This patch adds the long double functions missing in newlib to Cygwin.
Apart from some self-written additions (exp10l, finite{f,l}, isinf{f,l},
isnan{f,l}, pow10l) the files are taken from the Mingw-w64 math lib.
Minor changes were required, e.g. substitue _WIN64 with __x86_64__ and
fixing __FLT_RPT_DOMAIN/__FLT_RPT_ERANGE for Cygwin.
Cygwin:
* math: New subdir with math functions.
* Makefile.in (VPATH): Add math subdir.
(MATH_OFILES): List of object files collected from building files in
math subdir.
(DLL_OFILES): Add $(MATH_OFILES).
${CURDIR}/libm.a: Add $(MATH_OFILES) to build.
* common.din: Add new functions from math subdir.
* i686.din: Align to new math subdir. Remove functions now commonly
available.
* x86_64.din: Ditto.
* math.h: math.h wrapper to define mingw structs used in some files in
math subdir.
* include/cygwin/version.h: Bump API minor version.
newlib:
* libc/include/complex.h: Add prototypes for complex long double
functions. Only define for Cygwin.
* libc/include/math.h: Additionally enable prototypes of long double
functions for Cygwin. Add Cygwin-only prototypes for dreml, sincosl,
exp10l and pow10l. Explain why we don't add them to newlib.
* libc/include/tgmath.h: Enable long double handling on Cygwin.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
81 lines
1.6 KiB
C
81 lines
1.6 KiB
C
/**
|
|
* This file has no copyright assigned and is placed in the Public Domain.
|
|
* This file is part of the mingw-w64 runtime package.
|
|
* No warranty is given; refer to the file DISCLAIMER.PD within this package.
|
|
*/
|
|
#include <math.h>
|
|
|
|
static const long double CBRT2 = 1.2599210498948731647672L;
|
|
static const long double CBRT4 = 1.5874010519681994747517L;
|
|
static const long double CBRT2I = 0.79370052598409973737585L;
|
|
static const long double CBRT4I = 0.62996052494743658238361L;
|
|
|
|
long double cbrtl(long double x)
|
|
{
|
|
int e, rem, sign;
|
|
long double z;
|
|
|
|
if (!isfinite (x) || x == 0.0L)
|
|
return (x);
|
|
|
|
if (x > 0)
|
|
sign = 1;
|
|
else
|
|
{
|
|
sign = -1;
|
|
x = -x;
|
|
}
|
|
|
|
z = x;
|
|
/* extract power of 2, leaving
|
|
* mantissa between 0.5 and 1
|
|
*/
|
|
x = frexpl(x, &e);
|
|
|
|
/* Approximate cube root of number between .5 and 1,
|
|
* peak relative error = 1.2e-6
|
|
*/
|
|
x = (((( 1.3584464340920900529734e-1L * x
|
|
- 6.3986917220457538402318e-1L) * x
|
|
+ 1.2875551670318751538055e0L) * x
|
|
- 1.4897083391357284957891e0L) * x
|
|
+ 1.3304961236013647092521e0L) * x
|
|
+ 3.7568280825958912391243e-1L;
|
|
|
|
/* exponent divided by 3 */
|
|
if (e >= 0)
|
|
{
|
|
rem = e;
|
|
e /= 3;
|
|
rem -= 3*e;
|
|
if (rem == 1)
|
|
x *= CBRT2;
|
|
else if (rem == 2)
|
|
x *= CBRT4;
|
|
}
|
|
else
|
|
{ /* argument less than 1 */
|
|
e = -e;
|
|
rem = e;
|
|
e /= 3;
|
|
rem -= 3*e;
|
|
if (rem == 1)
|
|
x *= CBRT2I;
|
|
else if (rem == 2)
|
|
x *= CBRT4I;
|
|
e = -e;
|
|
}
|
|
|
|
/* multiply by power of 2 */
|
|
x = ldexpl(x, e);
|
|
|
|
/* Newton iteration */
|
|
|
|
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
|
|
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
|
|
|
|
if (sign < 0)
|
|
x = -x;
|
|
return (x);
|
|
}
|