297 lines
6.4 KiB
C
Executable File
297 lines
6.4 KiB
C
Executable File
/* erfl.c
|
||
*
|
||
* Error function
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* long double x, y, erfl();
|
||
*
|
||
* y = erfl( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* The integral is
|
||
*
|
||
* x
|
||
* -
|
||
* 2 | | 2
|
||
* erf(x) = -------- | exp( - t ) dt.
|
||
* sqrt(pi) | |
|
||
* -
|
||
* 0
|
||
*
|
||
* The magnitude of x is limited to about 106.56 for IEEE
|
||
* arithmetic; 1 or -1 is returned outside this range.
|
||
*
|
||
* For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2);
|
||
* Otherwise: erf(x) = 1 - erfc(x).
|
||
*
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* IEEE 0,1 50000 2.0e-19 5.7e-20
|
||
*
|
||
*/
|
||
|
||
/* erfcl.c
|
||
*
|
||
* Complementary error function
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* long double x, y, erfcl();
|
||
*
|
||
* y = erfcl( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
*
|
||
* 1 - erf(x) =
|
||
*
|
||
* inf.
|
||
* -
|
||
* 2 | | 2
|
||
* erfc(x) = -------- | exp( - t ) dt
|
||
* sqrt(pi) | |
|
||
* -
|
||
* x
|
||
*
|
||
*
|
||
* For small x, erfc(x) = 1 - erf(x); otherwise rational
|
||
* approximations are computed.
|
||
*
|
||
* A special function expx2l.c is used to suppress error amplification
|
||
* in computing exp(-x^2).
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* IEEE 0,13 50000 8.4e-19 9.7e-20
|
||
* IEEE 6,106.56 20000 2.9e-19 7.1e-20
|
||
*
|
||
*
|
||
* ERROR MESSAGES:
|
||
*
|
||
* message condition value returned
|
||
* erfcl underflow x^2 > MAXLOGL 0.0
|
||
*
|
||
*
|
||
*/
|
||
|
||
|
||
/*
|
||
Modified from file ndtrl.c
|
||
Cephes Math Library Release 2.3: January, 1995
|
||
Copyright 1984, 1995 by Stephen L. Moshier
|
||
*/
|
||
|
||
#include <math.h>
|
||
#include "cephes_mconf.h"
|
||
|
||
/* erfc(x) = exp(-x^2) P(1/x)/Q(1/x)
|
||
1/8 <= 1/x <= 1
|
||
Peak relative error 5.8e-21 */
|
||
|
||
static const uLD P[] = {
|
||
{ { 0x4bf0,0x9ad8,0x7a03,0x86c7,0x401d, XPD } },
|
||
{ { 0xdf23,0xd843,0x4032,0x8881,0x401e, XPD } },
|
||
{ { 0xd025,0xcfd5,0x8494,0x88d3,0x401e, XPD } },
|
||
{ { 0xb6d0,0xc92b,0x5417,0xacb1,0x401d, XPD } },
|
||
{ { 0xada8,0x356a,0x4982,0x94a6,0x401c, XPD } },
|
||
{ { 0x4e13,0xcaee,0x9e31,0xb258,0x401a, XPD } },
|
||
{ { 0x5840,0x554d,0x37a3,0x9239,0x4018, XPD } },
|
||
{ { 0x3b58,0x3da2,0xaf02,0x9780,0x4015, XPD } },
|
||
{ { 0x0144,0x489e,0xbe68,0x9c31,0x4011, XPD } },
|
||
{ { 0x333b,0xd9e6,0xd404,0x986f,0xbfee, XPD } }
|
||
};
|
||
static const uLD Q[] = {
|
||
{ { 0X0e43,0x302d,0x79ed,0x86c7,0x401d, XPD } },
|
||
{ { 0xf817,0x9128,0xc0f8,0xd48b,0x401e, XPD } },
|
||
{ { 0x8eae,0x8dad,0x6eb4,0x9aa2,0x401f, XPD } },
|
||
{ { 0x00e7,0x7595,0xcd06,0x88bb,0x401f, XPD } },
|
||
{ { 0x4991,0xcfda,0x52f1,0xa2a9,0x401e, XPD } },
|
||
{ { 0xc39d,0xe415,0xc43d,0x87c0,0x401d, XPD } },
|
||
{ { 0xa75d,0x436f,0x30dd,0xa027,0x401b, XPD } },
|
||
{ { 0xc4cb,0x305a,0xbf78,0x8220,0x4019, XPD } },
|
||
{ { 0x3708,0x33b1,0x07fa,0x8644,0x4016, XPD } },
|
||
{ { 0x24fa,0x96f6,0x7153,0x8a6c,0x4012, XPD } }
|
||
};
|
||
|
||
/* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2)
|
||
1/128 <= 1/x < 1/8
|
||
Peak relative error 1.9e-21 */
|
||
|
||
static const uLD R[] = {
|
||
{ { 0x260a,0xab95,0x2fc7,0xe7c4,0x4000, XPD } },
|
||
{ { 0x4761,0x613e,0xdf6d,0xe58e,0x4001, XPD } },
|
||
{ { 0x0615,0x4b00,0x575f,0xdc7b,0x4000, XPD } },
|
||
{ { 0x521d,0x8527,0x3435,0x8dc2,0x3ffe, XPD } },
|
||
{ { 0x22cf,0xc711,0x6c5b,0xdcfb,0x3ff9, XPD } }
|
||
};
|
||
static const uLD S[] = {
|
||
{ { 0x5de6,0x17d7,0x54d6,0xaba9,0x4002, XPD } },
|
||
{ { 0x55d5,0xd300,0xe71e,0xf564,0x4002, XPD } },
|
||
{ { 0xb611,0x8f76,0xf020,0xd255,0x4001, XPD } },
|
||
{ { 0x3684,0x3798,0xb793,0x80b0,0x3fff, XPD } },
|
||
{ { 0xf5af,0x2fb2,0x1e57,0xc3d7,0x3ffa, XPD } }
|
||
};
|
||
|
||
/* erf(x) = x T(x^2)/U(x^2)
|
||
0 <= x <= 1
|
||
Peak relative error 7.6e-23 */
|
||
|
||
static const uLD T[] = {
|
||
{ { 0xfd7a,0x3a1a,0x705b,0xe0c4,0x3ffb, XPD } },
|
||
{ { 0x3128,0xc337,0x3716,0xace5,0x4001, XPD } },
|
||
{ { 0x9517,0x4e93,0x540e,0x8f97,0x4007, XPD } },
|
||
{ { 0x6118,0x6059,0x9093,0xa757,0x400a, XPD } },
|
||
{ { 0xb954,0xa987,0xc60c,0xbc83,0x400e, XPD } },
|
||
{ { 0x7a56,0xe45a,0xa4bd,0x975b,0x4010, XPD } },
|
||
{ { 0xc446,0x6bab,0x0b2a,0x86d0,0x4013, XPD } }
|
||
};
|
||
|
||
static const uLD U[] = {
|
||
{ { 0x3453,0x1f8e,0xf688,0xb507,0x4004, XPD } },
|
||
{ { 0x71ac,0xb12f,0x21ca,0xf2e2,0x4008, XPD } },
|
||
{ { 0xffe8,0x9cac,0x3b84,0xc2ac,0x400c, XPD } },
|
||
{ { 0x481d,0x445b,0xc807,0xc232,0x400f, XPD } },
|
||
{ { 0x9ad5,0x1aef,0x45b1,0xe25e,0x4011, XPD } },
|
||
{ { 0x71a7,0x1cad,0x012e,0xeef3,0x4012, XPD } }
|
||
};
|
||
|
||
/* expx2l.c
|
||
*
|
||
* Exponential of squared argument
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* long double x, y, expmx2l();
|
||
* int sign;
|
||
*
|
||
* y = expx2l( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Computes y = exp(x*x) while suppressing error amplification
|
||
* that would ordinarily arise from the inexactness of the
|
||
* exponential argument x*x.
|
||
*
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* IEEE -106.566, 106.566 10^5 1.6e-19 4.4e-20
|
||
*
|
||
*/
|
||
|
||
#define M 32768.0L
|
||
#define MINV 3.0517578125e-5L
|
||
|
||
static long double expx2l (long double x)
|
||
{
|
||
long double u, u1, m, f;
|
||
|
||
x = fabsl (x);
|
||
/* Represent x as an exact multiple of M plus a residual.
|
||
M is a power of 2 chosen so that exp(m * m) does not overflow
|
||
or underflow and so that |x - m| is small. */
|
||
m = MINV * floorl(M * x + 0.5L);
|
||
f = x - m;
|
||
|
||
/* x^2 = m^2 + 2mf + f^2 */
|
||
u = m * m;
|
||
u1 = 2 * m * f + f * f;
|
||
|
||
if ((u+u1) > MAXLOGL)
|
||
return (INFINITYL);
|
||
|
||
/* u is exact, u1 is small. */
|
||
u = expl(u) * expl(u1);
|
||
return(u);
|
||
}
|
||
|
||
long double erfcl(long double a)
|
||
{
|
||
long double p,q,x,y,z;
|
||
|
||
if (isinf (a))
|
||
return (signbit (a) ? 2.0 : 0.0);
|
||
|
||
x = fabsl (a);
|
||
|
||
if (x < 1.0L)
|
||
return (1.0L - erfl(a));
|
||
|
||
z = a * a;
|
||
|
||
if( z > MAXLOGL )
|
||
{
|
||
under:
|
||
mtherr( "erfcl", UNDERFLOW );
|
||
errno = ERANGE;
|
||
return (signbit (a) ? 2.0 : 0.0);
|
||
}
|
||
|
||
/* Compute z = expl(a * a). */
|
||
z = expx2l (a);
|
||
y = 1.0L/x;
|
||
|
||
if (x < 8.0L)
|
||
{
|
||
p = polevll (y, P, 9);
|
||
q = p1evll (y, Q, 10);
|
||
}
|
||
else
|
||
{
|
||
q = y * y;
|
||
p = y * polevll (q, R, 4);
|
||
q = p1evll (q, S, 5);
|
||
}
|
||
y = p/(q * z);
|
||
|
||
if (a < 0.0L)
|
||
y = 2.0L - y;
|
||
|
||
if (y == 0.0L)
|
||
goto under;
|
||
|
||
return (y);
|
||
}
|
||
|
||
long double erfl(long double x)
|
||
{
|
||
long double y, z;
|
||
|
||
if( x == 0.0L )
|
||
return (x);
|
||
|
||
if (isinf (x))
|
||
return (signbit (x) ? -1.0L : 1.0L);
|
||
|
||
if (fabsl(x) > 1.0L)
|
||
return (1.0L - erfcl (x));
|
||
|
||
z = x * x;
|
||
y = x * polevll( z, T, 6 ) / p1evll( z, U, 6 );
|
||
return( y );
|
||
}
|