* libc/machine/aarch64/strcpy.S: Improve handling of short strings.
This commit is contained in:
		| @@ -1,3 +1,7 @@ | |||||||
|  | 2014-12-16  Richard Earnshaw  <rearnsha@arm.com> | ||||||
|  |  | ||||||
|  | 	* libc/machine/aarch64/strcpy.S: Improve handling of short strings. | ||||||
|  |  | ||||||
| 2014-12-16  Jon Beniston  <jon@beniston.com> | 2014-12-16  Jon Beniston  <jon@beniston.com> | ||||||
|  |  | ||||||
| 	* libc/include/stdlib.h (__itoa):  Declare prototype. | 	* libc/include/stdlib.h (__itoa):  Declare prototype. | ||||||
|   | |||||||
| @@ -1,8 +1,8 @@ | |||||||
| /* | /* | ||||||
|    strcpy - copy a string. |    strcpy - copy a string. | ||||||
|  |  | ||||||
|    Copyright (c) 2013, 2014, ARM Limited |    Copyright (c) 2013, 2014 ARM Ltd. | ||||||
|    All rights Reserved. |    All Rights Reserved. | ||||||
|  |  | ||||||
|    Redistribution and use in source and binary forms, with or without |    Redistribution and use in source and binary forms, with or without | ||||||
|    modification, are permitted provided that the following conditions are met: |    modification, are permitted provided that the following conditions are met: | ||||||
| @@ -33,25 +33,36 @@ | |||||||
|  |  | ||||||
| /* Assumptions: | /* Assumptions: | ||||||
|  * |  * | ||||||
|  * ARMv8-a, AArch64, unaligned accesses |  * ARMv8-a, AArch64, unaligned accesses, min page size 4k. | ||||||
|  */ |  */ | ||||||
|  |  | ||||||
|  | /* To test the page crossing code path more thoroughly, compile with | ||||||
|  |    -DSTRCPY_TEST_PAGE_CROSS - this will force all copies through the slower | ||||||
|  |    entry path.  This option is not intended for production use.  */ | ||||||
|  |  | ||||||
| /* Arguments and results.  */ | /* Arguments and results.  */ | ||||||
| #define dstin		x0 | #define dstin		x0 | ||||||
| #define src		x1 | #define srcin		x1 | ||||||
|  |  | ||||||
| /* Locals and temporaries.  */ | /* Locals and temporaries.  */ | ||||||
| #define dst		x2 | #define src		x2 | ||||||
| #define data1		x3 | #define dst		x3 | ||||||
| #define data1w		w3 | #define data1		x4 | ||||||
| #define data2		x4 | #define data1w		w4 | ||||||
| #define has_nul1	x5 | #define data2		x5 | ||||||
| #define has_nul2	x6 | #define data2w		w5 | ||||||
| #define tmp1		x7 | #define has_nul1	x6 | ||||||
| #define tmp2		x8 | #define has_nul2	x7 | ||||||
| #define tmp3		x9 | #define tmp1		x8 | ||||||
| #define tmp4		x10 | #define tmp2		x9 | ||||||
| #define zeroones	x11 | #define tmp3		x10 | ||||||
|  | #define tmp4		x11 | ||||||
|  | #define zeroones	x12 | ||||||
|  | #define data1a		x13 | ||||||
|  | #define data2a		x14 | ||||||
|  | #define pos		x15 | ||||||
|  | #define len		x16 | ||||||
|  | #define to_align	x17 | ||||||
|  |  | ||||||
| 	.macro def_fn f p2align=0 | 	.macro def_fn f p2align=0 | ||||||
| 	.text | 	.text | ||||||
| @@ -61,27 +72,123 @@ | |||||||
| \f: | \f: | ||||||
| 	.endm | 	.endm | ||||||
|  |  | ||||||
|  | 	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80 | ||||||
|  | 	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and | ||||||
|  | 	   can be done in parallel across the entire word.  */ | ||||||
|  |  | ||||||
| #define REP8_01 0x0101010101010101 | #define REP8_01 0x0101010101010101 | ||||||
| #define REP8_7f 0x7f7f7f7f7f7f7f7f | #define REP8_7f 0x7f7f7f7f7f7f7f7f | ||||||
| #define REP8_80 0x8080808080808080 | #define REP8_80 0x8080808080808080 | ||||||
|  |  | ||||||
| 	/* Start of critial section -- keep to one 64Byte cache line.  */ | 	/* AArch64 systems have a minimum page size of 4k.  We can do a quick | ||||||
|  | 	   page size check for crossing this boundary on entry and if we | ||||||
|  | 	   do not, then we can short-circuit much of the entry code.  We | ||||||
|  | 	   expect early page-crossing strings to be rare (probability of | ||||||
|  | 	   16/MIN_PAGE_SIZE ~= 0.4%), so the branch should be quite | ||||||
|  | 	   predictable, even with random strings. | ||||||
|  |  | ||||||
|  | 	   We don't bother checking for larger page sizes, the cost of setting | ||||||
|  | 	   up the correct page size is just not worth the extra gain from | ||||||
|  | 	   a small reduction in the cases taking the slow path.  Note that | ||||||
|  | 	   we only care about whether the first fetch, which may be | ||||||
|  | 	   misaligned, crosses a page boundary - after that we move to aligned | ||||||
|  | 	   fetches for the remainder of the string.  */ | ||||||
|  |  | ||||||
|  | #define MIN_PAGE_P2 12 | ||||||
|  | #define MIN_PAGE_SIZE (1 << MIN_PAGE_P2) | ||||||
|  |  | ||||||
| def_fn strcpy p2align=6 | def_fn strcpy p2align=6 | ||||||
|  | 	/* For moderately short strings, the fastest way to do the copy is to | ||||||
|  | 	   calculate the length of the string in the same way as strlen, then | ||||||
|  | 	   essentially do a memcpy of the result.  This avoids the need for | ||||||
|  | 	   multiple byte copies and further means that by the time we | ||||||
|  | 	   reach the bulk copy loop we know we can always use DWord | ||||||
|  | 	   accesses.  We expect strcpy to rarely be called repeatedly | ||||||
|  | 	   with the same source string, so branch prediction is likely to | ||||||
|  | 	   always be difficult - we mitigate against this by preferring | ||||||
|  | 	   conditional select operations over branches whenever this is | ||||||
|  | 	   feasible.  */ | ||||||
|  | 	add	tmp2, srcin, #15 | ||||||
| 	mov	zeroones, #REP8_01 | 	mov	zeroones, #REP8_01 | ||||||
|  | 	and	to_align, srcin, #15 | ||||||
|  | 	eor	tmp2, tmp2, srcin | ||||||
| 	mov	dst, dstin | 	mov	dst, dstin | ||||||
| 	ands	tmp1, src, #15 | 	neg	tmp1, to_align | ||||||
| 	b.ne	.Lmisaligned | #ifdef STRCPY_TEST_PAGE_CROSS | ||||||
| 	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80 | 	b	.Lpage_cross | ||||||
| 	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and | #else | ||||||
| 	   can be done in parallel across the entire word.  */ | 	/* The first fetch will straddle a (possible) page boundary iff | ||||||
|  | 	   srcin + 15 causes bit[MIN_PAGE_P2] to change value.  A 16-byte | ||||||
|  | 	   aligned string will never fail the page align check, so will | ||||||
|  | 	   always take the fast path.  */ | ||||||
|  | 	tbnz	tmp2, #MIN_PAGE_P2, .Lpage_cross | ||||||
|  | #endif | ||||||
|  | 	ldp	data1, data2, [srcin] | ||||||
|  | 	add	src, srcin, #16 | ||||||
|  | 	sub	tmp1, data1, zeroones | ||||||
|  | 	orr	tmp2, data1, #REP8_7f | ||||||
|  | 	sub	tmp3, data2, zeroones | ||||||
|  | 	orr	tmp4, data2, #REP8_7f | ||||||
|  | 	bic	has_nul1, tmp1, tmp2 | ||||||
|  | 	bics	has_nul2, tmp3, tmp4 | ||||||
|  | 	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */ | ||||||
|  | 	b.ne	.Learly_end_found | ||||||
|  | 	stp	data1, data2, [dst], #16 | ||||||
|  | 	sub	src, src, to_align | ||||||
|  | 	sub	dst, dst, to_align | ||||||
|  | 	b	.Lentry_no_page_cross | ||||||
|  |  | ||||||
|  | .Lpage_cross: | ||||||
|  | 	bic	src, srcin, #15 | ||||||
|  | 	/* Start by loading two words at [srcin & ~15], then forcing the | ||||||
|  | 	   bytes that precede srcin to 0xff.  This means they never look | ||||||
|  | 	   like termination bytes.  */ | ||||||
|  | 	ldp	data1, data2, [src], #16 | ||||||
|  | 	lsl	tmp1, tmp1, #3	/* Bytes beyond alignment -> bits.  */ | ||||||
|  | 	tst	to_align, #7 | ||||||
|  | 	csetm	tmp2, ne | ||||||
|  | #ifdef __AARCH64EB__ | ||||||
|  | 	lsl	tmp2, tmp2, tmp1	/* Shift (tmp1 & 63).  */ | ||||||
|  | #else | ||||||
|  | 	lsr	tmp2, tmp2, tmp1	/* Shift (tmp1 & 63).  */ | ||||||
|  | #endif | ||||||
|  | 	orr	data1, data1, tmp2 | ||||||
|  | 	orr	data2a, data2, tmp2 | ||||||
|  | 	cmp	to_align, #8 | ||||||
|  | 	csinv	data1, data1, xzr, lt | ||||||
|  | 	csel	data2, data2, data2a, lt | ||||||
|  | 	sub	tmp1, data1, zeroones | ||||||
|  | 	orr	tmp2, data1, #REP8_7f | ||||||
|  | 	sub	tmp3, data2, zeroones | ||||||
|  | 	orr	tmp4, data2, #REP8_7f | ||||||
|  | 	bic	has_nul1, tmp1, tmp2 | ||||||
|  | 	bics	has_nul2, tmp3, tmp4 | ||||||
|  | 	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */ | ||||||
|  | 	b.ne	.Learly_end_found | ||||||
|  | 	ldp	data1, data2, [src], #16 | ||||||
|  | 	sub	tmp1, data1, zeroones | ||||||
|  | 	orr	tmp2, data1, #REP8_7f | ||||||
|  | 	sub	tmp3, data2, zeroones | ||||||
|  | 	orr	tmp4, data2, #REP8_7f | ||||||
|  | 	bic	has_nul1, tmp1, tmp2 | ||||||
|  | 	bics	has_nul2, tmp3, tmp4 | ||||||
|  | 	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */ | ||||||
|  | 	b.ne	.Learly_end_found | ||||||
|  | 	/* We've now checked between 16 and 32 bytes, but not found a null, | ||||||
|  | 	   so we can safely start bulk copying.  Start by refetching the | ||||||
|  | 	   first 16 bytes of the real string; we know this can't trap now.  */ | ||||||
|  | 	ldp	data1a, data2a, [srcin] | ||||||
|  | 	stp	data1a, data2a, [dst], #16 | ||||||
|  | 	sub	dst, dst, to_align | ||||||
|  | 	/* Everything is now set up, so we can just fall into the bulk | ||||||
|  | 	   copy loop.  */ | ||||||
| 	/* The inner loop deals with two Dwords at a time.  This has a | 	/* The inner loop deals with two Dwords at a time.  This has a | ||||||
| 	   slightly higher start-up cost, but we should win quite quickly, | 	   slightly higher start-up cost, but we should win quite quickly, | ||||||
| 	   especially on cores with a high number of issue slots per | 	   especially on cores with a high number of issue slots per | ||||||
| 	   cycle, as we get much better parallelism out of the operations.  */ | 	   cycle, as we get much better parallelism out of the operations.  */ | ||||||
| 	b	.Lfirst_pass |  | ||||||
| .Lmain_loop: | .Lmain_loop: | ||||||
| 	stp	data1, data2, [dst], #16 | 	stp	data1, data2, [dst], #16 | ||||||
| .Lstartloop_fast: | .Lentry_no_page_cross: | ||||||
| 	ldp	data1, data2, [src], #16 | 	ldp	data1, data2, [src], #16 | ||||||
| 	sub	tmp1, data1, zeroones | 	sub	tmp1, data1, zeroones | ||||||
| 	orr	tmp2, data1, #REP8_7f | 	orr	tmp2, data1, #REP8_7f | ||||||
| @@ -91,134 +198,99 @@ def_fn strcpy p2align=6 | |||||||
| 	bics	has_nul2, tmp3, tmp4 | 	bics	has_nul2, tmp3, tmp4 | ||||||
| 	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */ | 	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */ | ||||||
| 	b.eq	.Lmain_loop | 	b.eq	.Lmain_loop | ||||||
| 	/* End of critical section -- keep to one 64Byte cache line.  */ |  | ||||||
|  |  | ||||||
| 	cbnz	has_nul1, .Lnul_in_data1_fast | 	/* Since we know we are copying at least 16 bytes, the fastest way | ||||||
| .Lnul_in_data2_fast: | 	   to deal with the tail is to determine the location of the | ||||||
| 	str	data1, [dst], #8 | 	   trailing NUL, then (re)copy the 16 bytes leading up to that.  */ | ||||||
| .Lnul_in_data2_fast_after_d1: | 	cmp	has_nul1, #0 | ||||||
| 	/* For a NUL in data2, we always know that we've moved at least 8 |  | ||||||
| 	   bytes, so no need for a slow path.  */ |  | ||||||
| #ifdef __AARCH64EB__ | #ifdef __AARCH64EB__ | ||||||
| 	/* For big-endian only, carry propagation means we can't trust | 	/* For big-endian, carry propagation (if the final byte in the | ||||||
| 	   the MSB of the syndrome value calculated above (the byte | 	   string is 0x01) means we cannot use has_nul directly.  The | ||||||
| 	   sequence 01 00 will generate a syndrome of 80 80 rather than | 	   easiest way to get the correct byte is to byte-swap the data | ||||||
| 	   00 80).  We get around this by byte-swapping the data and | 	   and calculate the syndrome a second time.  */ | ||||||
| 	   re-calculating.  */ | 	csel	data1, data1, data2, ne | ||||||
| 	rev	data2, data2 |  | ||||||
| 	sub	tmp1, data2, zeroones |  | ||||||
| 	orr	tmp2, data2, #REP8_7f |  | ||||||
| 	bic	has_nul2, tmp1, tmp2 |  | ||||||
| #endif |  | ||||||
| 	rev	has_nul2, has_nul2 |  | ||||||
| 	sub	src, src, #(8+7) |  | ||||||
| 	clz	has_nul2, has_nul2 |  | ||||||
| 	lsr	has_nul2, has_nul2, #3		/* Bits to bytes.  */ |  | ||||||
| 	sub	dst, dst, #7 |  | ||||||
| 	ldr	data2, [src, has_nul2] |  | ||||||
| 	str	data2, [dst, has_nul2] |  | ||||||
| 	ret |  | ||||||
|  |  | ||||||
| .Lnul_in_data1_fast: |  | ||||||
| 	/* Since we know we've already copied at least 8 bytes, we can |  | ||||||
| 	   safely handle the tail with one misaligned dword move.  To do this |  | ||||||
| 	   we calculate the location of the trailing NUL byte and go seven |  | ||||||
| 	   bytes back from that.  */ |  | ||||||
| #ifdef __AARCH64EB__ |  | ||||||
| 	/* For big-endian only, carry propagation means we can't trust |  | ||||||
| 	   the MSB of the syndrome value calculated above (the byte |  | ||||||
| 	   sequence 01 00 will generate a syndrome of 80 80 rather than |  | ||||||
| 	   00 80).  We get around this by byte-swapping the data and |  | ||||||
| 	   re-calculating.  */ |  | ||||||
| 	rev	data1, data1 | 	rev	data1, data1 | ||||||
| 	sub	tmp1, data1, zeroones | 	sub	tmp1, data1, zeroones | ||||||
| 	orr	tmp2, data1, #REP8_7f | 	orr	tmp2, data1, #REP8_7f | ||||||
| 	bic	has_nul1, tmp1, tmp2 | 	bic	has_nul1, tmp1, tmp2 | ||||||
|  | #else | ||||||
|  | 	csel	has_nul1, has_nul1, has_nul2, ne | ||||||
| #endif | #endif | ||||||
| 	rev	has_nul1, has_nul1 | 	rev	has_nul1, has_nul1 | ||||||
| 	sub	src, src, #(16+7) | 	clz	pos, has_nul1 | ||||||
| 	clz	has_nul1, has_nul1 | 	add	tmp1, pos, #72 | ||||||
| 	lsr	has_nul1, has_nul1, #3		/* Bits to bytes.  */ | 	add	pos, pos, #8 | ||||||
| 	sub	dst, dst, #7 | 	csel	pos, pos, tmp1, ne | ||||||
| 	ldr	data1, [src, has_nul1] | 	add	src, src, pos, lsr #3 | ||||||
| 	str	data1, [dst, has_nul1] | 	add	dst, dst, pos, lsr #3 | ||||||
|  | 	ldp	data1, data2, [src, #-32] | ||||||
|  | 	stp	data1, data2, [dst, #-16] | ||||||
| 	ret | 	ret | ||||||
|  |  | ||||||
| .Lfirst_pass: | 	/* The string is short (<32 bytes).  We don't know exactly how | ||||||
| 	ldp	data1, data2, [src], #16 | 	   short though, yet.  Work out the exact length so that we can | ||||||
|  | 	   quickly select the optimal copy strategy.  */ | ||||||
|  | .Learly_end_found: | ||||||
|  | 	cmp	has_nul1, #0 | ||||||
|  | #ifdef __AARCH64EB__ | ||||||
|  | 	/* For big-endian, carry propagation (if the final byte in the | ||||||
|  | 	   string is 0x01) means we cannot use has_nul directly.  The | ||||||
|  | 	   easiest way to get the correct byte is to byte-swap the data | ||||||
|  | 	   and calculate the syndrome a second time.  */ | ||||||
|  | 	csel	data1, data1, data2, ne | ||||||
|  | 	rev	data1, data1 | ||||||
| 	sub	tmp1, data1, zeroones | 	sub	tmp1, data1, zeroones | ||||||
| 	orr	tmp2, data1, #REP8_7f | 	orr	tmp2, data1, #REP8_7f | ||||||
| 	sub	tmp3, data2, zeroones |  | ||||||
| 	orr	tmp4, data2, #REP8_7f |  | ||||||
| 	bic	has_nul1, tmp1, tmp2 | 	bic	has_nul1, tmp1, tmp2 | ||||||
| 	bics	has_nul2, tmp3, tmp4 |  | ||||||
| 	ccmp	has_nul1, #0, #0, eq	/* NZCV = 0000  */ |  | ||||||
| 	b.eq	.Lmain_loop |  | ||||||
|  |  | ||||||
| 	cbz	has_nul1, .Lnul_in_data2_fast |  | ||||||
| .Lnul_in_data1: |  | ||||||
| 	/* Slow path.  We can't be sure we've moved at least 8 bytes, so |  | ||||||
| 	   fall back to a slow byte-by byte store of the bits already |  | ||||||
| 	   loaded. |  | ||||||
|  |  | ||||||
| 	   The worst case when coming through this path is that we've had |  | ||||||
| 	   to copy seven individual bytes to get to alignment and we then |  | ||||||
| 	   have to copy another seven (eight for big-endian) again here. |  | ||||||
| 	   We could try to detect that case (and any case where more than |  | ||||||
| 	   eight bytes have to be copied), but it really doesn't seem |  | ||||||
| 	   worth it.  */ |  | ||||||
| #ifdef __AARCH64EB__ |  | ||||||
| 	rev	data1, data1 |  | ||||||
| #else | #else | ||||||
| 	/* On little-endian, we can easily check if the NULL byte was | 	csel	has_nul1, has_nul1, has_nul2, ne | ||||||
| 	   in the last byte of the Dword.  For big-endian we'd have to |  | ||||||
| 	   recalculate the syndrome, which is unlikely to be worth it.  */ |  | ||||||
| 	lsl	has_nul1, has_nul1, #8 |  | ||||||
| 	cbnz	has_nul1, 1f |  | ||||||
| 	str	data1, [dst] |  | ||||||
| 	ret |  | ||||||
| #endif | #endif | ||||||
| 1: | 	rev	has_nul1, has_nul1 | ||||||
| 	strb	data1w, [dst], #1 | 	sub	tmp1, src, #7 | ||||||
| 	tst	data1, #0xff | 	sub	src, src, #15 | ||||||
| 	lsr	data1, data1, #8 | 	clz	pos, has_nul1 | ||||||
| 	b.ne	1b | 	csel	src, src, tmp1, ne | ||||||
| .Ldone: | 	sub	dst, dstin, srcin | ||||||
|  | 	add	src, src, pos, lsr #3		/* Bits to bytes.  */ | ||||||
|  | 	add	dst, dst, src | ||||||
|  | 	sub	len, src, srcin | ||||||
|  | 	cmp	len, #8 | ||||||
|  | 	b.lt	.Llt8 | ||||||
|  | 	cmp	len, #16 | ||||||
|  | 	b.lt	.Llt16 | ||||||
|  | 	/* 16->32 bytes to copy.  */ | ||||||
|  | 	ldp	data1, data2, [srcin] | ||||||
|  | 	ldp	data1a, data2a, [src, #-16] | ||||||
|  | 	stp	data1, data2, [dstin] | ||||||
|  | 	stp	data1a, data2a, [dst, #-16] | ||||||
|  | 	ret | ||||||
|  | .Llt16: | ||||||
|  | 	/* 8->15 bytes to copy.  */ | ||||||
|  | 	ldr	data1, [srcin] | ||||||
|  | 	ldr	data2, [src, #-8] | ||||||
|  | 	str	data1, [dstin] | ||||||
|  | 	str	data2, [dst, #-8] | ||||||
|  | 	ret | ||||||
|  | .Llt8: | ||||||
|  | 	cmp	len, #4 | ||||||
|  | 	b.lt	.Llt4 | ||||||
|  | 	/* 4->7 bytes to copy.  */ | ||||||
|  | 	ldr	data1w, [srcin] | ||||||
|  | 	ldr	data2w, [src, #-4] | ||||||
|  | 	str	data1w, [dstin] | ||||||
|  | 	str	data2w, [dst, #-4] | ||||||
|  | 	ret | ||||||
|  | .Llt4: | ||||||
|  | 	cmp	len, #2 | ||||||
|  | 	b.lt	.Llt2 | ||||||
|  | 	/* 2->3 bytes to copy.  */ | ||||||
|  | 	ldrh	data1w, [srcin] | ||||||
|  | 	strh	data1w, [dstin] | ||||||
|  | 	/* Fall-through, one byte (max) to go.  */ | ||||||
|  | .Llt2: | ||||||
|  | 	/* Null-terminated string.  Last character must be zero!  */ | ||||||
|  | 	strb	wzr, [dst, #-1] | ||||||
| 	ret | 	ret | ||||||
|  |  | ||||||
| .Lmisaligned: |  | ||||||
| 	cmp	tmp1, #8 |  | ||||||
| 	b.ge	2f |  | ||||||
| 	/* There's at least one Dword before we reach alignment, so we can |  | ||||||
| 	   deal with that efficiently.  */ |  | ||||||
| 	ldr	data1, [src] |  | ||||||
| 	bic	src, src, #15 |  | ||||||
| 	sub	tmp3, data1, zeroones |  | ||||||
| 	orr	tmp4, data1, #REP8_7f |  | ||||||
| 	bics	has_nul1, tmp3, tmp4 |  | ||||||
| 	b.ne	.Lnul_in_data1 |  | ||||||
| 	str	data1, [dst], #8 |  | ||||||
| 	ldr	data2, [src, #8] |  | ||||||
| 	add	src, src, #16 |  | ||||||
| 	sub	dst, dst, tmp1 |  | ||||||
| 	sub	tmp3, data2, zeroones |  | ||||||
| 	orr	tmp4, data2, #REP8_7f |  | ||||||
| 	bics	has_nul2, tmp3, tmp4 |  | ||||||
| 	b.ne	.Lnul_in_data2_fast_after_d1 |  | ||||||
| 	str	data2, [dst], #8 |  | ||||||
| 	/* We can by-pass the first-pass version of the loop in this case |  | ||||||
| 	   since we know that at least 8 bytes have already been copied.  */ |  | ||||||
| 	b	.Lstartloop_fast |  | ||||||
|  |  | ||||||
| 2: |  | ||||||
| 	sub	tmp1, tmp1, #16 |  | ||||||
| 3: |  | ||||||
| 	ldrb	data1w, [src], #1 |  | ||||||
| 	strb	data1w, [dst], #1 |  | ||||||
| 	cbz	data1w, .Ldone |  | ||||||
| 	add	tmp1, tmp1, #1 |  | ||||||
| 	cbnz	tmp1, 3b |  | ||||||
| 	b	.Lfirst_pass |  | ||||||
|  |  | ||||||
| 	.size	strcpy, . - strcpy | 	.size	strcpy, . - strcpy | ||||||
| #endif | #endif | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user