||
#endif
|
||
{
|
||
INTERNAL_SIZE_T sz = chunksize(p);
|
||
mchunkptr next = chunk_at_offset(p, sz);
|
||
|
||
do_check_chunk(p);
|
||
|
||
/* Check whether it claims to be free ... */
|
||
unless(!inuse(p), "free chunk marked inuse", p);
|
||
|
||
/* Unless a special marker, must have OK fields */
|
||
if ((long)sz >= (long)MINSIZE)
|
||
{
|
||
unless((sz & ALIGN_MASK) == 0, "freed size defies alignment", p);
|
||
unless(aligned_OK(chunk2mem(p)), "misaligned freed region", p);
|
||
/* ... matching footer field */
|
||
unless(next->prev_size == sz, "chunk size mismatch", p);
|
||
/* ... and is fully consolidated */
|
||
unless(prev_inuse(p), "free chunk not joined with prev", p);
|
||
unless(next == top || inuse(next), "free chunk not joined with next", p);
|
||
|
||
/* ... and has minimally sane links */
|
||
unless(p->fd->bk == p, "broken forward link", p);
|
||
unless(p->bk->fd == p, "broken backward link", p);
|
||
}
|
||
else /* markers are always of size SIZE_SZ */
|
||
unless(sz == SIZE_SZ, "invalid small chunk size", p);
|
||
}
|
||
|
||
#if __STD_C
|
||
static void do_check_inuse_chunk(mchunkptr p)
|
||
#else
|
||
static void do_check_inuse_chunk(p) mchunkptr p;
|
||
#endif
|
||
{
|
||
mchunkptr next;
|
||
do_check_chunk(p);
|
||
|
||
if (chunk_is_mmapped(p))
|
||
return;
|
||
|
||
/* Check whether it claims to be in use ... */
|
||
#ifdef DEBUG3
|
||
unless(p->alloced, "memory not allocated", p);
|
||
#endif
|
||
unless(inuse(p), "memory not allocated", p);
|
||
|
||
/* ... and is surrounded by OK chunks.
|
||
Since more things can be checked with free chunks than inuse ones,
|
||
if an inuse chunk borders them and debug is on, it's worth doing them.
|
||
*/
|
||
if (!prev_inuse(p))
|
||
{
|
||
mchunkptr prv = prev_chunk(p);
|
||
unless(next_chunk(prv) == p, "prev link scrambled", p);
|
||
do_check_free_chunk(prv);
|
||
}
|
||
next = next_chunk(p);
|
||
if (next == top)
|
||
{
|
||
unless(prev_inuse(next), "top chunk wrongly thinks prev is unused", p);
|
||
unless(chunksize(next) >= MINSIZE, "top chunk too small", p);
|
||
}
|
||
else if (!inuse(next))
|
||
do_check_free_chunk(next);
|
||
}
|
||
|
||
#if __STD_C
|
||
static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
|
||
#else
|
||
static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
|
||
#endif
|
||
{
|
||
INTERNAL_SIZE_T sz = chunksize(p);
|
||
long room = sz - s;
|
||
|
||
do_check_inuse_chunk(p);
|
||
|
||
/* Legal size ... */
|
||
unless((long)sz >= (long)MINSIZE, "chunk size too small", p);
|
||
unless((sz & ALIGN_MASK) == 0, "malloced size defies alignment", p);
|
||
unless(room >= 0, "chunk size too small for contents", p);
|
||
unless(room < (long)MINSIZE, "chunk size leaves too much spare room", p);
|
||
|
||
/* ... and alignment */
|
||
unless(aligned_OK(chunk2mem(p)), "misaligned malloced region", p);
|
||
|
||
|
||
/* ... and was allocated at front of an available chunk */
|
||
unless(prev_inuse(p), "malloced from the middle of a free chunk", p);
|
||
}
|
||
|
||
#ifdef DEBUG3
|
||
static void init_alloced_chunk(mchunkptr p, size_t bytes)
|
||
{
|
||
Void_t* mem = chunk2mem(p);
|
||
p->file = debug_file;
|
||
p->line = debug_line;
|
||
p->pad = chunksize(p) - OVERHEAD - bytes;
|
||
p->alloced = 1;
|
||
memset((char *)mem + bytes, MOATFILL, p->pad + MOATWIDTH);
|
||
}
|
||
|
||
static void do_init_malloced_chunk(mchunkptr p, size_t bytes)
|
||
{
|
||
Void_t* mem = chunk2mem(p);
|
||
init_alloced_chunk(p, bytes);
|
||
memset((char *)mem - MOATWIDTH, MOATFILL, MOATWIDTH);
|
||
memset(mem, ALLOCFILL, bytes);
|
||
}
|
||
|
||
static void do_init_realloced_chunk(mchunkptr p, size_t bytes,
|
||
INTERNAL_SIZE_T oldsize)
|
||
{
|
||
Void_t* mem = chunk2mem(p);
|
||
INTERNAL_SIZE_T newsize = chunksize(p);
|
||
init_alloced_chunk(p, bytes);
|
||
if (oldsize < newsize)
|
||
/* This incorrectly leaves the leading pad area of the old trailing moat
|
||
* set to MOATFILL rather than ALLOCFILL. An alternative is to save the
|
||
* old p->pad in rEALLOc() below and pass it to this function.
|
||
*/
|
||
memset((char *)mem + oldsize - OVERHEAD, ALLOCFILL,
|
||
bytes - (oldsize - OVERHEAD));
|
||
}
|
||
|
||
static void do_check_freefill(mchunkptr p, long newsize,
|
||
INTERNAL_SIZE_T oldsize)
|
||
{
|
||
/* The first newsize bytes of oldsize-byte chunk p are about to be
|
||
* allocated. Issue a warning if any freefill locations in p that are about
|
||
* to be overwritten do not contain the character FREEFILL.
|
||
*/
|
||
size_t bytes, maxbytes;
|
||
if (newsize <= 0)
|
||
return;
|
||
bytes = newsize - MEMOFFSET /* don't check p's header */
|
||
+ MEMOFFSET; /* header of split-off remainder */
|
||
maxbytes = oldsize - OVERHEAD;
|
||
if (bytes > maxbytes)
|
||
bytes = maxbytes;
|
||
unless(memtest(chunk2mem(p), FREEFILL, bytes),
|
||
"detected write to freed region", p);
|
||
}
|
||
|
||
static void do_init_freed_chunk(mchunkptr p, INTERNAL_SIZE_T freehead,
|
||
INTERNAL_SIZE_T freetail)
|
||
{
|
||
/* freehead and freetail are the number of bytes at the beginning of p and
|
||
* end of p respectively that should already be initialized as free regions.
|
||
*/
|
||
Void_t* mem = chunk2mem(p);
|
||
size_t size = chunksize(p);
|
||
size_t bytes = size - OVERHEAD;
|
||
p->pad = 0;
|
||
p->alloced = 0;
|
||
memset((char *)mem - MOATWIDTH, MOATFILL, MOATWIDTH);
|
||
memset((char *)mem + bytes, MOATFILL, MOATWIDTH);
|
||
|
||
/* To avoid terrible O(n^2) performance when free() repeatedly grows a free
|
||
* chunk, it's important not to free-fill regions that are already
|
||
* free-filled.
|
||
*/
|
||
if (freehead + freetail < size) {
|
||
Void_t* start = !freehead ? mem : (char *)p + freehead - MOATWIDTH;
|
||
size_t len = (char *)p + size - (char *)start -
|
||
(!freetail ? MOATWIDTH : freetail - OVERHEAD);
|
||
memset(start, FREEFILL, len);
|
||
}
|
||
}
|
||
|
||
static void do_init_freeable_chunk(mchunkptr p)
|
||
{
|
||
/* Arrange for the subsequent fREe(p) not to generate any warnings. */
|
||
init_alloced_chunk(p, chunksize(p) - OVERHEAD);
|
||
memset((char *)chunk2mem(p) - MOATWIDTH, MOATFILL, MOATWIDTH);
|
||
}
|
||
|
||
static void do_maximize_chunk(mchunkptr p)
|
||
{
|
||
if (p->pad) {
|
||
Void_t* mem = chunk2mem(p);
|
||
size_t bytes = chunksize(p) - OVERHEAD - p->pad;
|
||
memset((char *)mem + bytes, ALLOCFILL, p->pad);
|
||
p->pad = 0;
|
||
}
|
||
}
|
||
|
||
static int do_check_init(void)
|
||
{
|
||
/* Called from the first invocation of malloc_extend_top(), as detected by
|
||
* sbrk_base == -1. Return whether this function allocated any memory.
|
||
*/
|
||
static int state = 0; /* 1 => initializing, 2 => initialized */
|
||
if (state == 1)
|
||
return 0;
|
||
unless(state == 0, "multiple calls to check_init", NULL);
|
||
state++;
|
||
atexit(malloc_update_mallinfo); /* calls malloc on WinNT */
|
||
return sbrk_base != (char *)-1;
|
||
}
|
||
#endif /* DEBUG3 */
|
||
|
||
static mchunkptr lowest_chunk;
|
||
|
||
#define check_free_chunk(P) do_check_free_chunk(P)
|
||
#define check_inuse_chunk(P) do_check_inuse_chunk(P)
|
||
#define check_chunk(P) do_check_chunk(P)
|
||
#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
|
||
#else /* !DEBUG */
|
||
#define check_free_chunk(P)
|
||
#define check_inuse_chunk(P)
|
||
#define check_chunk(P)
|
||
#define check_malloced_chunk(P,N)
|
||
#endif /* !DEBUG */
|
||
|
||
#ifdef DEBUG3
|
||
#define check_init do_check_init
|
||
#define init_malloced_chunk do_init_malloced_chunk
|
||
#define init_realloced_chunk do_init_realloced_chunk
|
||
#define check_freefill do_check_freefill
|
||
#define init_freed_chunk do_init_freed_chunk
|
||
#define init_freeable_chunk do_init_freeable_chunk
|
||
#define maximize_chunk do_maximize_chunk
|
||
#else
|
||
#define check_init() 0
|
||
#define init_malloced_chunk(P,B)
|
||
#define init_realloced_chunk(P,B,O)
|
||
#define check_freefill(P,N,O)
|
||
#define init_freed_chunk(P,H,T)
|
||
#define init_freeable_chunk(P)
|
||
#define maximize_chunk(P)
|
||
#endif /* !DEBUG3 */
|
||
|
||
|
||
|
||
/*
|
||
Macro-based internal utilities
|
||
*/
|
||
|
||
|
||
/*
|
||
Linking chunks in bin lists.
|
||
Call these only with variables, not arbitrary expressions, as arguments.
|
||
*/
|
||
|
||
/*
|
||
Place chunk p of size s in its bin, in size order,
|
||
putting it ahead of others of same size.
|
||
*/
|
||
|
||
|
||
#define frontlink(P, S, IDX, BK, FD) \
|
||
{ \
|
||
if (S < MAX_SMALLBIN_SIZE) \
|
||
{ \
|
||
IDX = smallbin_index(S); \
|
||
mark_binblock(IDX); \
|
||
BK = bin_at(IDX); \
|
||
FD = BK->fd; \
|
||
P->bk = BK; \
|
||
P->fd = FD; \
|
||
FD->bk = BK->fd = P; \
|
||
} \
|
||
else \
|
||
{ \
|
||
IDX = bin_index(S); \
|
||
BK = bin_at(IDX); \
|
||
FD = BK->fd; \
|
||
if (FD == BK) mark_binblock(IDX); \
|
||
else \
|
||
{ \
|
||
while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
|
||
BK = FD->bk; \
|
||
} \
|
||
P->bk = BK; \
|
||
P->fd = FD; \
|
||
FD->bk = BK->fd = P; \
|
||
} \
|
||
}
|
||
|
||
|
||
/* take a chunk off a list */
|
||
|
||
#define unlink(P, BK, FD) \
|
||
{ \
|
||
BK = P->bk; \
|
||
FD = P->fd; \
|
||
FD->bk = BK; \
|
||
BK->fd = FD; \
|
||
} \
|
||
|
||
/* Place p as the last remainder */
|
||
|
||
#define link_last_remainder(P) \
|
||
{ \
|
||
last_remainder->fd = last_remainder->bk = P; \
|
||
P->fd = P->bk = last_remainder; \
|
||
}
|
||
|
||
/* Clear the last_remainder bin */
|
||
|
||
#define clear_last_remainder \
|
||
(last_remainder->fd = last_remainder->bk = last_remainder)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
/* Routines dealing with mmap(). */
|
||
|
||
#if HAVE_MMAP
|
||
|
||
#if __STD_C
|
||
static mchunkptr mmap_chunk(size_t size)
|
||
#else
|
||
static mchunkptr mmap_chunk(size) size_t size;
|
||
#endif
|
||
{
|
||
size_t page_mask = malloc_getpagesize - 1;
|
||
mchunkptr p;
|
||
|
||
#ifndef MAP_ANONYMOUS
|
||
static int fd = -1;
|
||
#endif
|
||
|
||
if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
|
||
|
||
size = (size + MMAP_EXTRA + page_mask) & ~page_mask;
|
||
|
||
#ifdef MAP_ANONYMOUS
|
||
p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
|
||
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
||
#else /* !MAP_ANONYMOUS */
|
||
if (fd < 0)
|
||
{
|
||
fd = open("/dev/zero", O_RDWR);
|
||
if(fd < 0) return 0;
|
||
}
|
||
p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
|
||
#endif
|
||
|
||
if(p == (mchunkptr)-1) return 0;
|
||
|
||
n_mmaps++;
|
||
if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
|
||
|
||
/* We demand that eight bytes into a page must be 8-byte aligned. */
|
||
assert(aligned_OK(chunk2mem(p)));
|
||
|
||
/* The offset to the start of the mmapped region is stored
|
||
* in the prev_size field of the chunk; normally it is zero,
|
||
* but that can be changed in memalign().
|
||
*/
|
||
p->prev_size = 0;
|
||
set_head(p, size|IS_MMAPPED);
|
||
|
||
mmapped_mem += size;
|
||
if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
|
||
max_mmapped_mem = mmapped_mem;
|
||
if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
|
||
max_total_mem = mmapped_mem + sbrked_mem;
|
||
return p;
|
||
}
|
||
|
||
#if __STD_C
|
||
static void munmap_chunk(mchunkptr p)
|
||
#else
|
||
static void munmap_chunk(p) mchunkptr p;
|
||
#endif
|
||
{
|
||
INTERNAL_SIZE_T size = chunksize(p);
|
||
int ret;
|
||
|
||
assert (chunk_is_mmapped(p));
|
||
assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
|
||
assert((n_mmaps > 0));
|
||
assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
|
||
|
||
n_mmaps--;
|
||
mmapped_mem -= (size + p->prev_size);
|
||
|
||
ret = munmap((char *)p - p->prev_size, size + p->prev_size);
|
||
|
||
/* munmap returns non-zero on failure */
|
||
assert(ret == 0);
|
||
}
|
||
|
||
#if HAVE_MREMAP
|
||
|
||
#if __STD_C
|
||
static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
|
||
#else
|
||
static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
|
||
#endif
|
||
{
|
||
size_t page_mask = malloc_getpagesize - 1;
|
||
INTERNAL_SIZE_T offset = p->prev_size;
|
||
INTERNAL_SIZE_T size = chunksize(p);
|
||
char *cp;
|
||
|
||
assert (chunk_is_mmapped(p));
|
||
assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
|
||
assert((n_mmaps > 0));
|
||
assert(((size + offset) & (malloc_getpagesize-1)) == 0);
|
||
|
||
new_size = (new_size + offset + MMAP_EXTRA + page_mask) & ~page_mask;
|
||
|
||
cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
|
||
|
||
if (cp == (char *)-1) return 0;
|
||
|
||
p = (mchunkptr)(cp + offset);
|
||
|
||
assert(aligned_OK(chunk2mem(p)));
|
||
|
||
assert(p->prev_size == offset);
|
||
set_head(p, (new_size - offset)|IS_MMAPPED);
|
||
|
||
mmapped_mem -= size + offset;
|
||
mmapped_mem += new_size;
|
||
if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
|
||
max_mmapped_mem = mmapped_mem;
|
||
if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
|
||
max_total_mem = mmapped_mem + sbrked_mem;
|
||
return p;
|
||
}
|
||
|
||
#endif /* HAVE_MREMAP */
|
||
|
||
#endif /* HAVE_MMAP */
|
||
|
||
|
||
|
||
|
||
/*
|
||
Extend the top-most chunk by obtaining memory from system.
|
||
Main interface to sbrk (but see also malloc_trim).
|
||
*/
|
||
|
||
#if __STD_C
|
||
static void malloc_extend_top(INTERNAL_SIZE_T nb)
|
||
#else
|
||
static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
|
||
#endif
|
||
{
|
||
char* lim; /* return value from sbrk */
|
||
INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
|
||
INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
|
||
char* new_lim; /* return of 2nd sbrk call */
|
||
INTERNAL_SIZE_T top_size; /* new size of top chunk */
|
||
|
||
mchunkptr old_top = top; /* Record state of old top */
|
||
INTERNAL_SIZE_T old_top_size = chunksize(old_top);
|
||
char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
|
||
|
||
/* Pad request with top_pad plus minimal overhead */
|
||
|
||
INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
|
||
unsigned long pagesz = malloc_getpagesize;
|
||
|
||
/* If not the first time through, round to preserve page boundary */
|
||
/* Otherwise, we need to correct to a page size below anyway. */
|
||
/* (We also correct below if an intervening foreign sbrk call.) */
|
||
|
||
if (sbrk_base != (char*)(-1))
|
||
sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
|
||
|
||
else if (check_init()) {
|
||
if (chunksize(top) - nb < (long)MINSIZE)
|
||
malloc_extend_top(nb);
|
||
return;
|
||
}
|
||
|
||
lim = (char*)(MORECORE (sbrk_size));
|
||
|
||
/* Fail if sbrk failed or if a foreign sbrk call killed our space */
|
||
if (lim == (char*)(MORECORE_FAILURE) ||
|
||
(lim < old_end && old_top != initial_top))
|
||
return;
|
||
|
||
sbrked_mem += sbrk_size;
|
||
|
||
if (lim == old_end) /* can just add bytes to current top */
|
||
{
|
||
top_size = sbrk_size + old_top_size;
|
||
set_head(top, top_size | PREV_INUSE);
|
||
}
|
||
else
|
||
{
|
||
#ifdef SBRKDBG
|
||
INTERNAL_SIZE_T padding = (char *)sbrk (0) - (lim + sbrk_size);
|
||
sbrk_size += padding;
|
||
sbrked_mem += padding;
|
||
#endif
|
||
|
||
if (sbrk_base == (char*)(-1)) /* First time through. Record base */
|
||
sbrk_base = lim;
|
||
else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
|
||
sbrked_mem += lim - (char*)old_end;
|
||
|
||
/* Guarantee alignment of first new chunk made from this space */
|
||
front_misalign = (unsigned long)chunk2mem(lim) & ALIGN_MASK;
|
||
if (front_misalign > 0)
|
||
{
|
||
correction = (ALIGNMENT) - front_misalign;
|
||
lim += correction;
|
||
}
|
||
else
|
||
correction = 0;
|
||
|
||
/* Guarantee the next brk will be at a page boundary */
|
||
correction += pagesz - ((unsigned long)(lim + sbrk_size) & (pagesz - 1));
|
||
|
||
/* Allocate correction */
|
||
new_lim = (char*)(MORECORE (correction));
|
||
if (new_lim == (char*)(MORECORE_FAILURE)) return;
|
||
|
||
sbrked_mem += correction;
|
||
|
||
top = (mchunkptr)lim;
|
||
top_size = new_lim - lim + correction;
|
||
set_head(top, top_size | PREV_INUSE);
|
||
#if DEBUG
|
||
lowest_chunk = top;
|
||
#endif
|
||
|
||
#ifdef OTHER_SBRKS
|
||
if (old_top != initial_top)
|
||
{
|
||
|
||
/* There must have been an intervening foreign sbrk call. */
|
||
/* A double fencepost is necessary to prevent consolidation */
|
||
|
||
/* If not enough space to do this, then user did something very wrong */
|
||
if (old_top_size < MINSIZE)
|
||
{
|
||
set_head(top, PREV_INUSE); /* will force null return from malloc */
|
||
return;
|
||
}
|
||
|
||
old_top_size -= 2*SIZE_SZ;
|
||
chunk_at_offset(old_top, old_top_size )->size =
|
||
SIZE_SZ|PREV_INUSE;
|
||
chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
|
||
SIZE_SZ|PREV_INUSE;
|
||
set_head_size(old_top, old_top_size);
|
||
/* If possible, release the rest. */
|
||
if (old_top_size >= MINSIZE) {
|
||
init_freeable_chunk(old_top);
|
||
fREe(chunk2mem(old_top));
|
||
}
|
||
}
|
||
#endif /* OTHER_SBRKS */
|
||
}
|
||
|
||
init_freed_chunk(top, old_top == initial_top ? old_top_size : 0, 0);
|
||
|
||
if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
|
||
max_sbrked_mem = sbrked_mem;
|
||
if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
|
||
max_total_mem = mmapped_mem + sbrked_mem;
|
||
|
||
/* We always land on a page boundary */
|
||
assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Main public routines */
|
||
|
||
|
||
/*
|
||
Malloc Algorthim:
|
||
|
||
The requested size is first converted into a usable form, `nb'.
|
||
This currently means to add 4 bytes overhead plus possibly more to
|
||
obtain 8-byte alignment and/or to obtain a size of at least
|
||
MINSIZE (currently 16 bytes), the smallest allocatable size.
|
||
(All fits are considered `exact' if they are within MINSIZE bytes.)
|
||
|
||
From there, the first successful of the following steps is taken:
|
||
|
||
1. The bin corresponding to the request size is scanned, and if
|
||
a chunk of exactly the right size is found, it is taken.
|
||
|
||
2. The most recently remaindered chunk is used if it is big
|
||
enough. This is a form of (roving) first fit, used only in
|
||
the absence of exact fits. Runs of consecutive requests use
|
||
the remainder of the chunk used for the previous such request
|
||
whenever possible. This limited use of a first-fit style
|
||
allocation strategy tends to give contiguous chunks
|
||
coextensive lifetimes, which improves locality and can reduce
|
||
fragmentation in the long run.
|
||
|
||
3. Other bins are scanned in increasing size order, using a
|
||
chunk big enough to fulfill the request, and splitting off
|
||
any remainder. This search is strictly by best-fit; i.e.,
|
||
the smallest (with ties going to approximately the least
|
||
recently used) chunk that fits is selected.
|
||
|
||
4. If large enough, the chunk bordering the end of memory
|
||
(`top') is split off. (This use of `top' is in accord with
|
||
the best-fit search rule. In effect, `top' is treated as
|
||
larger (and thus less well fitting) than any other available
|
||
chunk since it can be extended to be as large as necessary
|
||
(up to system limitations).
|
||
|
||
5. If the request size meets the mmap threshold and the
|
||
system supports mmap, and there are few enough currently
|
||
allocated mmapped regions, and a call to mmap succeeds,
|
||
the request is allocated via direct memory mapping.
|
||
|
||
6. Otherwise, the top of memory is extended by
|
||
obtaining more space from the system (normally using sbrk,
|
||
but definable to anything else via the MORECORE macro).
|
||
Memory is gathered from the system (in system page-sized
|
||
units) in a way that allows chunks obtained across different
|
||
sbrk calls to be consolidated, but does not require
|
||
contiguous memory. Thus, it should be safe to intersperse
|
||
mallocs with other sbrk calls.
|
||
|
||
|
||
All allocations are made from the the `lowest' part of any found
|
||
chunk. (The implementation invariant is that prev_inuse is
|
||
always true of any allocated chunk; i.e., that each allocated
|
||
chunk borders either a previously allocated and still in-use chunk,
|
||
or the base of its memory arena.)
|
||
|
||
*/
|
||
|
||
#if __STD_C
|
||
Void_t* mALLOc(size_t bytes)
|
||
#else
|
||
Void_t* mALLOc(bytes) size_t bytes;
|
||
#endif
|
||
{
|
||
mchunkptr victim; /* inspected/selected chunk */
|
||
INTERNAL_SIZE_T victim_size; /* its size */
|
||
int idx; /* index for bin traversal */
|
||
mbinptr bin; /* associated bin */
|
||
mchunkptr remainder; /* remainder from a split */
|
||
long remainder_size; /* its size */
|
||
int remainder_index; /* its bin index */
|
||
unsigned long block; /* block traverser bit */
|
||
int startidx; /* first bin of a traversed block */
|
||
mchunkptr fwd; /* misc temp for linking */
|
||
mchunkptr bck; /* misc temp for linking */
|
||
mbinptr q; /* misc temp */
|
||
|
||
INTERNAL_SIZE_T nb = request2size(bytes); /* padded request size; */
|
||
|
||
/* Check for exact match in a bin */
|
||
|
||
if (is_small_request(nb)) /* Faster version for small requests */
|
||
{
|
||
idx = smallbin_index(nb);
|
||
|
||
/* No traversal or size check necessary for small bins. */
|
||
|
||
q = bin_at(idx);
|
||
victim = last(q);
|
||
|
||
/* Also scan the next one, since it would have a remainder < MINSIZE */
|
||
if (victim == q)
|
||
{
|
||
q = next_bin(q);
|
||
victim = last(q);
|
||
}
|
||
if (victim != q)
|
||
{
|
||
victim_size = chunksize(victim);
|
||
unlink(victim, bck, fwd);
|
||
set_inuse_bit_at_offset(victim, victim_size);
|
||
check_freefill(victim, victim_size, victim_size);
|
||
init_malloced_chunk(victim, bytes);
|
||
check_malloced_chunk(victim, nb);
|
||
|
||
return chunk2mem(victim);
|
||
}
|
||
|
||
idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
|
||
|
||
}
|
||
else
|
||
{
|
||
idx = bin_index(nb);
|
||
bin = bin_at(idx);
|
||
|
||
for (victim = last(bin); victim != bin; victim = victim->bk)
|
||
{
|
||
victim_size = chunksize(victim);
|
||
remainder_size = victim_size - nb;
|
||
|
||
if (remainder_size >= (long)MINSIZE) /* too big */
|
||
{
|
||
--idx; /* adjust to rescan below after checking last remainder */
|
||
break;
|
||
}
|
||
|
||
else if (remainder_size >= 0) /* exact fit */
|
||
{
|
||
unlink(victim, bck, fwd);
|
||
set_inuse_bit_at_offset(victim, victim_size);
|
||
check_freefill(victim, victim_size, victim_size);
|
||
init_malloced_chunk(victim, bytes);
|
||
check_malloced_chunk(victim, nb);
|
||
return chunk2mem(victim);
|
||
}
|
||
}
|
||
|
||
++idx;
|
||
|
||
}
|
||
|
||
/* Try to use the last split-off remainder */
|
||
|
||
if ( (victim = last_remainder->fd) != last_remainder)
|
||
{
|
||
victim_size = chunksize(victim);
|
||
remainder_size = victim_size - nb;
|
||
|
||
if (remainder_size >= (long)MINSIZE) /* re-split */
|
||
{
|
||
remainder = chunk_at_offset(victim, nb);
|
||
set_head(victim, nb | PREV_INUSE);
|
||
check_freefill(victim, nb, victim_size);
|
||
init_malloced_chunk(victim, bytes);
|
||
link_last_remainder(remainder);
|
||
set_head(remainder, remainder_size | PREV_INUSE);
|
||
set_foot(remainder, remainder_size);
|
||
init_freed_chunk(remainder, remainder_size, 0);
|
||
check_malloced_chunk(victim, nb);
|
||
return chunk2mem(victim);
|
||
}
|
||
|
||
clear_last_remainder;
|
||
|
||
if (remainder_size >= 0) /* exhaust */
|
||
{
|
||
set_inuse_bit_at_offset(victim, victim_size);
|
||
check_freefill(victim, victim_size, victim_size);
|
||
init_malloced_chunk(victim, bytes);
|
||
check_malloced_chunk(victim, nb);
|
||
return chunk2mem(victim);
|
||
}
|
||
|
||
/* Else place in bin */
|
||
|
||
frontlink(victim, victim_size, remainder_index, bck, fwd);
|
||
}
|
||
|
||
/*
|
||
If there are any possibly nonempty big-enough blocks,
|
||
search for best fitting chunk by scanning bins in blockwidth units.
|
||
*/
|
||
|
||
if ( (block = idx2binblock(idx)) <= binblocks)
|
||
{
|
||
|
||
/* Get to the first marked block */
|
||
|
||
if ( (block & binblocks) == 0)
|
||
{
|
||
/* force to an even block boundary */
|
||
idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
|
||
block <<= 1;
|
||
while ((block & binblocks) == 0)
|
||
{
|
||
idx += BINBLOCKWIDTH;
|
||
block <<= 1;
|
||
}
|
||
}
|
||
|
||
/* For each possibly nonempty block ... */
|
||
for (;;)
|
||
{
|
||
startidx = idx; /* (track incomplete blocks) */
|
||
q = bin = bin_at(idx);
|
||
|
||
/* For each bin in this block ... */
|
||
do
|
||
{
|
||
/* Find and use first big enough chunk ... */
|
||
|
||
for (victim = last(bin); victim != bin; victim = victim->bk)
|
||
{
|
||
victim_size = chunksize(victim);
|
||
remainder_size = victim_size - nb;
|
||
|
||
if (remainder_size >= (long)MINSIZE) /* split */
|
||
{
|
||
remainder = chunk_at_offset(victim, nb);
|
||
set_head(victim, nb | PREV_INUSE);
|
||
check_freefill(victim, nb, victim_size);
|
||
unlink(victim, bck, fwd);
|
||
init_malloced_chunk(victim, bytes);
|
||
link_last_remainder(remainder);
|
||
set_head(remainder, remainder_size | PREV_INUSE);
|
||
set_foot(remainder, remainder_size);
|
||
init_freed_chunk(remainder, remainder_size, 0);
|
||
check_malloced_chunk(victim, nb);
|
||
return chunk2mem(victim);
|
||
}
|
||
|
||
else if (remainder_size >= 0) /* take */
|
||
{
|
||
check_freefill(victim, victim_size, victim_size);
|
||
set_inuse_bit_at_offset(victim, victim_size);
|
||
unlink(victim, bck, fwd);
|
||
init_malloced_chunk(victim, bytes);
|
||
check_malloced_chunk(victim, nb);
|
||
return chunk2mem(victim);
|
||
}
|
||
|
||
}
|
||
|
||
bin = next_bin(bin);
|
||
|
||
} while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
|
||
|
||
/* Clear out the block bit. */
|
||
|
||
do /* Possibly backtrack to try to clear a partial block */
|
||
{
|
||
if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
|
||
{
|
||
binblocks &= ~block;
|
||
break;
|
||
}
|
||
--startidx;
|
||
q = prev_bin(q);
|
||
} while (first(q) == q);
|
||
|
||
/* Get to the next possibly nonempty block */
|
||
|
||
if ( (block <<= 1) <= binblocks && (block != 0) )
|
||
{
|
||
while ((block & binblocks) == 0)
|
||
{
|
||
idx += BINBLOCKWIDTH;
|
||
block <<= 1;
|
||
}
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Try to use top chunk */
|
||
|
||
/* Require that there be a remainder, ensuring top always exists */
|
||
if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
|
||
{
|
||
|
||
#if HAVE_MMAP
|
||
/* If big and would otherwise need to extend, try to use mmap instead */
|
||
if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
|
||
(victim = mmap_chunk(nb)) != 0) {
|
||
init_malloced_chunk(victim, bytes);
|
||
return chunk2mem(victim);
|
||
}
|
||
#endif
|
||
|
||
/* Try to extend */
|
||
malloc_extend_top(nb);
|
||
if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
|
||
return 0; /* propagate failure */
|
||
}
|
||
|
||
victim = top;
|
||
set_head(victim, nb | PREV_INUSE);
|
||
check_freefill(victim, nb, nb + remainder_size);
|
||
init_malloced_chunk(victim, bytes);
|
||
top = chunk_at_offset(victim, nb);
|
||
set_head(top, remainder_size | PREV_INUSE);
|
||
init_freed_chunk(top, remainder_size, 0);
|
||
check_malloced_chunk(victim, nb);
|
||
return chunk2mem(victim);
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
|
||
free() algorithm :
|
||
|
||
cases:
|
||
|
||
1. free(0) has no effect.
|
||
|
||
2. If the chunk was allocated via mmap, it is release via munmap().
|
||
|
||
3. If a returned chunk borders the current high end of memory,
|
||
it is consolidated into the top, and if the total unused
|
||
topmost memory exceeds the trim threshold, malloc_trim is
|
||
called.
|
||
|
||
4. Other chunks are consolidated as they arrive, and
|
||
placed in corresponding bins. (This includes the case of
|
||
consolidating with the current `last_remainder').
|
||
|
||
*/
|
||
|
||
|
||
#if __STD_C
|
||
void fREe(Void_t* mem)
|
||
#else
|
||
void fREe(mem) Void_t* mem;
|
||
#endif
|
||
{
|
||
mchunkptr p; /* chunk corresponding to mem */
|
||
INTERNAL_SIZE_T hd; /* its head field */
|
||
INTERNAL_SIZE_T sz; /* its size */
|
||
int idx; /* its bin index */
|
||
mchunkptr next; /* next contiguous chunk */
|
||
INTERNAL_SIZE_T nextsz; /* its size */
|
||
INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
|
||
mchunkptr bck; /* misc temp for linking */
|
||
mchunkptr fwd; /* misc temp for linking */
|
||
int islr; /* track whether merging with last_remainder */
|
||
|
||
if (mem == 0) /* free(0) has no effect */
|
||
return;
|
||
|
||
p = mem2chunk(mem);
|
||
check_inuse_chunk(p);
|
||
|
||
hd = p->size;
|
||
|
||
#if HAVE_MMAP
|
||
if (hd & IS_MMAPPED) /* release mmapped memory. */
|
||
{
|
||
munmap_chunk(p);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
sz = hd & ~PREV_INUSE;
|
||
next = chunk_at_offset(p, sz);
|
||
nextsz = chunksize(next);
|
||
prevsz = 0; /* avoid compiler warnings */
|
||
|
||
if (next == top) /* merge with top */
|
||
{
|
||
sz += nextsz;
|
||
|
||
if (!(hd & PREV_INUSE)) /* consolidate backward */
|
||
{
|
||
prevsz = p->prev_size;
|
||
p = chunk_at_offset(p, -(long)prevsz);
|
||
sz += prevsz;
|
||
unlink(p, bck, fwd);
|
||
}
|
||
|
||
set_head(p, sz | PREV_INUSE);
|
||
top = p;
|
||
init_freed_chunk(top, !(hd & PREV_INUSE) ? prevsz : 0, nextsz);
|
||
if ((unsigned long)(sz) >= trim_threshold)
|
||
malloc_trim(top_pad);
|
||
return;
|
||
}
|
||
|
||
set_head(next, nextsz); /* clear inuse bit */
|
||
|
||
islr = 0;
|
||
|
||
if (!(hd & PREV_INUSE)) /* consolidate backward */
|
||
{
|
||
prevsz = p->prev_size;
|
||
p = chunk_at_offset(p, -(long)prevsz);
|
||
sz += prevsz;
|
||
|
||
if (p->fd == last_remainder) /* keep as last_remainder */
|
||
islr = 1;
|
||
else
|
||
unlink(p, bck, fwd);
|
||
}
|
||
|
||
if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
|
||
{
|
||
sz += nextsz;
|
||
|
||
if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
|
||
{
|
||
islr = 1;
|
||
link_last_remainder(p);
|
||
}
|
||
else
|
||
unlink(next, bck, fwd);
|
||
}
|
||
|
||
|
||
set_head(p, sz | PREV_INUSE);
|
||
set_foot(p, sz);
|
||
if (!islr)
|
||
frontlink(p, sz, idx, bck, fwd);
|
||
init_freed_chunk(p, !(hd & PREV_INUSE) ? prevsz : 0,
|
||
!inuse_bit_at_offset(next, nextsz) ? nextsz : 0);
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
/*
|
||
|
||
Realloc algorithm:
|
||
|
||
Chunks that were obtained via mmap cannot be extended or shrunk
|
||
unless HAVE_MREMAP is defined, in which case mremap is used.
|
||
Otherwise, if their reallocation is for additional space, they are
|
||
copied. If for less, they are just left alone.
|
||
|
||
Otherwise, if the reallocation is for additional space, and the
|
||
chunk can be extended, it is, else a malloc-copy-free sequence is
|
||
taken. There are several different ways that a chunk could be
|
||
extended. All are tried:
|
||
|
||
* Extending forward into following adjacent free chunk.
|
||
* Shifting backwards, joining preceding adjacent space
|
||
* Both shifting backwards and extending forward.
|
||
* Extending into newly sbrked space
|
||
|
||
Unless the #define realloc_ZERO_BYTES_FREES is set, realloc with a
|
||
size argument of zero (re)allocates a minimum-sized chunk.
|
||
|
||
If the reallocation is for less space, and the new request is for
|
||
a `small' (<512 bytes) size, then the newly unused space is lopped
|
||
off and freed.
|
||
|
||
The old unix realloc convention of allowing the last-free'd chunk
|
||
to be used as an argument to realloc is no longer supported.
|
||
I don't know of any programs still relying on this feature,
|
||
and allowing it would also allow too many other incorrect
|
||
usages of realloc to be sensible.
|
||
|
||
|
||
*/
|
||
|
||
|
||
#if __STD_C
|
||
Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
|
||
#else
|
||
Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
|
||
#endif
|
||
{
|
||
INTERNAL_SIZE_T nb; /* padded request size */
|
||
|
||
mchunkptr oldp; /* chunk corresponding to oldmem */
|
||
INTERNAL_SIZE_T oldsize; /* its size */
|
||
|
||
mchunkptr newp; /* chunk to return */
|
||
INTERNAL_SIZE_T newsize; /* its size */
|
||
Void_t* newmem; /* corresponding user mem */
|
||
|
||
mchunkptr next; /* next contiguous chunk after oldp */
|
||
INTERNAL_SIZE_T nextsize; /* its size */
|
||
|
||
mchunkptr prev; /* previous contiguous chunk before oldp */
|
||
INTERNAL_SIZE_T prevsize; /* its size */
|
||
|
||
mchunkptr remainder; /* holds split off extra space from newp */
|
||
INTERNAL_SIZE_T remainder_size; /* its size */
|
||
|
||
mchunkptr bck; /* misc temp for linking */
|
||
mchunkptr fwd; /* misc temp for linking */
|
||
|
||
#ifdef realloc_ZERO_BYTES_FREES
|
||
if (bytes == 0) { fREe(oldmem); return 0; }
|
||
#endif
|
||
|
||
|
||
/* realloc of null is supposed to be same as malloc */
|
||
if (oldmem == 0) return mALLOc(bytes);
|
||
|
||
newp = oldp = mem2chunk(oldmem);
|
||
newsize = oldsize = chunksize(oldp);
|
||
|
||
|
||
nb = request2size(bytes);
|
||
|
||
check_inuse_chunk(oldp);
|
||
|
||
#if HAVE_MMAP
|
||
if (chunk_is_mmapped(oldp))
|
||
{
|
||
if (oldsize - MMAP_EXTRA >= nb) {
|
||
init_realloced_chunk(oldp, bytes, oldsize);
|
||
return oldmem; /* do nothing */
|
||
}
|
||
#if HAVE_MREMAP
|
||
newp = mremap_chunk(oldp, nb);
|
||
if (newp) {
|
||
init_realloced_chunk(newp, bytes, oldsize);
|
||
return chunk2mem(newp);
|
||
}
|
||
#endif
|
||
/* Must alloc, copy, free. */
|
||
newmem = mALLOc(bytes);
|
||
if (newmem == 0) return 0; /* propagate failure */
|
||
malloc_COPY(newmem, oldmem, oldsize - OVERHEAD - MMAP_EXTRA);
|
||
munmap_chunk(oldp);
|
||
return newmem;
|
||
}
|
||
#endif
|
||
|
||
if (oldsize < nb)
|
||
{
|
||
|
||
/* Try expanding forward */
|
||
|
||
next = chunk_at_offset(oldp, oldsize);
|
||
if (next == top || !inuse(next))
|
||
{
|
||
nextsize = chunksize(next);
|
||
|
||
/* Forward into top only if a remainder */
|
||
if (next == top)
|
||
{
|
||
if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
|
||
{
|
||
check_freefill(next, nb - oldsize, nextsize);
|
||
newsize += nextsize;
|
||
top = chunk_at_offset(oldp, nb);
|
||
set_head(top, (newsize - nb) | PREV_INUSE);
|
||
init_freed_chunk(top, newsize - nb, 0);
|
||
set_head_size(oldp, nb);
|
||
init_realloced_chunk(oldp, bytes, oldsize);
|
||
return chunk2mem(oldp);
|
||
}
|
||
}
|
||
|
||
/* Forward into next chunk */
|
||
else if (((long)(nextsize + newsize) >= (long)nb))
|
||
{
|
||
check_freefill(next, nb - oldsize, nextsize);
|
||
unlink(next, bck, fwd);
|
||
newsize += nextsize;
|
||
goto split;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
next = 0;
|
||
nextsize = 0;
|
||
}
|
||
|
||
/* Try shifting backwards. */
|
||
|
||
if (!prev_inuse(oldp))
|
||
{
|
||
prev = prev_chunk(oldp);
|
||
prevsize = chunksize(prev);
|
||
|
||
/* try forward + backward first to save a later consolidation */
|
||
|
||
if (next != 0)
|
||
{
|
||
/* into top */
|
||
if (next == top)
|
||
{
|
||
if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
|
||
{
|
||
check_freefill(prev, nb, prevsize);
|
||
check_freefill(next, nb - (prevsize + newsize), nextsize);
|
||
unlink(prev, bck, fwd);
|
||
newp = prev;
|
||
newsize += prevsize + nextsize;
|
||
newmem = chunk2mem(newp);
|
||
malloc_COPY(newmem, oldmem, oldsize - OVERHEAD);
|
||
top = chunk_at_offset(newp, nb);
|
||
set_head(top, (newsize - nb) | PREV_INUSE);
|
||
init_freed_chunk(top, newsize - nb, 0);
|
||
set_head_size(newp, nb);
|
||
init_realloced_chunk(newp, bytes, oldsize);
|
||
return newmem;
|
||
}
|
||
}
|
||
|
||
/* into next chunk */
|
||
else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
|
||
{
|
||
check_freefill(prev, nb, prevsize);
|
||
check_freefill(next, nb - (prevsize + newsize), nextsize);
|
||
unlink(next, bck, fwd);
|
||
unlink(prev, bck, fwd);
|
||
newp = prev;
|
||
newsize += nextsize + prevsize;
|
||
newmem = chunk2mem(newp);
|
||
malloc_COPY(newmem, oldmem, oldsize - OVERHEAD);
|
||
goto split;
|
||
}
|
||
}
|
||
|
||
/* backward only */
|
||
if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
|
||
{
|
||
check_freefill(prev, nb, prevsize);
|
||
unlink(prev, bck, fwd);
|
||
newp = prev;
|
||
newsize += prevsize;
|
||
newmem = chunk2mem(newp);
|
||
malloc_COPY(newmem, oldmem, oldsize - OVERHEAD);
|
||
goto split;
|
||
}
|
||
}
|
||
|
||
/* Must allocate */
|
||
|
||
newmem = mALLOc (bytes);
|
||
|
||
if (newmem == 0) /* propagate failure */
|
||
return 0;
|
||
|
||
/* Avoid copy if newp is next chunk after oldp. */
|
||
/* (This can only happen when new chunk is sbrk'ed.) */
|
||
|
||
if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
|
||
{
|
||
newsize += chunksize(newp);
|
||
newp = oldp;
|
||
goto split;
|
||
}
|
||
|
||
/* Otherwise copy, free, and exit */
|
||
malloc_COPY(newmem, oldmem, oldsize - OVERHEAD);
|
||
fREe(oldmem);
|
||
return newmem;
|
||
}
|
||
|
||
|
||
split: /* split off extra room in old or expanded chunk */
|
||
|
||
if (newsize - nb >= MINSIZE) /* split off remainder */
|
||
{
|
||
remainder = chunk_at_offset(newp, nb);
|
||
remainder_size = newsize - nb;
|
||
set_head_size(newp, nb);
|
||
set_head(remainder, remainder_size | PREV_INUSE);
|
||
set_inuse_bit_at_offset(remainder, remainder_size);
|
||
init_malloced_chunk(remainder, remainder_size - OVERHEAD);
|
||
fREe(chunk2mem(remainder)); /* let free() deal with it */
|
||
}
|
||
else
|
||
{
|
||
set_head_size(newp, newsize);
|
||
set_inuse_bit_at_offset(newp, newsize);
|
||
}
|
||
|
||
init_realloced_chunk(newp, bytes, oldsize);
|
||
check_inuse_chunk(newp);
|
||
return chunk2mem(newp);
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
|
||
memalign algorithm:
|
||
|
||
memalign requests more than enough space from malloc, finds a spot
|
||
within that chunk that meets the alignment request, and then
|
||
possibly frees the leading and trailing space.
|
||
|
||
The alignment argument must be a power of two. This property is not
|
||
checked by memalign, so misuse may result in random runtime errors.
|
||
|
||
8-byte alignment is guaranteed by normal malloc calls, so don't
|
||
bother calling memalign with an argument of 8 or less.
|
||
|
||
Overreliance on memalign is a sure way to fragment space.
|
||
|
||
*/
|
||
|
||
|
||
#if __STD_C
|
||
Void_t* mEMALIGn(size_t alignment, size_t bytes)
|
||
#else
|
||
Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
|
||
#endif
|
||
{
|
||
INTERNAL_SIZE_T nb; /* padded request size */
|
||
char* m; /* memory returned by malloc call */
|
||
mchunkptr p; /* corresponding chunk */
|
||
char* lim; /* alignment point within p */
|
||
mchunkptr newp; /* chunk to return */
|
||
INTERNAL_SIZE_T newsize; /* its size */
|
||
INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
|
||
mchunkptr remainder; /* spare room at end to split off */
|
||
long remainder_size; /* its size */
|
||
|
||
/* If need less alignment than we give anyway, just relay to malloc */
|
||
|
||
if (alignment <= ALIGNMENT) return mALLOc(bytes);
|
||
|
||
/* Otherwise, ensure that it is at least a minimum chunk size */
|
||
|
||
if (alignment < MINSIZE) alignment = MINSIZE;
|
||
|
||
/* Call malloc with worst case padding to hit alignment. */
|
||
|
||
nb = request2size(bytes);
|
||
m = (char*)mALLOc(nb + alignment + MINSIZE);
|
||
|
||
if (m == 0) return 0; /* propagate failure */
|
||
|
||
p = mem2chunk(m);
|
||
|
||
if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
|
||
{
|
||
init_realloced_chunk(p, bytes, chunksize(p));
|
||
return chunk2mem(p); /* nothing more to do */
|
||
}
|
||
else /* misaligned */
|
||
{
|
||
/*
|
||
Find an aligned spot inside chunk.
|
||
Since we need to give back leading space in a chunk of at
|
||
least MINSIZE, if the first calculation places us at
|
||
a spot with less than MINSIZE leader, we can move to the
|
||
next aligned spot -- we've allocated enough total room so that
|
||
this is always possible.
|
||
*/
|
||
|
||
lim = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
|
||
~(alignment - 1));
|
||
if ((lim - (char*)p) < (long)MINSIZE) lim = lim + alignment;
|
||
|
||
newp = (mchunkptr)lim;
|
||
leadsize = lim - (char*)p;
|
||
newsize = chunksize(p) - leadsize;
|
||
|
||
#if HAVE_MMAP
|
||
if(chunk_is_mmapped(p))
|
||
{
|
||
newp->prev_size = p->prev_size + leadsize;
|
||
set_head(newp, newsize|IS_MMAPPED);
|
||
init_malloced_chunk(newp, bytes);
|
||
return chunk2mem(newp);
|
||
}
|
||
#endif
|
||
|
||
/* give back leader, use the rest */
|
||
|
||
set_head(newp, newsize | PREV_INUSE);
|
||
set_inuse_bit_at_offset(newp, newsize);
|
||
set_head_size(p, leadsize);
|
||
init_freeable_chunk(p);
|
||
fREe(chunk2mem(p));
|
||
p = newp;
|
||
|
||
assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
|
||
}
|
||
|
||
/* Also give back spare room at the end */
|
||
|
||
remainder_size = chunksize(p) - nb;
|
||
|
||
if (remainder_size >= (long)MINSIZE)
|
||
{
|
||
remainder = chunk_at_offset(p, nb);
|
||
set_head(remainder, remainder_size | PREV_INUSE);
|
||
set_head_size(p, nb);
|
||
init_freeable_chunk(remainder);
|
||
fREe(chunk2mem(remainder));
|
||
}
|
||
|
||
init_malloced_chunk(p, bytes);
|
||
check_inuse_chunk(p);
|
||
return chunk2mem(p);
|
||
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
valloc just invokes memalign with alignment argument equal
|
||
to the page size of the system (or as near to this as can
|
||
be figured out from all the includes/defines above.)
|
||
*/
|
||
|
||
#if __STD_C
|
||
Void_t* vALLOc(size_t bytes)
|
||
#else
|
||
Void_t* vALLOc(bytes) size_t bytes;
|
||
#endif
|
||
{
|
||
return mEMALIGn (malloc_getpagesize, bytes);
|
||
}
|
||
|
||
/*
|
||
pvalloc just invokes valloc for the nearest pagesize
|
||
that will accommodate request
|
||
*/
|
||
|
||
|
||
#if __STD_C
|
||
Void_t* pvALLOc(size_t bytes)
|
||
#else
|
||
Void_t* pvALLOc(bytes) size_t bytes;
|
||
#endif
|
||
{
|
||
size_t pagesize = malloc_getpagesize;
|
||
return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
|
||
}
|
||
|
||
/*
|
||
|
||
calloc calls malloc, then zeroes out the allocated chunk.
|
||
|
||
*/
|
||
|
||
#if __STD_C
|
||
Void_t* cALLOc(size_t n, size_t elem_size)
|
||
#else
|
||
Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
|
||
#endif
|
||
{
|
||
mchunkptr p;
|
||
INTERNAL_SIZE_T csz;
|
||
|
||
INTERNAL_SIZE_T sz = n * elem_size;
|
||
|
||
/* check if expand_top called, in which case don't need to clear */
|
||
#if MORECORE_CLEARS
|
||
mchunkptr oldtop = top;
|
||
INTERNAL_SIZE_T oldtopsize = chunksize(top);
|
||
#endif
|
||
Void_t* mem = mALLOc (sz);
|
||
|
||
if (mem == 0)
|
||
return 0;
|
||
else
|
||
{
|
||
p = mem2chunk(mem);
|
||
|
||
/* Two optional cases in which clearing not necessary */
|
||
|
||
|
||
#if HAVE_MMAP
|
||
if (chunk_is_mmapped(p)) return mem;
|
||
#endif
|
||
|
||
csz = chunksize(p);
|
||
|
||
#if MORECORE_CLEARS
|
||
if (p == oldtop && csz > oldtopsize)
|
||
{
|
||
/* clear only the bytes from non-freshly-sbrked memory */
|
||
csz = oldtopsize;
|
||
}
|
||
#endif
|
||
|
||
malloc_ZERO(mem, csz - OVERHEAD);
|
||
/* reinstate moat fill in pad region */
|
||
init_realloced_chunk(p, sz, chunksize(p));
|
||
return mem;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
|
||
Malloc_trim gives memory back to the system (via negative
|
||
arguments to sbrk) if there is unused memory at the `high' end of
|
||
the malloc pool. You can call this after freeing large blocks of
|
||
memory to potentially reduce the system-level memory requirements
|
||
of a program. However, it cannot guarantee to reduce memory. Under
|
||
some allocation patterns, some large free blocks of memory will be
|
||
locked between two used chunks, so they cannot be given back to
|
||
the system.
|
||
|
||
The `pad' argument to malloc_trim represents the amount of free
|
||
trailing space to leave untrimmed. If this argument is zero,
|
||
only the minimum amount of memory to maintain internal data
|
||
structures will be left (one page or less). Non-zero arguments
|
||
can be supplied to maintain enough trailing space to service
|
||
future expected allocations without having to re-obtain memory
|
||
from the system.
|
||
|
||
Malloc_trim returns 1 if it actually released any memory, else 0.
|
||
|
||
*/
|
||
|
||
#if __STD_C
|
||
int dlmalloc_trim(size_t pad)
|
||
#else
|
||
int malloc_trim(pad) size_t pad;
|
||
#endif
|
||
{
|
||
long top_size; /* Amount of top-most memory */
|
||
long extra; /* Amount to release */
|
||
char* current_lim; /* address returned by pre-check sbrk call */
|
||
char* new_lim; /* address returned by negative sbrk call */
|
||
|
||
unsigned long pagesz = malloc_getpagesize;
|
||
|
||
top_size = chunksize(top);
|
||
extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
|
||
|
||
if (extra < (long)pagesz) /* Not enough memory to release */
|
||
return 0;
|
||
|
||
else
|
||
{
|
||
#ifdef OTHER_SBRKS
|
||
/* Test to make sure no one else called sbrk */
|
||
current_lim = (char*)(MORECORE (0));
|
||
if (current_lim != (char*)(top) + top_size)
|
||
return 0; /* Apparently we don't own memory; must fail */
|
||
|
||
else
|
||
#endif
|
||
{
|
||
new_lim = (char*)(MORECORE (-extra));
|
||
|
||
if (new_lim == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
|
||
{
|
||
/* Try to figure out what we have */
|
||
current_lim = (char*)(MORECORE (0));
|
||
top_size = current_lim - (char*)top;
|
||
if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
|
||
{
|
||
sbrked_mem = current_lim - sbrk_base;
|
||
set_head(top, top_size | PREV_INUSE);
|
||
init_freed_chunk(top, top_size, 0);
|
||
}
|
||
check_chunk(top);
|
||
return 0;
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Success. Adjust top accordingly. */
|
||
set_head(top, (top_size - extra) | PREV_INUSE);
|
||
sbrked_mem -= extra;
|
||
init_freed_chunk(top, top_size - extra, 0);
|
||
check_chunk(top);
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
malloc_usable_size:
|
||
|
||
This routine tells you how many bytes you can actually use in an
|
||
allocated chunk, which may be more than you requested (although
|
||
often not). You can use this many bytes without worrying about
|
||
overwriting other allocated objects. Not a particularly great
|
||
programming practice, but still sometimes useful.
|
||
|
||
*/
|
||
|
||
#if __STD_C
|
||
size_t dlmalloc_usable_size(Void_t* mem)
|
||
#else
|
||
size_t malloc_usable_size(mem) Void_t* mem;
|
||
#endif
|
||
{
|
||
mchunkptr p;
|
||
if (mem == 0)
|
||
return 0;
|
||
else
|
||
{
|
||
p = mem2chunk(mem);
|
||
check_inuse_chunk(p);
|
||
maximize_chunk(p);
|
||
if(!chunk_is_mmapped(p))
|
||
{
|
||
if (!inuse(p)) return 0;
|
||
return chunksize(p) - OVERHEAD;
|
||
}
|
||
return chunksize(p) - OVERHEAD - MMAP_EXTRA;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
|
||
|
||
static void malloc_update_mallinfo(void)
|
||
{
|
||
int i;
|
||
mbinptr b;
|
||
mchunkptr p;
|
||
#if DEBUG
|
||
mchunkptr q;
|
||
#endif
|
||
|
||
INTERNAL_SIZE_T avail = chunksize(top);
|
||
int navail = avail >= MINSIZE ? 1 : 0;
|
||
check_freefill(top, avail, avail);
|
||
|
||
#if DEBUG
|
||
if (lowest_chunk)
|
||
for (p = lowest_chunk;
|
||
p < top && inuse(p) && chunksize(p) >= MINSIZE;
|
||
p = next_chunk(p))
|
||
check_inuse_chunk(p);
|
||
#endif
|
||
|
||
for (i = 1; i < NAV; ++i)
|
||
{
|
||
b = bin_at(i);
|
||
for (p = last(b); p != b; p = p->bk)
|
||
{
|
||
#if DEBUG
|
||
check_free_chunk(p);
|
||
check_freefill(p, chunksize(p), chunksize(p));
|
||
for (q = next_chunk(p);
|
||
q < top && inuse(q) && chunksize(q) >= MINSIZE;
|
||
q = next_chunk(q))
|
||
check_inuse_chunk(q);
|
||
#endif
|
||
avail += chunksize(p);
|
||
navail++;
|
||
}
|
||
}
|
||
|
||
current_mallinfo.ordblks = navail;
|
||
current_mallinfo.uordblks = sbrked_mem - avail;
|
||
current_mallinfo.fordblks = avail;
|
||
current_mallinfo.hblks = n_mmaps;
|
||
current_mallinfo.hblkhd = mmapped_mem;
|
||
current_mallinfo.keepcost = chunksize(top);
|
||
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
|
||
malloc_stats:
|
||
|
||
Prints on stderr the amount of space obtain from the system (both
|
||
via sbrk and mmap), the maximum amount (which may be more than
|
||
current if malloc_trim and/or munmap got called), the maximum
|
||
number of simultaneous mmap regions used, and the current number
|
||
of bytes allocated via malloc (or realloc, etc) but not yet
|
||
freed. (Note that this is the number of bytes allocated, not the
|
||
number requested. It will be larger than the number requested
|
||
because of alignment and bookkeeping overhead.)
|
||
|
||
*/
|
||
|
||
void dlmalloc_stats(void)
|
||
{
|
||
malloc_update_mallinfo();
|
||
fprintf(stderr, "max system bytes = %10u\n",
|
||
(unsigned int)(max_total_mem));
|
||
fprintf(stderr, "system bytes = %10u\n",
|
||
(unsigned int)(sbrked_mem + mmapped_mem));
|
||
fprintf(stderr, "in use bytes = %10u\n",
|
||
(unsigned int)(current_mallinfo.uordblks + mmapped_mem));
|
||
#if HAVE_MMAP
|
||
fprintf(stderr, "max mmap regions = %10u\n",
|
||
(unsigned int)max_n_mmaps);
|
||
#endif
|
||
}
|
||
|
||
/*
|
||
mallinfo returns a copy of updated current mallinfo.
|
||
*/
|
||
|
||
struct mallinfo mALLINFo(void)
|
||
{
|
||
malloc_update_mallinfo();
|
||
return current_mallinfo;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
mallopt:
|
||
|
||
mallopt is the general SVID/XPG interface to tunable parameters.
|
||
The format is to provide a (parameter-number, parameter-value) pair.
|
||
mallopt then sets the corresponding parameter to the argument
|
||
value if it can (i.e., so long as the value is meaningful),
|
||
and returns 1 if successful else 0.
|
||
|
||
See descriptions of tunable parameters above.
|
||
|
||
*/
|
||
|
||
#if __STD_C
|
||
int mALLOPt(int param_number, int value)
|
||
#else
|
||
int mALLOPt(param_number, value) int param_number; int value;
|
||
#endif
|
||
{
|
||
switch(param_number)
|
||
{
|
||
case M_TRIM_THRESHOLD:
|
||
trim_threshold = value; return 1;
|
||
case M_TOP_PAD:
|
||
top_pad = value; return 1;
|
||
case M_MMAP_THRESHOLD:
|
||
mmap_threshold = value; return 1;
|
||
case M_MMAP_MAX:
|
||
#if HAVE_MMAP
|
||
n_mmaps_max = value; return 1;
|
||
#else
|
||
if (value != 0) return 0; else n_mmaps_max = value; return 1;
|
||
#endif
|
||
case M_SCANHEAP:
|
||
#ifdef DEBUG2
|
||
scanheap = value;
|
||
#endif
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
|
||
History:
|
||
|
||
V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
|
||
* Added pvalloc, as recommended by H.J. Liu
|
||
* Added 64bit pointer support mainly from Wolfram Gloger
|
||
* Added anonymously donated WIN32 sbrk emulation
|
||
* Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
|
||
* malloc_extend_top: fix mask error that caused wastage after
|
||
foreign sbrks
|
||
* Add linux mremap support code from HJ Liu
|
||
|
||
V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
|
||
* Integrated most documentation with the code.
|
||
* Add support for mmap, with help from
|
||
Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
|
||
* Use last_remainder in more cases.
|
||
* Pack bins using idea from colin@nyx10.cs.du.edu
|
||
* Use ordered bins instead of best-fit threshhold
|
||
* Eliminate block-local decls to simplify tracing and debugging.
|
||
* Support another case of realloc via move into top
|
||
* Fix error occuring when initial sbrk_base not word-aligned.
|
||
* Rely on page size for units instead of SBRK_UNIT to
|
||
avoid surprises about sbrk alignment conventions.
|
||
* Add mallinfo, mallopt. Thanks to Raymond Nijssen
|
||
(raymond@es.ele.tue.nl) for the suggestion.
|
||
* Add `pad' argument to malloc_trim and top_pad mallopt parameter.
|
||
* More precautions for cases where other routines call sbrk,
|
||
courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
|
||
* Added macros etc., allowing use in linux libc from
|
||
H.J. Lu (hjl@gnu.ai.mit.edu)
|
||
* Inverted this history list
|
||
|
||
V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
|
||
* Re-tuned and fixed to behave more nicely with V2.6.0 changes.
|
||
* Removed all preallocation code since under current scheme
|
||
the work required to undo bad preallocations exceeds
|
||
the work saved in good cases for most test programs.
|
||
* No longer use return list or unconsolidated bins since
|
||
no scheme using them consistently outperforms those that don't
|
||
given above changes.
|
||
* Use best fit for very large chunks to prevent some worst-cases.
|
||
* Added some support for debugging
|
||
|
||
V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
|
||
* Removed footers when chunks are in use. Thanks to
|
||
Paul Wilson (wilson@cs.texas.edu) for the suggestion.
|
||
|
||
V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
|
||
* Added malloc_trim, with help from Wolfram Gloger
|
||
(wmglo@Dent.MED.Uni-Muenchen.DE).
|
||
|
||
V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
|
||
|
||
V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
|
||
* realloc: try to expand in both directions
|
||
* malloc: swap order of clean-bin strategy;
|
||
* realloc: only conditionally expand backwards
|
||
* Try not to scavenge used bins
|
||
* Use bin counts as a guide to preallocation
|
||
* Occasionally bin return list chunks in first scan
|
||
* Add a few optimizations from colin@nyx10.cs.du.edu
|
||
|
||
V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
|
||
* faster bin computation & slightly different binning
|
||
* merged all consolidations to one part of malloc proper
|
||
(eliminating old malloc_find_space & malloc_clean_bin)
|
||
* Scan 2 returns chunks (not just 1)
|
||
* Propagate failure in realloc if malloc returns 0
|
||
* Add stuff to allow compilation on non-ANSI compilers
|
||
from kpv@research.att.com
|
||
|
||
V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
|
||
* removed potential for odd address access in prev_chunk
|
||
* removed dependency on getpagesize.h
|
||
* misc cosmetics and a bit more internal documentation
|
||
* anticosmetics: mangled names in macros to evade debugger strangeness
|
||
* tested on sparc, hp-700, dec-mips, rs6000
|
||
with gcc & native cc (hp, dec only) allowing
|
||
Detlefs & Zorn comparison study (in SIGPLAN Notices.)
|
||
|
||
Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
|
||
* Based loosely on libg++-1.2X malloc. (It retains some of the overall
|
||
structure of old version, but most details differ.)
|
||
|
||
*/
|