/* Interface between the opcode library and its callers. Written by Cygnus Support, 1993. The opcode library (libopcodes.a) provides instruction decoders for a large variety of instruction sets, callable with an identical interface, for making instruction-processing programs more independent of the instruction set being processed. */ #ifndef DIS_ASM_H #define DIS_ASM_H #ifdef __cplusplus extern "C" { #endif #include #include "bfd.h" typedef int (*fprintf_ftype) PARAMS((PTR, const char*, ...)); enum dis_insn_type { dis_noninsn, /* Not a valid instruction */ dis_nonbranch, /* Not a branch instruction */ dis_branch, /* Unconditional branch */ dis_condbranch, /* Conditional branch */ dis_jsr, /* Jump to subroutine */ dis_condjsr, /* Conditional jump to subroutine */ dis_dref, /* Data reference instruction */ dis_dref2 /* Two data references in instruction */ }; /* This struct is passed into the instruction decoding routine, and is passed back out into each callback. The various fields are used for conveying information from your main routine into your callbacks, for passing information into the instruction decoders (such as the addresses of the callback functions), or for passing information back from the instruction decoders to their callers. It must be initialized before it is first passed; this can be done by hand, or using one of the initialization macros below. */ typedef struct disassemble_info { fprintf_ftype fprintf_func; PTR stream; PTR application_data; /* Target description. We could replace this with a pointer to the bfd, but that would require one. There currently isn't any such requirement so to avoid introducing one we record these explicitly. */ /* The bfd_flavour. This can be bfd_target_unknown_flavour. */ enum bfd_flavour flavour; /* The bfd_arch value. */ enum bfd_architecture arch; /* The bfd_mach value. */ unsigned long mach; /* Endianness (for bi-endian cpus). Mono-endian cpus can ignore this. */ enum bfd_endian endian; /* An array of pointers to symbols either at the location being disassembled or at the start of the function being disassembled. The array is sorted so that the first symbol is intended to be the one used. The others are present for any misc. purposes. This is not set reliably, but if it is not NULL, it is correct. */ asymbol **symbols; /* Number of symbols in array. */ int num_symbols; /* For use by the disassembler. The top 16 bits are reserved for public use (and are documented here). The bottom 16 bits are for the internal use of the disassembler. */ unsigned long flags; #define INSN_HAS_RELOC 0x80000000 PTR private_data; /* Function used to get bytes to disassemble. MEMADDR is the address of the stuff to be disassembled, MYADDR is the address to put the bytes in, and LENGTH is the number of bytes to read. INFO is a pointer to this struct. Returns an errno value or 0 for success. */ int (*read_memory_func) PARAMS ((bfd_vma memaddr, bfd_byte *myaddr, int length, struct disassemble_info *info)); /* Function which should be called if we get an error that we can't recover from. STATUS is the errno value from read_memory_func and MEMADDR is the address that we were trying to read. INFO is a pointer to this struct. */ void (*memory_error_func) PARAMS ((int status, bfd_vma memaddr, struct disassemble_info *info)); /* Function called to print ADDR. */ void (*print_address_func) PARAMS ((bfd_vma addr, struct disassemble_info *info)); /* Function called to determine if there is a symbol at the given ADDR. If there is, the function returns 1, otherwise it returns 0. This is used by ports which support an overlay manager where the overlay number is held in the top part of an address. In some circumstances we want to include the overlay number in the address, (normally because there is a symbol associated with that address), but sometimes we want to mask out the overlay bits. */ int (* symbol_at_address_func) PARAMS ((bfd_vma addr, struct disassemble_info * info)); /* These are for buffer_read_memory. */ bfd_byte *buffer; bfd_vma buffer_vma; int buffer_length; /* This variable may be set by the instruction decoder. It suggests the number of bytes objdump should display on a single line. If the instruction decoder sets this, it should always set it to the same value in order to get reasonable looking output. */ int bytes_per_line; /* the next two variables control the way objdump displays the raw data */ /* For example, if bytes_per_line is 8 and bytes_per_chunk is 4, the */ /* output will look like this: 00: 00000000 00000000 with the chunks displayed according to "display_endian". */ int bytes_per_chunk; enum bfd_endian display_endian; /* Number of octets per incremented target address Normally one, but some DSPs have byte sizes of 16 or 32 bits */ int octets_per_byte; /* Results from instruction decoders. Not all decoders yet support this information. This info is set each time an instruction is decoded, and is only valid for the last such instruction. To determine whether this decoder supports this information, set insn_info_valid to 0, decode an instruction, then check it. */ char insn_info_valid; /* Branch info has been set. */ char branch_delay_insns; /* How many sequential insn's will run before a branch takes effect. (0 = normal) */ char data_size; /* Size of data reference in insn, in bytes */ enum dis_insn_type insn_type; /* Type of instruction */ bfd_vma target; /* Target address of branch or dref, if known; zero if unknown. */ bfd_vma target2; /* Second target address for dref2 */ /* Command line options specific to the target disassembler. */ char * disassembler_options; } disassemble_info; /* Standard disassemblers. Disassemble one instruction at the given target address. Return number of bytes processed. */ typedef int (*disassembler_ftype) PARAMS((bfd_vma, disassemble_info *)); extern int print_insn_big_mips PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_little_mips PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_i386_att PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_i386_intel PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_m68k PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_z8001 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_z8002 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_h8300 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_h8300h PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_h8300s PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_h8500 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_alpha PARAMS ((bfd_vma, disassemble_info*)); extern disassembler_ftype arc_get_disassembler PARAMS ((int, int)); extern int print_insn_big_arm PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_little_arm PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_sparc PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_big_a29k PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_little_a29k PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_i960 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_sh PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_shl PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_hppa PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_fr30 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_m32r PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_m88k PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_mcore PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_mn10200 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_mn10300 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_ns32k PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_big_powerpc PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_little_powerpc PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_rs6000 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_w65 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_d10v PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_d30v PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_v850 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_tic30 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_vax PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_tic80 PARAMS ((bfd_vma, disassemble_info*)); extern int print_insn_pj PARAMS ((bfd_vma, disassemble_info*)); extern void print_arm_disassembler_options PARAMS ((FILE *)); extern void parse_arm_disassembler_option PARAMS ((char *)); /* Fetch the disassembler for a given BFD, if that support is available. */ extern disassembler_ftype disassembler PARAMS ((bfd *)); /* Document any target specific options available from the disassembler. */ extern void disassembler_usage PARAMS ((FILE *)); /* This block of definitions is for particular callers who read instructions into a buffer before calling the instruction decoder. */ /* Here is a function which callers may wish to use for read_memory_func. It gets bytes from a buffer. */ extern int buffer_read_memory PARAMS ((bfd_vma, bfd_byte *, int, struct disassemble_info *)); /* This function goes with buffer_read_memory. It prints a message using info->fprintf_func and info->stream. */ extern void perror_memory PARAMS ((int, bfd_vma, struct disassemble_info *)); /* Just print the address in hex. This is included for completeness even though both GDB and objdump provide their own (to print symbolic addresses). */ extern void generic_print_address PARAMS ((bfd_vma, struct disassemble_info *)); /* Always true. */ extern int generic_symbol_at_address PARAMS ((bfd_vma, struct disassemble_info *)); /* Macro to initialize a disassemble_info struct. This should be called by all applications creating such a struct. */ #define INIT_DISASSEMBLE_INFO(INFO, STREAM, FPRINTF_FUNC) \ (INFO).flavour = bfd_target_unknown_flavour, \ (INFO).arch = bfd_arch_unknown, \ (INFO).mach = 0, \ (INFO).endian = BFD_ENDIAN_UNKNOWN, \ (INFO).octets_per_byte = 1, \ INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) /* Call this macro to initialize only the internal variables for the disassembler. Architecture dependent things such as byte order, or machine variant are not touched by this macro. This makes things much easier for GDB which must initialize these things seperatly. */ #define INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) \ (INFO).fprintf_func = (fprintf_ftype)(FPRINTF_FUNC), \ (INFO).stream = (PTR)(STREAM), \ (INFO).symbols = NULL, \ (INFO).num_symbols = 0, \ (INFO).buffer = NULL, \ (INFO).buffer_vma = 0, \ (INFO).buffer_length = 0, \ (INFO).read_memory_func = buffer_read_memory, \ (INFO).memory_error_func = perror_memory, \ (INFO).print_address_func = generic_print_address, \ (INFO).symbol_at_address_func = generic_symbol_at_address, \ (INFO).flags = 0, \ (INFO).bytes_per_line = 0, \ (INFO).bytes_per_chunk = 0, \ (INFO).display_endian = BFD_ENDIAN_UNKNOWN, \ (INFO).insn_info_valid = 0 #ifdef __cplusplus }; #endif #endif /* ! defined (DIS_ASM_H) */