b5fb6b0dc3
* mingwex/math/cephes_mconf.h mingwex/math/erfl.c mingwex/math/lgamma.c mingwex/math/lgammal.c mingwex/math/powl.c mingwex/math/sinhl.c mingwex/math/tanhl.c mingwex/math/tgamma.c mingwex/math/tgammal.c: Based on the fixes from the mingw-w64 code tree, fixed strict-aliasing issues.
389 lines
7.7 KiB
C
389 lines
7.7 KiB
C
/* gamma.c
|
|
*
|
|
* Gamma function
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, __tgamma_r();
|
|
* int* sgngam;
|
|
* y = __tgamma_r( x, sgngam );
|
|
*
|
|
* double x, y, tgamma();
|
|
* y = tgamma( x)
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns gamma function of the argument. The result is
|
|
* correctly signed. In the reentrant version the sign (+1 or -1)
|
|
* is returned in the variable referenced by sgngam.
|
|
*
|
|
* Arguments |x| <= 34 are reduced by recurrence and the function
|
|
* approximated by a rational function of degree 6/7 in the
|
|
* interval (2,3). Large arguments are handled by Stirling's
|
|
* formula. Large negative arguments are made positive using
|
|
* a reflection formula.
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* DEC -34, 34 10000 1.3e-16 2.5e-17
|
|
* IEEE -170,-33 20000 2.3e-15 3.3e-16
|
|
* IEEE -33, 33 20000 9.4e-16 2.2e-16
|
|
* IEEE 33, 171.6 20000 2.3e-15 3.2e-16
|
|
*
|
|
* Error for arguments outside the test range will be larger
|
|
* owing to error amplification by the exponential function.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
Cephes Math Library Release 2.8: June, 2000
|
|
Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
|
|
*/
|
|
|
|
|
|
/*
|
|
* 26-11-2002 Modified for mingw.
|
|
* Danny Smith <dannysmith@users.sourceforge.net>
|
|
*/
|
|
|
|
|
|
#ifndef __MINGW32__
|
|
#include "mconf.h"
|
|
#else
|
|
#include "cephes_mconf.h"
|
|
#endif
|
|
|
|
#ifdef UNK
|
|
static const double P[] = {
|
|
1.60119522476751861407E-4,
|
|
1.19135147006586384913E-3,
|
|
1.04213797561761569935E-2,
|
|
4.76367800457137231464E-2,
|
|
2.07448227648435975150E-1,
|
|
4.94214826801497100753E-1,
|
|
9.99999999999999996796E-1
|
|
};
|
|
static const double Q[] = {
|
|
-2.31581873324120129819E-5,
|
|
5.39605580493303397842E-4,
|
|
-4.45641913851797240494E-3,
|
|
1.18139785222060435552E-2,
|
|
3.58236398605498653373E-2,
|
|
-2.34591795718243348568E-1,
|
|
7.14304917030273074085E-2,
|
|
1.00000000000000000320E0
|
|
};
|
|
#define MAXGAM 171.624376956302725
|
|
static const double LOGPI = 1.14472988584940017414;
|
|
#endif
|
|
|
|
#ifdef DEC
|
|
static const unsigned short P[] = {
|
|
0035047,0162701,0146301,0005234,
|
|
0035634,0023437,0032065,0176530,
|
|
0036452,0137157,0047330,0122574,
|
|
0037103,0017310,0143041,0017232,
|
|
0037524,0066516,0162563,0164605,
|
|
0037775,0004671,0146237,0014222,
|
|
0040200,0000000,0000000,0000000
|
|
};
|
|
static const unsigned short Q[] = {
|
|
0134302,0041724,0020006,0116565,
|
|
0035415,0072121,0044251,0025634,
|
|
0136222,0003447,0035205,0121114,
|
|
0036501,0107552,0154335,0104271,
|
|
0037022,0135717,0014776,0171471,
|
|
0137560,0034324,0165024,0037021,
|
|
0037222,0045046,0047151,0161213,
|
|
0040200,0000000,0000000,0000000
|
|
};
|
|
#define MAXGAM 34.84425627277176174
|
|
#endif
|
|
|
|
#ifdef IBMPC
|
|
static const uD P[] = {
|
|
{ { 0x2153,0x3998,0xfcb8,0x3f24 } },
|
|
{ { 0xbfab,0xe686,0x84e3,0x3f53 } },
|
|
{ { 0x14b0,0xe9db,0x57cd,0x3f85 } },
|
|
{ { 0x23d3,0x18c4,0x63d9,0x3fa8 } },
|
|
{ { 0x7d31,0xdcae,0x8da9,0x3fca } },
|
|
{ { 0xe312,0x3993,0xa137,0x3fdf } },
|
|
{ { 0x0000,0x0000,0x0000,0x3ff0 } }
|
|
};
|
|
static const uD Q[] = {
|
|
{ { 0xd3af,0x8400,0x487a,0xbef8 } },
|
|
{ { 0x2573,0x2915,0xae8a,0x3f41 } },
|
|
{ { 0xb44a,0xe750,0x40e4,0xbf72 } },
|
|
{ { 0xb117,0x5b1b,0x31ed,0x3f88 } },
|
|
{ { 0xde67,0xe33f,0x5779,0x3fa2 } },
|
|
{ { 0x87c2,0x9d42,0x071a,0xbfce } },
|
|
{ { 0x3c51,0xc9cd,0x4944,0x3fb2 } },
|
|
{ { 0x0000,0x0000,0x0000,0x3ff0 } }
|
|
};
|
|
#define MAXGAM 171.624376956302725
|
|
#endif
|
|
|
|
#ifdef MIEEE
|
|
static const unsigned short P[] = {
|
|
0x3f24,0xfcb8,0x3998,0x2153,
|
|
0x3f53,0x84e3,0xe686,0xbfab,
|
|
0x3f85,0x57cd,0xe9db,0x14b0,
|
|
0x3fa8,0x63d9,0x18c4,0x23d3,
|
|
0x3fca,0x8da9,0xdcae,0x7d31,
|
|
0x3fdf,0xa137,0x3993,0xe312,
|
|
0x3ff0,0x0000,0x0000,0x0000
|
|
};
|
|
static const unsigned short Q[] = {
|
|
0xbef8,0x487a,0x8400,0xd3af,
|
|
0x3f41,0xae8a,0x2915,0x2573,
|
|
0xbf72,0x40e4,0xe750,0xb44a,
|
|
0x3f88,0x31ed,0x5b1b,0xb117,
|
|
0x3fa2,0x5779,0xe33f,0xde67,
|
|
0xbfce,0x071a,0x9d42,0x87c2,
|
|
0x3fb2,0x4944,0xc9cd,0x3c51,
|
|
0x3ff0,0x0000,0x0000,0x0000
|
|
};
|
|
#define MAXGAM 171.624376956302725
|
|
#endif
|
|
|
|
/* Stirling's formula for the gamma function */
|
|
#if UNK
|
|
static const double STIR[5] = {
|
|
7.87311395793093628397E-4,
|
|
-2.29549961613378126380E-4,
|
|
-2.68132617805781232825E-3,
|
|
3.47222221605458667310E-3,
|
|
8.33333333333482257126E-2,
|
|
};
|
|
#define MAXSTIR 143.01608
|
|
static const double SQTPI = 2.50662827463100050242E0;
|
|
#endif
|
|
#if DEC
|
|
static const unsigned short STIR[20] = {
|
|
0035516,0061622,0144553,0112224,
|
|
0135160,0131531,0037460,0165740,
|
|
0136057,0134460,0037242,0077270,
|
|
0036143,0107070,0156306,0027751,
|
|
0037252,0125252,0125252,0146064,
|
|
};
|
|
#define MAXSTIR 26.77
|
|
static const unsigned short SQT[4] = {
|
|
0040440,0066230,0177661,0034055,
|
|
};
|
|
#define SQTPI *(double *)SQT
|
|
#endif
|
|
#if IBMPC
|
|
static const uD STIR[] = {
|
|
{ { 0x7293,0x592d,0xcc72,0x3f49 } },
|
|
{ { 0x1d7c,0x27e6,0x166b,0xbf2e } },
|
|
{ { 0x4fd7,0x07d4,0xf726,0xbf65 } },
|
|
{ { 0xc5fd,0x1b98,0x71c7,0x3f6c } },
|
|
{ { 0x5986,0x5555,0x5555,0x3fb5 } }
|
|
};
|
|
#define MAXSTIR 143.01608
|
|
|
|
static const union
|
|
{
|
|
unsigned short s[4];
|
|
double d;
|
|
} sqt = {{0x2706,0x1ff6,0x0d93,0x4004}};
|
|
#define SQTPI (sqt.d)
|
|
#endif
|
|
#if MIEEE
|
|
static const unsigned short STIR[20] = {
|
|
0x3f49,0xcc72,0x592d,0x7293,
|
|
0xbf2e,0x166b,0x27e6,0x1d7c,
|
|
0xbf65,0xf726,0x07d4,0x4fd7,
|
|
0x3f6c,0x71c7,0x1b98,0xc5fd,
|
|
0x3fb5,0x5555,0x5555,0x5986,
|
|
};
|
|
#define MAXSTIR 143.01608
|
|
static const unsigned short SQT[4] = {
|
|
0x4004,0x0d93,0x1ff6,0x2706,
|
|
};
|
|
#define SQTPI *(double *)SQT
|
|
#endif
|
|
|
|
#ifndef __MINGW32__
|
|
int sgngam = 0;
|
|
extern int sgngam;
|
|
extern double MAXLOG, MAXNUM, PI;
|
|
#ifdef ANSIPROT
|
|
extern double pow ( double, double );
|
|
extern double log ( double );
|
|
extern double exp ( double );
|
|
extern double sin ( double );
|
|
extern double polevl ( double, void *, int );
|
|
extern double p1evl ( double, void *, int );
|
|
extern double floor ( double );
|
|
extern double fabs ( double );
|
|
extern int isnan ( double );
|
|
extern int isfinite ( double );
|
|
static double stirf ( double );
|
|
double lgam ( double );
|
|
#else
|
|
double pow(), log(), exp(), sin(), polevl(), p1evl(), floor(), fabs();
|
|
int isnan(), isfinite();
|
|
static double stirf();
|
|
double lgam();
|
|
#endif
|
|
#ifdef INFINITIES
|
|
extern double INFINITY;
|
|
#endif
|
|
#ifdef NANS
|
|
extern double NAN;
|
|
#endif
|
|
#else /* __MINGW32__ */
|
|
static double stirf ( double );
|
|
#endif
|
|
|
|
/* Gamma function computed by Stirling's formula.
|
|
* The polynomial STIR is valid for 33 <= x <= 172.
|
|
*/
|
|
static double stirf(x)
|
|
double x;
|
|
{
|
|
double y, w, v;
|
|
|
|
w = 1.0/x;
|
|
w = 1.0 + w * polevl( w, STIR, 4 );
|
|
y = exp(x);
|
|
if( x > MAXSTIR )
|
|
{ /* Avoid overflow in pow() */
|
|
v = pow( x, 0.5 * x - 0.25 );
|
|
y = v * (v / y);
|
|
}
|
|
else
|
|
{
|
|
y = pow( x, x - 0.5 ) / y;
|
|
}
|
|
y = SQTPI * y * w;
|
|
return( y );
|
|
}
|
|
|
|
|
|
|
|
double __tgamma_r(double x, int* sgngam)
|
|
{
|
|
double p, q, z;
|
|
int i;
|
|
|
|
*sgngam = 1;
|
|
#ifdef NANS
|
|
if( isnan(x) )
|
|
return(x);
|
|
#endif
|
|
#ifdef INFINITIES
|
|
#ifdef NANS
|
|
if( x == INFINITY )
|
|
return(x);
|
|
if( x == -INFINITY )
|
|
return(NAN);
|
|
#else
|
|
if( !isfinite(x) )
|
|
return(x);
|
|
#endif
|
|
#endif
|
|
q = fabs(x);
|
|
|
|
if( q > 33.0 )
|
|
{
|
|
if( x < 0.0 )
|
|
{
|
|
p = floor(q);
|
|
if( p == q )
|
|
{
|
|
gsing:
|
|
_SET_ERRNO(EDOM);
|
|
mtherr( "tgamma", SING );
|
|
#ifdef INFINITIES
|
|
return (INFINITY);
|
|
#else
|
|
return (MAXNUM);
|
|
#endif
|
|
}
|
|
i = p;
|
|
if( (i & 1) == 0 )
|
|
*sgngam = -1;
|
|
z = q - p;
|
|
if( z > 0.5 )
|
|
{
|
|
p += 1.0;
|
|
z = q - p;
|
|
}
|
|
z = q * sin( PI * z );
|
|
if( z == 0.0 )
|
|
{
|
|
_SET_ERRNO(ERANGE);
|
|
mtherr( "tgamma", OVERFLOW );
|
|
#ifdef INFINITIES
|
|
return( *sgngam * INFINITY);
|
|
#else
|
|
return( *sgngam * MAXNUM);
|
|
#endif
|
|
}
|
|
z = fabs(z);
|
|
z = PI/(z * stirf(q) );
|
|
}
|
|
else
|
|
{
|
|
z = stirf(x);
|
|
}
|
|
return( *sgngam * z );
|
|
}
|
|
|
|
z = 1.0;
|
|
while( x >= 3.0 )
|
|
{
|
|
x -= 1.0;
|
|
z *= x;
|
|
}
|
|
|
|
while( x < 0.0 )
|
|
{
|
|
if( x > -1.E-9 )
|
|
goto Small;
|
|
z /= x;
|
|
x += 1.0;
|
|
}
|
|
|
|
while( x < 2.0 )
|
|
{
|
|
if( x < 1.e-9 )
|
|
goto Small;
|
|
z /= x;
|
|
x += 1.0;
|
|
}
|
|
|
|
if( x == 2.0 )
|
|
return(z);
|
|
|
|
x -= 2.0;
|
|
p = polevl( x, P, 6 );
|
|
q = polevl( x, Q, 7 );
|
|
return( z * p / q );
|
|
|
|
Small:
|
|
if( x == 0.0 )
|
|
{
|
|
goto gsing;
|
|
}
|
|
else
|
|
return( z/((1.0 + 0.5772156649015329 * x) * x) );
|
|
}
|
|
|
|
/* This is the C99 version */
|
|
|
|
double tgamma(double x)
|
|
{
|
|
int local_sgngam=0;
|
|
return (__tgamma_r(x, &local_sgngam));
|
|
}
|