diff --git a/newlib/ChangeLog b/newlib/ChangeLog index 1e11e7368..5f570e737 100644 --- a/newlib/ChangeLog +++ b/newlib/ChangeLog @@ -1,5 +1,15 @@ +2000-12-07 Jeff Johnston + + * libc/stdlib/ldtoa.c: Removed include of alloca.h. + Also removed \r's. + (asctoeg): Replaced alloca call with stack array and malloc + when storage exceeds reasonable limit. + (e53toe): Fixed einfin calls missing ldp parameter. + (eiisinf): Hide behind check for LDBL_MANT_DIG == 64. + 2000-12-06 Jeff Johnston + * libc/stdio/vfscanf.c: Fix typo for _NO_LONGDBL macro. 2000-12-06 Jeff Johnston diff --git a/newlib/libc/stdlib/ldtoa.c b/newlib/libc/stdlib/ldtoa.c index c6e63774e..046e93981 100644 --- a/newlib/libc/stdlib/ldtoa.c +++ b/newlib/libc/stdlib/ldtoa.c @@ -1,3667 +1,3679 @@ - - /* Extended precision arithmetic functions for long double I/O. - * This program has been placed in the public domain. - */ - -#include <_ansi.h> -#include -#include -#include -#include -#include "mprec.h" - -/* These are the externally visible entries. */ -/* linux name: long double _IO_strtold (char *, char **); */ -long double _strtold (char *, char **); -char * _ldtoa_r (struct _reent *, long double, int, int, int *, int *, char **); -#if 0 -void _IO_ldtostr(long double *, char *, int, int, char); -#endif - - /* Number of 16 bit words in external x type format */ - #define NE 10 - - /* Number of 16 bit words in internal format */ - #define NI (NE+3) - - /* Array offset to exponent */ - #define E 1 - - /* Array offset to high guard word */ - #define M 2 - - /* Number of bits of precision */ - #define NBITS ((NI-4)*16) - - /* Maximum number of decimal digits in ASCII conversion - * = NBITS*log10(2) - */ - #define NDEC (NBITS*8/27) - - /* The exponent of 1.0 */ - #define EXONE (0x3fff) - -/* Control structure for long doublue conversion including rounding precision values. - * rndprc can be set to 80 (if NE=6), 64, 56, 53, or 24 bits. - */ -typedef struct -{ - int rlast; - int rndprc; - int rw; - int re; - int outexpon; - unsigned short rmsk; - unsigned short rmbit; - unsigned short rebit; - unsigned short rbit[NI]; - unsigned short equot[NI]; -} LDPARMS; - -static void esub(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); -static void emul(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); -static void ediv(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); -static int ecmp(short unsigned int *a, short unsigned int *b); -static int enormlz(short unsigned int *x); -static int eshift(short unsigned int *x, int sc); -static void eshup1(register short unsigned int *x); -static void eshup8(register short unsigned int *x); -static void eshup6(register short unsigned int *x); -static void eshdn1(register short unsigned int *x); -static void eshdn8(register short unsigned int *x); -static void eshdn6(register short unsigned int *x); -static void eneg(short unsigned int *x); -static void emov(register short unsigned int *a, register short unsigned int *b); -static void eclear(register short unsigned int *x); -static void einfin(register short unsigned int *x, register LDPARMS *ldp); -static void efloor(short unsigned int *x, short unsigned int *y, LDPARMS *ldp); -static void etoasc(short unsigned int *x, char *string, int ndigs, int outformat, LDPARMS *ldp); -#if LDBL_MANT_DIG == 24 -static void e24toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#elif LDBL_MANT_DIG == 53 -static void e53toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#elif LDBL_MANT_DIG == 64 -static void e64toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#else -static void e113toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); -#endif - -/* econst.c */ -/* e type constants used by high precision check routines */ - -#if NE == 10 -/* 0.0 */ -static unsigned short ezero[NE] = - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; - -/* 1.0E0 */ -static unsigned short eone[NE] = - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; - -#else - -/* 0.0 */ -static unsigned short ezero[NE] = { -0, 0000000,0000000,0000000,0000000,0000000,}; -/* 1.0E0 */ -static unsigned short eone[NE] = { -0, 0000000,0000000,0000000,0100000,0x3fff,}; - -#endif - -/* Debugging routine for displaying errors */ -#ifdef DEBUG -/* Notice: the order of appearance of the following - * messages is bound to the error codes defined - * in mconf.h. - */ -static char *ermsg[7] = { -"unknown", /* error code 0 */ -"domain", /* error code 1 */ -"singularity", /* et seq. */ -"overflow", -"underflow", -"total loss of precision", -"partial loss of precision" -}; -#define mtherr(name, code) printf( "\n%s %s error\n", name, ermsg[code] ); -#else -#define mtherr(name, code) -#endif - -/* ieee.c - * - * Extended precision IEEE binary floating point arithmetic routines - * - * Numbers are stored in C language as arrays of 16-bit unsigned - * short integers. The arguments of the routines are pointers to - * the arrays. - * - * - * External e type data structure, simulates Intel 8087 chip - * temporary real format but possibly with a larger significand: - * - * NE-1 significand words (least significant word first, - * most significant bit is normally set) - * exponent (value = EXONE for 1.0, - * top bit is the sign) - * - * - * Internal data structure of a number (a "word" is 16 bits): - * - * ei[0] sign word (0 for positive, 0xffff for negative) - * ei[1] biased exponent (value = EXONE for the number 1.0) - * ei[2] high guard word (always zero after normalization) - * ei[3] - * to ei[NI-2] significand (NI-4 significand words, - * most significant word first, - * most significant bit is set) - * ei[NI-1] low guard word (0x8000 bit is rounding place) - * - * - * - * Routines for external format numbers - * - * asctoe( string, e ) ASCII string to extended double e type - * asctoe64( string, &d ) ASCII string to long double - * asctoe53( string, &d ) ASCII string to double - * asctoe24( string, &f ) ASCII string to single - * asctoeg( string, e, prec, ldp ) ASCII string to specified precision - * e24toe( &f, e, ldp ) IEEE single precision to e type - * e53toe( &d, e, ldp ) IEEE double precision to e type - * e64toe( &d, e, ldp ) IEEE long double precision to e type - * e113toe( &d, e, ldp ) IEEE long double precision to e type - * eabs(e) absolute value - * eadd( a, b, c ) c = b + a - * eclear(e) e = 0 - * ecmp (a, b) Returns 1 if a > b, 0 if a == b, - * -1 if a < b, -2 if either a or b is a NaN. - * ediv( a, b, c, ldp ) c = b / a - * efloor( a, b, ldp ) truncate to integer, toward -infinity - * efrexp( a, exp, s ) extract exponent and significand - * eifrac( e, &l, frac ) e to long integer and e type fraction - * euifrac( e, &l, frac ) e to unsigned long integer and e type fraction - * einfin( e, ldp ) set e to infinity, leaving its sign alone - * eldexp( a, n, b ) multiply by 2**n - * emov( a, b ) b = a - * emul( a, b, c, ldp ) c = b * a - * eneg(e) e = -e - * eround( a, b ) b = nearest integer value to a - * esub( a, b, c, ldp ) c = b - a - * e24toasc( &f, str, n ) single to ASCII string, n digits after decimal - * e53toasc( &d, str, n ) double to ASCII string, n digits after decimal - * e64toasc( &d, str, n ) long double to ASCII string - * etoasc(e,str,n,fmt,ldp)e to ASCII string, n digits after decimal - * etoe24( e, &f ) convert e type to IEEE single precision - * etoe53( e, &d ) convert e type to IEEE double precision - * etoe64( e, &d ) convert e type to IEEE long double precision - * ltoe( &l, e ) long (32 bit) integer to e type - * ultoe( &l, e ) unsigned long (32 bit) integer to e type - * eisneg( e ) 1 if sign bit of e != 0, else 0 - * eisinf( e ) 1 if e has maximum exponent (non-IEEE) - * or is infinite (IEEE) - * eisnan( e ) 1 if e is a NaN - * esqrt( a, b ) b = square root of a - * - * - * Routines for internal format numbers - * - * eaddm( ai, bi ) add significands, bi = bi + ai - * ecleaz(ei) ei = 0 - * ecleazs(ei) set ei = 0 but leave its sign alone - * ecmpm( ai, bi ) compare significands, return 1, 0, or -1 - * edivm( ai, bi, ldp ) divide significands, bi = bi / ai - * emdnorm(ai,l,s,exp,ldp) normalize and round off - * emovi( a, ai ) convert external a to internal ai - * emovo( ai, a, ldp ) convert internal ai to external a - * emovz( ai, bi ) bi = ai, low guard word of bi = 0 - * emulm( ai, bi, ldp ) multiply significands, bi = bi * ai - * enormlz(ei) left-justify the significand - * eshdn1( ai ) shift significand and guards down 1 bit - * eshdn8( ai ) shift down 8 bits - * eshdn6( ai ) shift down 16 bits - * eshift( ai, n ) shift ai n bits up (or down if n < 0) - * eshup1( ai ) shift significand and guards up 1 bit - * eshup8( ai ) shift up 8 bits - * eshup6( ai ) shift up 16 bits - * esubm( ai, bi ) subtract significands, bi = bi - ai - * - * - * The result is always normalized and rounded to NI-4 word precision - * after each arithmetic operation. - * - * Exception flags are NOT fully supported. - * - * Define INFINITY in mconf.h for support of infinity; otherwise a - * saturation arithmetic is implemented. - * - * Define NANS for support of Not-a-Number items; otherwise the - * arithmetic will never produce a NaN output, and might be confused - * by a NaN input. - * If NaN's are supported, the output of ecmp(a,b) is -2 if - * either a or b is a NaN. This means asking if(ecmp(a,b) < 0) - * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than - * if in doubt. - * Signaling NaN's are NOT supported; they are treated the same - * as quiet NaN's. - * - * Denormals are always supported here where appropriate (e.g., not - * for conversion to DEC numbers). - */ - -/* - * Revision history: - * - * 5 Jan 84 PDP-11 assembly language version - * 6 Dec 86 C language version - * 30 Aug 88 100 digit version, improved rounding - * 15 May 92 80-bit long double support - * 22 Nov 00 Revised to fit into newlib by Jeff Johnston - * - * Author: S. L. Moshier. - * - * Copyright (c) 1984,2000 S.L. Moshier - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION - * OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS - * SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - */ - -#include -/* #include "\usr\include\stdio.h" */ -/*#include "ehead.h"*/ -/*#include "mconf.h"*/ -/* mconf.h - * - * Common include file for math routines - * - * - * - * SYNOPSIS: - * - * #include "mconf.h" - * - * - * - * DESCRIPTION: - * - * This file contains definitions for error codes that are - * passed to the common error handling routine mtherr() - * (which see). - * - * The file also includes a conditional assembly definition - * for the type of computer arithmetic (IEEE, DEC, Motorola - * IEEE, or UNKnown). - * - * For Digital Equipment PDP-11 and VAX computers, certain - * IBM systems, and others that use numbers with a 56-bit - * significand, the symbol DEC should be defined. In this - * mode, most floating point constants are given as arrays - * of octal integers to eliminate decimal to binary conversion - * errors that might be introduced by the compiler. - * - * For computers, such as IBM PC, that follow the IEEE - * Standard for Binary Floating Point Arithmetic (ANSI/IEEE - * Std 754-1985), the symbol IBMPC should be defined. These - * numbers have 53-bit significands. In this mode, constants - * are provided as arrays of hexadecimal 16 bit integers. - * - * To accommodate other types of computer arithmetic, all - * constants are also provided in a normal decimal radix - * which one can hope are correctly converted to a suitable - * format by the available C language compiler. To invoke - * this mode, the symbol UNK is defined. - * - * An important difference among these modes is a predefined - * set of machine arithmetic constants for each. The numbers - * MACHEP (the machine roundoff error), MAXNUM (largest number - * represented), and several other parameters are preset by - * the configuration symbol. Check the file const.c to - * ensure that these values are correct for your computer. - * - * For ANSI C compatibility, define ANSIC equal to 1. Currently - * this affects only the atan2() function and others that use it. - */ - -/* Constant definitions for math error conditions - */ - -#define DOMAIN 1 /* argument domain error */ -#define SING 2 /* argument singularity */ -#define OVERFLOW 3 /* overflow range error */ -#define UNDERFLOW 4 /* underflow range error */ -#define TLOSS 5 /* total loss of precision */ -#define PLOSS 6 /* partial loss of precision */ - -#define EDOM 33 -#define ERANGE 34 - -typedef struct - { - double r; - double i; - }cmplx; - -/* Type of computer arithmetic */ - -#ifndef DEC -#ifdef __IEEE_LITTLE_ENDIAN -#define IBMPC 1 -#else /* !__IEEE_LITTLE_ENDIAN */ -#define MIEEE 1 -#endif /* !__IEEE_LITTLE_ENDIAN */ -#endif /* !DEC */ - -/* Define 1 for ANSI C atan2() function - * See atan.c and clog.c. - */ -#define ANSIC 1 - -/*define VOLATILE volatile*/ -#define VOLATILE - -#define NANS -#define INFINITY - -/* NaN's require infinity support. */ -#ifdef NANS -#ifndef INFINITY -#define INFINITY -#endif -#endif - -/* This handles 64-bit long ints. */ -#define LONGBITS (8 * sizeof(long)) - - -static void eaddm(short unsigned int *x, short unsigned int *y); -static void esubm(short unsigned int *x, short unsigned int *y); -static void emdnorm(short unsigned int *s, int lost, int subflg, long int exp, int rcntrl, LDPARMS *ldp); -static int asctoeg(char *ss, short unsigned int *y, int oprec, LDPARMS *ldp); -static void enan(short unsigned int *nan, int size); -#if LDBL_MANT_DIG == 24 -static void toe24(short unsigned int *x, short unsigned int *y); -#elif LDBL_MANT_DIG == 53 -static void toe53(short unsigned int *x, short unsigned int *y); -#elif LDBL_MANT_DIG == 64 -static void toe64(short unsigned int *a, short unsigned int *b); -#else -static void toe113(short unsigned int *a, short unsigned int *b); -#endif -static void eiremain(short unsigned int *den, short unsigned int *num, LDPARMS *ldp); -static int ecmpm(register short unsigned int *a, register short unsigned int *b); -static int edivm(short unsigned int *den, short unsigned int *num, LDPARMS *ldp); -static int emulm(short unsigned int *a, short unsigned int *b, LDPARMS *ldp); -static int eisneg(short unsigned int *x); -static int eisinf(short unsigned int *x); -static void emovi(short unsigned int *a, short unsigned int *b); -static void emovo(short unsigned int *a, short unsigned int *b, LDPARMS *ldp); -static void emovz(register short unsigned int *a, register short unsigned int *b); -static void ecleaz(register short unsigned int *xi); -static void eadd1(short unsigned int *a, short unsigned int *b, short unsigned int *c, int subflg, LDPARMS *ldp); -static int eisnan(short unsigned int *x); -static int eiisnan(short unsigned int *x); - -#ifdef DEC -static void etodec(), todec(), dectoe(); -#endif - -/* -; Clear out entire external format number. -; -; unsigned short x[]; -; eclear( x ); -*/ - -static void eclear(register short unsigned int *x) -{ -register int i; - -for( i=0; irndprc < NBITS ) - { - if (ldp->rndprc == 113) - { - *(x - 9) = 0; - *(x - 8) = 0; - } - if( ldp->rndprc == 64 ) - { - *(x-5) = 0; - } - if( ldp->rndprc == 53 ) - { - *(x-4) = 0xf800; - } - else - { - *(x-4) = 0; - *(x-3) = 0; - *(x-2) = 0xff00; - } - } -#endif -} - -/* Move in external format number, - * converting it to internal format. - */ -static void emovi(short unsigned int *a, short unsigned int *b) -{ -register unsigned short *p, *q; -int i; - -q = b; -p = a + (NE-1); /* point to last word of external number */ -/* get the sign bit */ -if( *p & 0x8000 ) - *q++ = 0xffff; -else - *q++ = 0; -/* get the exponent */ -*q = *p--; -*q++ &= 0x7fff; /* delete the sign bit */ -#ifdef INFINITY -if( (*(q-1) & 0x7fff) == 0x7fff ) - { -#ifdef NANS - if( eisnan(a) ) - { - *q++ = 0; - for( i=3; i b -; 0 if a == b -; -1 if a < b -*/ -static int ecmpm(register short unsigned int *a, register short unsigned int *b) -{ -int i; - -a += M; /* skip up to significand area */ -b += M; -for( i=M; i *(--b) ) - return(1); -else - return(-1); -} - - -/* -; Shift significand down by 1 bit -*/ - -static void eshdn1(register short unsigned int *x) -{ -register unsigned short bits; -int i; - -x += M; /* point to significand area */ - -bits = 0; -for( i=M; i>= 1; - if( bits & 2 ) - *x |= 0x8000; - bits <<= 1; - ++x; - } -} - - - -/* -; Shift significand up by 1 bit -*/ - -static void eshup1(register short unsigned int *x) -{ -register unsigned short bits; -int i; - -x += NI-1; -bits = 0; - -for( i=M; i>= 8; - *x |= oldbyt; - oldbyt = newbyt; - ++x; - } -} - -/* -; Shift significand up by 8 bits -*/ - -static void eshup8(register short unsigned int *x) -{ -int i; -register unsigned short newbyt, oldbyt; - -x += NI-1; -oldbyt = 0; - -for( i=M; i> 8; - *x <<= 8; - *x |= oldbyt; - oldbyt = newbyt; - --x; - } -} - -/* -; Shift significand up by 16 bits -*/ - -static void eshup6(register short unsigned int *x) -{ -int i; -register unsigned short *p; - -p = x + M; -x += M + 1; - -for( i=M; i> 16) + (m >> 16) + *pp; - *pp = (unsigned short )carry; - *(pp-1) = carry >> 16; - } - } -for( i=M; iequot; - -p = &equot[0]; -*p++ = num[0]; -*p++ = num[1]; - -for( i=M; i tdenm ) - tquot = 0xffff; -*/ - /* Multiply denominator by trial quotient digit. */ - m16m( tquot, den, tprod ); - /* The quotient digit may have been overestimated. */ - if( ecmpm( tprod, num ) > 0 ) - { - tquot -= 1; - esubm( den, tprod ); - if( ecmpm( tprod, num ) > 0 ) - { - tquot -= 1; - esubm( den, tprod ); - } - } -/* - if( ecmpm( tprod, num ) > 0 ) - { - eshow( "tprod", tprod ); - eshow( "num ", num ); - printf( "tnum = %08lx, tden = %04x, tquot = %04x\n", - tnum, den[M+1], tquot ); - } -*/ - esubm( tprod, num ); -/* - if( ecmpm( num, den ) >= 0 ) - { - eshow( "num ", num ); - eshow( "den ", den ); - printf( "tnum = %08lx, tden = %04x, tquot = %04x\n", - tnum, den[M+1], tquot ); - } -*/ - equot[i] = tquot; - eshup6(num); - } -/* test for nonzero remainder after roundoff bit */ -p = &num[M]; -j = 0; -for( i=M; iequot; - -equot[0] = b[0]; -equot[1] = b[1]; -for( i=M; i NBITS ) - { - ecleazs( s ); - return; - } -#endif -exp -= j; -#ifndef INFINITY -if( exp >= 32767L ) - goto overf; -#else -if( (j > NBITS) && (exp < 32767L) ) - { - ecleazs( s ); - return; - } -#endif -if( exp < 0L ) - { - if( exp > (long )(-NBITS-1) ) - { - j = (int )exp; - i = eshift( s, j ); - if( i ) - lost = 1; - } - else - { - ecleazs( s ); - return; - } - } -/* Round off, unless told not to by rcntrl. */ -if( rcntrl == 0 ) - goto mdfin; -/* Set up rounding parameters if the control register changed. */ -if( ldp->rndprc != ldp->rlast ) - { - ecleaz( ldp->rbit ); - switch( ldp->rndprc ) - { - default: - case NBITS: - ldp->rw = NI-1; /* low guard word */ - ldp->rmsk = 0xffff; - ldp->rmbit = 0x8000; - ldp->rebit = 1; - ldp->re = ldp->rw - 1; - break; - case 113: - ldp->rw = 10; - ldp->rmsk = 0x7fff; - ldp->rmbit = 0x4000; - ldp->rebit = 0x8000; - ldp->re = ldp->rw; - break; - case 64: - ldp->rw = 7; - ldp->rmsk = 0xffff; - ldp->rmbit = 0x8000; - ldp->rebit = 1; - ldp->re = ldp->rw-1; - break; -/* For DEC arithmetic */ - case 56: - ldp->rw = 6; - ldp->rmsk = 0xff; - ldp->rmbit = 0x80; - ldp->rebit = 0x100; - ldp->re = ldp->rw; - break; - case 53: - ldp->rw = 6; - ldp->rmsk = 0x7ff; - ldp->rmbit = 0x0400; - ldp->rebit = 0x800; - ldp->re = ldp->rw; - break; - case 24: - ldp->rw = 4; - ldp->rmsk = 0xff; - ldp->rmbit = 0x80; - ldp->rebit = 0x100; - ldp->re = ldp->rw; - break; - } - ldp->rbit[ldp->re] = ldp->rebit; - ldp->rlast = ldp->rndprc; - } - -/* Shift down 1 temporarily if the data structure has an implied - * most significant bit and the number is denormal. - * For rndprc = 64 or NBITS, there is no implied bit. - * But Intel long double denormals lose one bit of significance even so. - */ -#if IBMPC -if( (exp <= 0) && (ldp->rndprc != NBITS) ) -#else -if( (exp <= 0) && (ldp->rndprc != 64) && (ldp->rndprc != NBITS) ) -#endif - { - lost |= s[NI-1] & 1; - eshdn1(s); - } -/* Clear out all bits below the rounding bit, - * remembering in r if any were nonzero. - */ -r = s[ldp->rw] & ldp->rmsk; -if( ldp->rndprc < NBITS ) - { - i = ldp->rw + 1; - while( i < NI ) - { - if( s[i] ) - r |= 1; - s[i] = 0; - ++i; - } - } -s[ldp->rw] &= ~ldp->rmsk; -if( (r & ldp->rmbit) != 0 ) - { - if( r == ldp->rmbit ) - { - if( lost == 0 ) - { /* round to even */ - if( (s[ldp->re] & ldp->rebit) == 0 ) - goto mddone; - } - else - { - if( subflg != 0 ) - goto mddone; - } - } - eaddm( ldp->rbit, s ); - } -mddone: -#if IBMPC -if( (exp <= 0) && (ldp->rndprc != NBITS) ) -#else -if( (exp <= 0) && (ldp->rndprc != 64) && (ldp->rndprc != NBITS) ) -#endif - { - eshup1(s); - } -if( s[2] != 0 ) - { /* overflow on roundoff */ - eshdn1(s); - exp += 1; - } -mdfin: -s[NI-1] = 0; -if( exp >= 32767L ) - { -#ifndef INFINITY -overf: -#endif -#ifdef INFINITY - s[1] = 32767; - for( i=2; irndprc < 64) || (ldp->rndprc == 113) ) - { - s[ldp->rw] &= ~ldp->rmsk; - if( ldp->rndprc == 24 ) - { - s[5] = 0; - s[6] = 0; - } - } -#endif - return; - } -if( exp < 0 ) - s[1] = 0; -else - s[1] = (unsigned short )exp; -} - - - -/* -; Subtract external format numbers. -; -; unsigned short a[NE], b[NE], c[NE]; -; LDPARMS *ldp; -; esub( a, b, c, ldp ); c = b - a -*/ - -static void esub(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) -{ - -#ifdef NANS -if( eisnan(a) ) - { - emov (a, c); - return; - } -if( eisnan(b) ) - { - emov(b,c); - return; - } -/* Infinity minus infinity is a NaN. - * Test for subtracting infinities of the same sign. - */ -if( eisinf(a) && eisinf(b) && ((eisneg (a) ^ eisneg (b)) == 0)) - { - mtherr( "esub", DOMAIN ); - enan( c, NBITS ); - return; - } -#endif -eadd1( a, b, c, 1, ldp ); -} - - - -static void eadd1(short unsigned int *a, short unsigned int *b, short unsigned int *c, int subflg, LDPARMS *ldp) -{ -unsigned short ai[NI], bi[NI], ci[NI]; -int i, lost, j, k; -long lt, lta, ltb; - -#ifdef INFINITY -if( eisinf(a) ) - { - emov(a,c); - if( subflg ) - eneg(c); - return; - } -if( eisinf(b) ) - { - emov(b,c); - return; - } -#endif -emovi( a, ai ); -emovi( b, bi ); -if( subflg ) - ai[0] = ~ai[0]; - -/* compare exponents */ -lta = ai[E]; -ltb = bi[E]; -lt = lta - ltb; -if( lt > 0L ) - { /* put the larger number in bi */ - emovz( bi, ci ); - emovz( ai, bi ); - emovz( ci, ai ); - ltb = bi[E]; - lt = -lt; - } -lost = 0; -if( lt != 0L ) - { - if( lt < (long )(-NBITS-1) ) - goto done; /* answer same as larger addend */ - k = (int )lt; - lost = eshift( ai, k ); /* shift the smaller number down */ - } -else - { -/* exponents were the same, so must compare significands */ - i = ecmpm( ai, bi ); - if( i == 0 ) - { /* the numbers are identical in magnitude */ - /* if different signs, result is zero */ - if( ai[0] != bi[0] ) - { - eclear(c); - return; - } - /* if same sign, result is double */ - /* double denomalized tiny number */ - if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) ) - { - eshup1( bi ); - goto done; - } - /* add 1 to exponent unless both are zero! */ - for( j=1; j 0 ) - { /* put the larger number in bi */ - emovz( bi, ci ); - emovz( ai, bi ); - emovz( ci, ai ); - } - } -if( ai[0] == bi[0] ) - { - eaddm( ai, bi ); - subflg = 0; - } -else - { - esubm( ai, bi ); - subflg = 1; - } -emdnorm( bi, lost, subflg, ltb, 64, ldp ); - -done: -emovo( bi, c, ldp ); -} - - - -/* -; Divide. -; -; unsigned short a[NE], b[NE], c[NE]; -; LDPARMS *ldp; -; ediv( a, b, c, ldp ); c = b / a -*/ -static void ediv(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) -{ -unsigned short ai[NI], bi[NI]; -int i; -long lt, lta, ltb; - -#ifdef NANS -/* Return any NaN input. */ -if( eisnan(a) ) - { - emov(a,c); - return; - } -if( eisnan(b) ) - { - emov(b,c); - return; - } -/* Zero over zero, or infinity over infinity, is a NaN. */ -if( ((ecmp(a,ezero) == 0) && (ecmp(b,ezero) == 0)) - || (eisinf (a) && eisinf (b)) ) - { - mtherr( "ediv", DOMAIN ); - enan( c, NBITS ); - return; - } -#endif -/* Infinity over anything else is infinity. */ -#ifdef INFINITY -if( eisinf(b) ) - { - if( eisneg(a) ^ eisneg(b) ) - *(c+(NE-1)) = 0x8000; - else - *(c+(NE-1)) = 0; - einfin(c, ldp); - return; - } -if( eisinf(a) ) - { - eclear(c); - return; - } -#endif -emovi( a, ai ); -emovi( b, bi ); -lta = ai[E]; -ltb = bi[E]; -if( bi[E] == 0 ) - { /* See if numerator is zero. */ - for( i=1; i 64 -static void e113toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) -{ -register unsigned short r; -unsigned short *e, *p; -unsigned short yy[NI]; -int denorm, i; - -e = pe; -denorm = 0; -ecleaz(yy); -#ifdef IBMPC -e += 7; -#endif -r = *e; -yy[0] = 0; -if( r & 0x8000 ) - yy[0] = 0xffff; -r &= 0x7fff; -#ifdef INFINITY -if( r == 0x7fff ) - { -#ifdef NANS -#ifdef IBMPC - for( i=0; i<7; i++ ) - { - if( pe[i] != 0 ) - { - enan( y, NBITS ); - return; - } - } -#else /* !IBMPC */ - for( i=1; i<8; i++ ) - { - if( pe[i] != 0 ) - { - enan( y, NBITS ); - return; - } - } -#endif /* !IBMPC */ -#endif /* NANS */ - eclear( y ); - einfin( y ); - if( *e & 0x8000 ) - eneg(y); - return; - } -#endif /* INFINITY */ -yy[E] = r; -p = &yy[M + 1]; -#ifdef IBMPC -for( i=0; i<7; i++ ) - *p++ = *(--e); -#else /* IBMPC */ -++e; -for( i=0; i<7; i++ ) - *p++ = *e++; -#endif /* IBMPC */ -/* If denormal, remove the implied bit; else shift down 1. */ -if( r == 0 ) - { - yy[M] = 0; - } -else - { - yy[M] = 1; - eshift( yy, -1 ); - } -emovo(yy,y,ldp); -} - -/* move out internal format to ieee long double */ -static void toe113(short unsigned int *a, short unsigned int *b) -{ -register unsigned short *p, *q; -unsigned short i; - -#ifdef NANS -if( eiisnan(a) ) - { - enan( b, 113 ); - return; - } -#endif -p = a; -#ifdef MIEEE -q = b; -#else -q = b + 7; /* point to output exponent */ -#endif - -/* If not denormal, delete the implied bit. */ -if( a[E] != 0 ) - { - eshup1 (a); - } -/* combine sign and exponent */ -i = *p++; -#ifdef MIEEE -if( i ) - *q++ = *p++ | 0x8000; -else - *q++ = *p++; -#else -if( i ) - *q-- = *p++ | 0x8000; -else - *q-- = *p++; -#endif -/* skip over guard word */ -++p; -/* move the significand */ -#ifdef MIEEE -for (i = 0; i < 7; i++) - *q++ = *p++; -#else -for (i = 0; i < 7; i++) - *q-- = *p++; -#endif -} -#endif /* LDBL_MANT_DIG > 64 */ - - -#if LDBL_MANT_DIG == 64 -static void e64toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) -{ -unsigned short yy[NI]; -unsigned short *p, *q, *e; -int i; - -e = pe; -p = yy; - -for( i=0; i>= 4; -/* If zero exponent, then the significand is denormalized. - * So, take back the understood high significand bit. */ -if( r == 0 ) - { - denorm = 1; - yy[M] &= ~0x10; - } -r += EXONE - 01777; -yy[E] = r; -p = &yy[M+1]; -#ifdef IBMPC -*p++ = *(--e); -*p++ = *(--e); -*p++ = *(--e); -#else /* !IBMPC */ -++e; -*p++ = *e++; -*p++ = *e++; -*p++ = *e++; -#endif /* !IBMPC */ -(void )eshift( yy, -5 ); -if( denorm ) - { /* if zero exponent, then normalize the significand */ - if( (k = enormlz(yy)) > NBITS ) - ecleazs(yy); - else - yy[E] -= (unsigned short )(k-1); - } -emovo( yy, y, ldp ); -#endif /* !DEC */ -} - -/* -; e type to IEEE double precision -; double d; -; unsigned short x[NE]; -; etoe53( x, &d ); -*/ - -#ifdef DEC - -static void etoe53( x, e ) -unsigned short *x, *e; -{ -etodec( x, e ); /* see etodec.c */ -} - -static void toe53( x, y ) -unsigned short *x, *y; -{ -todec( x, y ); -} - -#else - -static void toe53(short unsigned int *x, short unsigned int *y) -{ -unsigned short i; -unsigned short *p; - - -#ifdef NANS -if( eiisnan(x) ) - { - enan( y, 53 ); - return; - } -#endif -p = &x[0]; -#ifdef IBMPC -y += 3; -#endif -#ifdef DEC -y += 3; -#endif -*y = 0; /* output high order */ -if( *p++ ) - *y = 0x8000; /* output sign bit */ - -i = *p++; -if( i >= (unsigned int )2047 ) - { /* Saturate at largest number less than infinity. */ -#ifdef INFINITY - *y |= 0x7ff0; -#ifdef IBMPC - *(--y) = 0; - *(--y) = 0; - *(--y) = 0; -#else /* !IBMPC */ - ++y; - *y++ = 0; - *y++ = 0; - *y++ = 0; -#endif /* IBMPC */ -#else /* !INFINITY */ - *y |= (unsigned short )0x7fef; -#ifdef IBMPC - *(--y) = 0xffff; - *(--y) = 0xffff; - *(--y) = 0xffff; -#else /* !IBMPC */ - ++y; - *y++ = 0xffff; - *y++ = 0xffff; - *y++ = 0xffff; -#endif -#endif /* !INFINITY */ - return; - } -if( i == 0 ) - { - (void )eshift( x, 4 ); - } -else - { - i <<= 4; - (void )eshift( x, 5 ); - } -i |= *p++ & (unsigned short )0x0f; /* *p = xi[M] */ -*y |= (unsigned short )i; /* high order output already has sign bit set */ -#ifdef IBMPC -*(--y) = *p++; -*(--y) = *p++; -*(--y) = *p; -#else /* !IBMPC */ -++y; -*y++ = *p++; -*y++ = *p++; -*y++ = *p++; -#endif /* !IBMPC */ -} - -#endif /* not DEC */ -#endif /* LDBL_MANT_DIG == 53 */ - -#if LDBL_MANT_DIG == 24 -/* -; Convert IEEE single precision to e type -; float d; -; unsigned short x[N+2]; -; dtox( &d, x ); -*/ -void e24toe( short unsigned int *pe, short unsigned int *y, LDPARMS *ldp ) -{ -register unsigned short r; -register unsigned short *p, *e; -unsigned short yy[NI]; -int denorm, k; - -e = pe; -denorm = 0; /* flag if denormalized number */ -ecleaz(yy); -#ifdef IBMPC -e += 1; -#endif -#ifdef DEC -e += 1; -#endif -r = *e; -yy[0] = 0; -if( r & 0x8000 ) - yy[0] = 0xffff; -yy[M] = (r & 0x7f) | 0200; -r &= ~0x807f; /* strip sign and 7 significand bits */ -#ifdef INFINITY -if( r == 0x7f80 ) - { -#ifdef NANS -#ifdef MIEEE - if( ((pe[0] & 0x7f) != 0) || (pe[1] != 0) ) - { - enan( y, NBITS ); - return; - } -#else /* !MIEEE */ - if( ((pe[1] & 0x7f) != 0) || (pe[0] != 0) ) - { - enan( y, NBITS ); - return; - } -#endif /* !MIEEE */ -#endif /* NANS */ - eclear( y ); - einfin( y ); - if( yy[0] ) - eneg(y); - return; - } -#endif -r >>= 7; -/* If zero exponent, then the significand is denormalized. - * So, take back the understood high significand bit. */ -if( r == 0 ) - { - denorm = 1; - yy[M] &= ~0200; - } -r += EXONE - 0177; -yy[E] = r; -p = &yy[M+1]; -#ifdef IBMPC -*p++ = *(--e); -#endif -#ifdef DEC -*p++ = *(--e); -#endif -#ifdef MIEEE -++e; -*p++ = *e++; -#endif -(void )eshift( yy, -8 ); -if( denorm ) - { /* if zero exponent, then normalize the significand */ - if( (k = enormlz(yy)) > NBITS ) - ecleazs(yy); - else - yy[E] -= (unsigned short )(k-1); - } -emovo( yy, y, ldp ); -} - -static void toe24(short unsigned int *x, short unsigned int *y) -{ -unsigned short i; -unsigned short *p; - -#ifdef NANS -if( eiisnan(x) ) - { - enan( y, 24 ); - return; - } -#endif -p = &x[0]; -#ifdef IBMPC -y += 1; -#endif -#ifdef DEC -y += 1; -#endif -*y = 0; /* output high order */ -if( *p++ ) - *y = 0x8000; /* output sign bit */ - -i = *p++; -if( i >= 255 ) - { /* Saturate at largest number less than infinity. */ -#ifdef INFINITY - *y |= (unsigned short )0x7f80; -#ifdef IBMPC - *(--y) = 0; -#endif -#ifdef DEC - *(--y) = 0; -#endif -#ifdef MIEEE - ++y; - *y = 0; -#endif -#else /* !INFINITY */ - *y |= (unsigned short )0x7f7f; -#ifdef IBMPC - *(--y) = 0xffff; -#endif -#ifdef DEC - *(--y) = 0xffff; -#endif -#ifdef MIEEE - ++y; - *y = 0xffff; -#endif -#endif /* !INFINITY */ - return; - } -if( i == 0 ) - { - (void )eshift( x, 7 ); - } -else - { - i <<= 7; - (void )eshift( x, 8 ); - } -i |= *p++ & (unsigned short )0x7f; /* *p = xi[M] */ -*y |= i; /* high order output already has sign bit set */ -#ifdef IBMPC -*(--y) = *p; -#endif -#ifdef DEC -*(--y) = *p; -#endif -#ifdef MIEEE -++y; -*y = *p; -#endif -} -#endif /* LDBL_MANT_DIG == 24 */ - -/* Compare two e type numbers. - * - * unsigned short a[NE], b[NE]; - * ecmp( a, b ); - * - * returns +1 if a > b - * 0 if a == b - * -1 if a < b - * -2 if either a or b is a NaN. - */ -static int ecmp(short unsigned int *a, short unsigned int *b) -{ -unsigned short ai[NI], bi[NI]; -register unsigned short *p, *q; -register int i; -int msign; - -#ifdef NANS -if (eisnan (a) || eisnan (b)) - return( -2 ); -#endif -emovi( a, ai ); -p = ai; -emovi( b, bi ); -q = bi; - -if( *p != *q ) - { /* the signs are different */ -/* -0 equals + 0 */ - for( i=1; i 0 ); - -return(0); /* equality */ - - - -diff: - -if( *(--p) > *(--q) ) - return( msign ); /* p is bigger */ -else - return( -msign ); /* p is littler */ -} - - -/* -; Shift significand -; -; Shifts significand area up or down by the number of bits -; given by the variable sc. -*/ -static int eshift(short unsigned int *x, int sc) -{ -unsigned short lost; -unsigned short *p; - -if( sc == 0 ) - return( 0 ); - -lost = 0; -p = x + NI-1; - -if( sc < 0 ) - { - sc = -sc; - while( sc >= 16 ) - { - lost |= *p; /* remember lost bits */ - eshdn6(x); - sc -= 16; - } - - while( sc >= 8 ) - { - lost |= *p & 0xff; - eshdn8(x); - sc -= 8; - } - - while( sc > 0 ) - { - lost |= *p & 1; - eshdn1(x); - sc -= 1; - } - } -else - { - while( sc >= 16 ) - { - eshup6(x); - sc -= 16; - } - - while( sc >= 8 ) - { - eshup8(x); - sc -= 8; - } - - while( sc > 0 ) - { - eshup1(x); - sc -= 1; - } - } -if( lost ) - lost = 1; -return( (int )lost ); -} - - - -/* -; normalize -; -; Shift normalizes the significand area pointed to by argument -; shift count (up = positive) is returned. -*/ -static int enormlz(short unsigned int *x) -{ -register unsigned short *p; -int sc; - -sc = 0; -p = &x[M]; -if( *p != 0 ) - goto normdn; -++p; -if( *p & 0x8000 ) - return( 0 ); /* already normalized */ -while( *p == 0 ) - { - eshup6(x); - sc += 16; -/* With guard word, there are NBITS+16 bits available. - * return true if all are zero. - */ - if( sc > NBITS ) - return( sc ); - } -/* see if high byte is zero */ -while( (*p & 0xff00) == 0 ) - { - eshup8(x); - sc += 8; - } -/* now shift 1 bit at a time */ -while( (*p & 0x8000) == 0) - { - eshup1(x); - sc += 1; - if( sc > (NBITS+16) ) - { - mtherr( "enormlz", UNDERFLOW ); - return( sc ); - } - } -return( sc ); - -/* Normalize by shifting down out of the high guard word - of the significand */ -normdn: - -if( *p & 0xff00 ) - { - eshdn8(x); - sc -= 8; - } -while( *p != 0 ) - { - eshdn1(x); - sc -= 1; - - if( sc < -NBITS ) - { - mtherr( "enormlz", OVERFLOW ); - return( sc ); - } - } -return( sc ); -} - - - - -/* Convert e type number to decimal format ASCII string. - * The constants are for 64 bit precision. - */ - -#define NTEN 12 -#define MAXP 4096 - -#if NE == 10 -static unsigned short etens[NTEN + 1][NE] = -{ - {0x6576, 0x4a92, 0x804a, 0x153f, - 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ - {0x6a32, 0xce52, 0x329a, 0x28ce, - 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ - {0x526c, 0x50ce, 0xf18b, 0x3d28, - 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, - {0x9c66, 0x58f8, 0xbc50, 0x5c54, - 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, - {0x851e, 0xeab7, 0x98fe, 0x901b, - 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, - {0x0235, 0x0137, 0x36b1, 0x336c, - 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, - {0x50f8, 0x25fb, 0xc76b, 0x6b71, - 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, - {0x0000, 0x0000, 0x0000, 0x0000, - 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ -}; - -static unsigned short emtens[NTEN + 1][NE] = -{ - {0x2030, 0xcffc, 0xa1c3, 0x8123, - 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ - {0x8264, 0xd2cb, 0xf2ea, 0x12d4, - 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ - {0xf53f, 0xf698, 0x6bd3, 0x0158, - 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, - {0xe731, 0x04d4, 0xe3f2, 0xd332, - 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, - {0xa23e, 0x5308, 0xfefb, 0x1155, - 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, - {0xe26d, 0xdbde, 0xd05d, 0xb3f6, - 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, - {0x2a20, 0x6224, 0x47b3, 0x98d7, - 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, - {0x0b5b, 0x4af2, 0xa581, 0x18ed, - 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, - {0xbf71, 0xa9b3, 0x7989, 0xbe68, - 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, - {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, - 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, - {0xc155, 0xa4a8, 0x404e, 0x6113, - 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, - {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, - 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, - {0xcccd, 0xcccc, 0xcccc, 0xcccc, - 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ -}; -#else -static unsigned short etens[NTEN+1][NE] = { -{0xc94c,0x979a,0x8a20,0x5202,0xc460,0x7525,},/* 10**4096 */ -{0xa74d,0x5de4,0xc53d,0x3b5d,0x9e8b,0x5a92,},/* 10**2048 */ -{0x650d,0x0c17,0x8175,0x7586,0xc976,0x4d48,}, -{0xcc65,0x91c6,0xa60e,0xa0ae,0xe319,0x46a3,}, -{0xddbc,0xde8d,0x9df9,0xebfb,0xaa7e,0x4351,}, -{0xc66f,0x8cdf,0x80e9,0x47c9,0x93ba,0x41a8,}, -{0x3cbf,0xa6d5,0xffcf,0x1f49,0xc278,0x40d3,}, -{0xf020,0xb59d,0x2b70,0xada8,0x9dc5,0x4069,}, -{0x0000,0x0000,0x0400,0xc9bf,0x8e1b,0x4034,}, -{0x0000,0x0000,0x0000,0x2000,0xbebc,0x4019,}, -{0x0000,0x0000,0x0000,0x0000,0x9c40,0x400c,}, -{0x0000,0x0000,0x0000,0x0000,0xc800,0x4005,}, -{0x0000,0x0000,0x0000,0x0000,0xa000,0x4002,}, /* 10**1 */ -}; - -static unsigned short emtens[NTEN+1][NE] = { -{0x2de4,0x9fde,0xd2ce,0x04c8,0xa6dd,0x0ad8,}, /* 10**-4096 */ -{0x4925,0x2de4,0x3436,0x534f,0xceae,0x256b,}, /* 10**-2048 */ -{0x87a6,0xc0bd,0xda57,0x82a5,0xa2a6,0x32b5,}, -{0x7133,0xd21c,0xdb23,0xee32,0x9049,0x395a,}, -{0xfa91,0x1939,0x637a,0x4325,0xc031,0x3cac,}, -{0xac7d,0xe4a0,0x64bc,0x467c,0xddd0,0x3e55,}, -{0x3f24,0xe9a5,0xa539,0xea27,0xa87f,0x3f2a,}, -{0x67de,0x94ba,0x4539,0x1ead,0xcfb1,0x3f94,}, -{0x4c2f,0xe15b,0xc44d,0x94be,0xe695,0x3fc9,}, -{0xfdc2,0xcefc,0x8461,0x7711,0xabcc,0x3fe4,}, -{0xd3c3,0x652b,0xe219,0x1758,0xd1b7,0x3ff1,}, -{0x3d71,0xd70a,0x70a3,0x0a3d,0xa3d7,0x3ff8,}, -{0xcccd,0xcccc,0xcccc,0xcccc,0xcccc,0x3ffb,}, /* 10**-1 */ -}; -#endif - - - -/* ASCII string outputs for unix */ - - -#if 0 -void _IO_ldtostr(x, string, ndigs, flags, fmt) -long double *x; -char *string; -int ndigs; -int flags; -char fmt; -{ -unsigned short w[NI]; -char *t, *u; -LDPARMS rnd; -LDPARMS *ldp = &rnd; - -rnd.rlast = -1; -rnd.rndprc = NBITS; - -if (sizeof(long double) == 16) - e113toe( (unsigned short *)x, w, ldp ); -else - e64toe( (unsigned short *)x, w, ldp ); - -etoasc( w, string, ndigs, -1, ldp ); -if( ndigs == 0 && flags == 0 ) - { - /* Delete the decimal point unless alternate format. */ - t = string; - while( *t != '.' ) - ++t; - u = t + 1; - while( *t != '\0' ) - *t++ = *u++; - } -if (*string == ' ') - { - t = string; - u = t + 1; - while( *t != '\0' ) - *t++ = *u++; - } -if (fmt == 'E') - { - t = string; - while( *t != 'e' ) - ++t; - *t = 'E'; - } -} - -#endif - -/* This routine will not return more than NDEC+1 digits. */ - -char * -_ldtoa_r (struct _reent *ptr, long double d, int mode, int ndigits, int *decpt, - int *sign, char **rve) -{ -unsigned short e[NI]; -char *s, *p; -int k; -LDPARMS rnd; -LDPARMS *ldp = &rnd; -char *outstr; - -rnd.rlast = -1; -rnd.rndprc = NBITS; - -/* reentrancy addition to use mprec storage pool */ -if (ptr->_result) - { - ptr->_result->_k = ptr->_result_k; - ptr->_result->_maxwds = 1 << ptr->_result_k; - Bfree (ptr, ptr->_result); - ptr->_result = 0; - } - -#if LDBL_MANT_DIG == 24 -e24toe( (unsigned short *)&d, e, ldp ); -#elif LDBL_MANT_DIG == 53 -e53toe( (unsigned short *)&d, e, ldp ); -#elif LDBL_MANT_DIG == 64 -e64toe( (unsigned short *)&d, e, ldp ); -#else -e113toe( (unsigned short *)&d, e, ldp ); -#endif - -if( eisneg(e) ) - *sign = 1; -else - *sign = 0; -/* Mode 3 is "f" format. */ -if( mode != 3 ) - ndigits -= 1; -/* Mode 0 is for %.999 format, which is supposed to give a - minimum length string that will convert back to the same binary value. - For now, just ask for 20 digits which is enough but sometimes too many. */ -if( mode == 0 ) - ndigits = 20; -/* This sanity limit must agree with the corresponding one in etoasc, to - keep straight the returned value of outexpon. */ -if( ndigits > NDEC ) - ndigits = NDEC; - -/* reentrancy addition to use mprec storage pool */ -ptr->_result = Balloc (ptr, 3); -ptr->_result_k = 3; -outstr = (char *)ptr->_result; - -etoasc( e, outstr, ndigits, mode, ldp ); -s = outstr; -if( eisinf(e) || eisnan(e) ) - { - *decpt = 9999; - goto stripspaces; - } -*decpt = ldp->outexpon + 1; - -/* Transform the string returned by etoasc into what the caller wants. */ - -/* Look for decimal point and delete it from the string. */ -s = outstr; -while( *s != '\0' ) - { - if( *s == '.' ) - goto yesdecpt; - ++s; - } -goto nodecpt; - -yesdecpt: - -/* Delete the decimal point. */ -while( *s != '\0' ) - { - *s = *(s+1); - ++s; - } - -nodecpt: - -/* Back up over the exponent field. */ -while( *s != 'E' && s > outstr) - --s; -*s = '\0'; - -stripspaces: - -/* Strip leading spaces and sign. */ -p = outstr; -while( *p == ' ' || *p == '-') - ++p; - -/* Find new end of string. */ -s = outstr; -while( (*s++ = *p++) != '\0' ) - ; ---s; - -/* Strip trailing zeros. */ -if( mode == 2 ) - k = 1; -else if( ndigits > ldp->outexpon ) - k = ndigits; -else - k = ldp->outexpon; - -while( *(s-1) == '0' && ((s - outstr) > k)) - *(--s) = '\0'; - -/* In f format, flush small off-scale values to zero. - Rounding has been taken care of by etoasc. */ -if( mode == 3 && ((ndigits + ldp->outexpon) < 0)) - { - s = outstr; - *s = '\0'; - *decpt = 0; - } - -if( rve ) - *rve = s; -return outstr; -} - -static void etoasc(short unsigned int *x, char *string, int ndigits, int outformat, LDPARMS *ldp) -{ -long digit; -unsigned short y[NI], t[NI], u[NI], w[NI]; -unsigned short *p, *r, *ten; -unsigned short sign; -int i, j, k, expon, rndsav, ndigs; -char *s, *ss; -unsigned short m; -unsigned short *equot = ldp->equot; - -ndigs = ndigits; -rndsav = ldp->rndprc; -#ifdef NANS -if( eisnan(x) ) - { - sprintf( string, " NaN " ); - expon = 9999; - goto bxit; - } -#endif -ldp->rndprc = NBITS; /* set to full precision */ -emov( x, y ); /* retain external format */ -if( y[NE-1] & 0x8000 ) - { - sign = 0xffff; - y[NE-1] &= 0x7fff; - } -else - { - sign = 0; - } -expon = 0; -ten = &etens[NTEN][0]; -emov( eone, t ); -/* Test for zero exponent */ -if( y[NE-1] == 0 ) - { - for( k=0; k>= 1; - } -while( m != 0 ); - -/* Rescale from integer significand */ - u[NE-1] += y[NE-1] - (unsigned int )(EXONE + NBITS - 1); - emov( u, y ); -/* Find power of 10 */ - emov( eone, t ); - m = MAXP; - p = &etens[0][0]; - while( ecmp( ten, u ) <= 0 ) - { - if( ecmp( p, u ) <= 0 ) - { - ediv( p, u, u, ldp ); - emul( p, t, t, ldp ); - expon += (int )m; - } - m >>= 1; - if( m == 0 ) - break; - p += NE; - } - } -else - { /* Number is less than 1.0 */ -/* Pad significand with trailing decimal zeros. */ - if( y[NE-1] == 0 ) - { - while( (y[NE-2] & 0x8000) == 0 ) - { - emul( ten, y, y, ldp ); - expon -= 1; - } - } - else - { - emovi( y, w ); - for( i=0; i 0 ) - { - if( ecmp( p, w ) >= 0 ) - { - emul( r, w, w, ldp ); - emul( r, t, t, ldp ); - expon += k; - } - k /= 2; - if( k == 0 ) - break; - p += NE; - r += NE; - } - ediv( t, eone, t, ldp ); - } -isone: -/* Find the first (leading) digit. */ -emovi( t, w ); -emovz( w, t ); -emovi( y, w ); -emovz( w, y ); -eiremain( t, y, ldp ); -digit = equot[NI-1]; -while( (digit == 0) && (ecmp(y,ezero) != 0) ) - { - eshup1( y ); - emovz( y, u ); - eshup1( u ); - eshup1( u ); - eaddm( u, y ); - eiremain( t, y, ldp ); - digit = equot[NI-1]; - expon -= 1; - } -s = string; -if( sign ) - *s++ = '-'; -else - *s++ = ' '; -/* Examine number of digits requested by caller. */ -if( outformat == 3 ) - ndigs += expon; -/* -else if( ndigs < 0 ) - ndigs = 0; -*/ -if( ndigs > NDEC ) - ndigs = NDEC; -if( digit == 10 ) - { - *s++ = '1'; - *s++ = '.'; - if( ndigs > 0 ) - { - *s++ = '0'; - ndigs -= 1; - } - expon += 1; - if( ndigs < 0 ) - { - ss = s; - goto doexp; - } - } -else - { - *s++ = (char )digit + '0'; - *s++ = '.'; - } -/* Generate digits after the decimal point. */ -for( k=0; k<=ndigs; k++ ) - { -/* multiply current number by 10, without normalizing */ - eshup1( y ); - emovz( y, u ); - eshup1( u ); - eshup1( u ); - eaddm( u, y ); - eiremain( t, y, ldp ); - *s++ = (char )equot[NI-1] + '0'; - } -digit = equot[NI-1]; ---s; -ss = s; -/* round off the ASCII string */ -if( digit > 4 ) - { -/* Test for critical rounding case in ASCII output. */ - if( digit == 5 ) - { - emovo( y, t, ldp ); - if( ecmp(t,ezero) != 0 ) - goto roun; /* round to nearest */ - if( (*(s-1) & 1) == 0 ) - goto doexp; /* round to even */ - } -/* Round up and propagate carry-outs */ -roun: - --s; - k = *s & 0x7f; -/* Carry out to most significant digit? */ - if( ndigs < 0 ) - { - /* This will print like "1E-6". */ - *s = '1'; - expon += 1; - goto doexp; - } - else if( k == '.' ) - { - --s; - k = *s; - k += 1; - *s = (char )k; -/* Most significant digit carries to 10? */ - if( k > '9' ) - { - expon += 1; - *s = '1'; - } - goto doexp; - } -/* Round up and carry out from less significant digits */ - k += 1; - *s = (char )k; - if( k > '9' ) - { - *s = '0'; - goto roun; - } - } -doexp: -#ifdef __GO32__ -if( expon >= 0 ) - sprintf( ss, "e+%02d", expon ); -else - sprintf( ss, "e-%02d", -expon ); -#else - sprintf( ss, "E%d", expon ); -#endif -bxit: -ldp->rndprc = rndsav; -ldp->outexpon = expon; -} - - - - -/* -; ASCTOQ -; ASCTOQ.MAC LATEST REV: 11 JAN 84 -; SLM, 3 JAN 78 -; -; Convert ASCII string to quadruple precision floating point -; -; Numeric input is free field decimal number -; with max of 15 digits with or without -; decimal point entered as ASCII from teletype. -; Entering E after the number followed by a second -; number causes the second number to be interpreted -; as a power of 10 to be multiplied by the first number -; (i.e., "scientific" notation). -; -; Usage: -; asctoq( string, q ); -*/ - -long double _strtold (char *s, char **se) -{ - long double x; - LDPARMS rnd; - LDPARMS *ldp = &rnd; - int lenldstr; - - rnd.rlast = -1; - rnd.rndprc = NBITS; - - lenldstr = asctoeg( s, (unsigned short *)&x, LDBL_MANT_DIG, ldp ); - if (se) - *se = s + lenldstr; - return x; -} - - - -static int -asctoeg(char *ss, short unsigned int *y, int oprec, LDPARMS *ldp) -{ -unsigned short yy[NI], xt[NI], tt[NI]; -int esign, decflg, sgnflg, nexp, exp, prec, lost; -int k, trail, c, rndsav; -long lexp; -unsigned short nsign, *p; -char *sp, *s, *lstr; -int lenldstr; - -/* Copy the input string. */ -c = strlen (ss) + 2; -lstr = (char *) alloca (c); -s = ss; -lenldstr = 0; -while( *s == ' ' ) /* skip leading spaces */ - { - ++s; - ++lenldstr; - } -sp = lstr; -for( k=0; krndprc; -ldp->rndprc = NBITS; /* Set to full precision */ -lost = 0; -nsign = 0; -decflg = 0; -sgnflg = 0; -nexp = 0; -exp = 0; -prec = 0; -ecleaz( yy ); -trail = 0; - -nxtcom: -k = *s - '0'; -if( (k >= 0) && (k <= 9) ) - { -/* Ignore leading zeros */ - if( (prec == 0) && (decflg == 0) && (k == 0) ) - goto donchr; -/* Identify and strip trailing zeros after the decimal point. */ - if( (trail == 0) && (decflg != 0) ) - { - sp = s; - while( (*sp >= '0') && (*sp <= '9') ) - ++sp; -/* Check for syntax error */ - c = *sp & 0x7f; - if( (c != 'e') && (c != 'E') && (c != '\0') - && (c != '\n') && (c != '\r') && (c != ' ') - && (c != ',') ) - goto error; - --sp; - while( *sp == '0' ) - *sp-- = 'z'; - trail = 1; - if( *s == 'z' ) - goto donchr; - } -/* If enough digits were given to more than fill up the yy register, - * continuing until overflow into the high guard word yy[2] - * guarantees that there will be a roundoff bit at the top - * of the low guard word after normalization. - */ - if( yy[2] == 0 ) - { - if( decflg ) - nexp += 1; /* count digits after decimal point */ - eshup1( yy ); /* multiply current number by 10 */ - emovz( yy, xt ); - eshup1( xt ); - eshup1( xt ); - eaddm( xt, yy ); - ecleaz( xt ); - xt[NI-2] = (unsigned short )k; - eaddm( xt, yy ); - } - else - { - /* Mark any lost non-zero digit. */ - lost |= k; - /* Count lost digits before the decimal point. */ - if (decflg == 0) - nexp -= 1; - } - prec += 1; - goto donchr; - } - -switch( *s ) - { - case 'z': - break; - case 'E': - case 'e': - goto expnt; - case '.': /* decimal point */ - if( decflg ) - goto error; - ++decflg; - break; - case '-': - nsign = 0xffff; - if( sgnflg ) - goto error; - ++sgnflg; - break; - case '+': - if( sgnflg ) - goto error; - ++sgnflg; - break; - case ',': - case ' ': - case '\0': - case '\n': - case '\r': - goto daldone; - case 'i': - case 'I': - goto infinite; - default: - error: -#ifdef NANS - enan( yy, NI*16 ); -#else - mtherr( "asctoe", DOMAIN ); - ecleaz(yy); -#endif - goto aexit; - } -donchr: -++s; -goto nxtcom; - -/* Exponent interpretation */ -expnt: - -esign = 1; -exp = 0; -++s; -/* check for + or - */ -if( *s == '-' ) - { - esign = -1; - ++s; - } -if( *s == '+' ) - ++s; -while( (*s >= '0') && (*s <= '9') ) - { - exp *= 10; - exp += *s++ - '0'; - if (exp > 4977) - { - if (esign < 0) - goto zero; - else - goto infinite; - } - } -if( esign < 0 ) - exp = -exp; -if( exp > 4932 ) - { -infinite: - ecleaz(yy); - yy[E] = 0x7fff; /* infinity */ - goto aexit; - } -if( exp < -4977 ) - { -zero: - ecleaz(yy); - goto aexit; - } - -daldone: -nexp = exp - nexp; -/* Pad trailing zeros to minimize power of 10, per IEEE spec. */ -while( (nexp > 0) && (yy[2] == 0) ) - { - emovz( yy, xt ); - eshup1( xt ); - eshup1( xt ); - eaddm( yy, xt ); - eshup1( xt ); - if( xt[2] != 0 ) - break; - nexp -= 1; - emovz( xt, yy ); - } -if( (k = enormlz(yy)) > NBITS ) - { - ecleaz(yy); - goto aexit; - } -lexp = (EXONE - 1 + NBITS) - k; -emdnorm( yy, lost, 0, lexp, 64, ldp ); -/* convert to external format */ - - -/* Multiply by 10**nexp. If precision is 64 bits, - * the maximum relative error incurred in forming 10**n - * for 0 <= n <= 324 is 8.2e-20, at 10**180. - * For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. - * For 0 >= n >= -999, it is -1.55e-19 at 10**-435. - */ -lexp = yy[E]; -if( nexp == 0 ) - { - k = 0; - goto expdon; - } -esign = 1; -if( nexp < 0 ) - { - nexp = -nexp; - esign = -1; - if( nexp > 4096 ) - { /* Punt. Can't handle this without 2 divides. */ - emovi( etens[0], tt ); - lexp -= tt[E]; - k = edivm( tt, yy, ldp ); - lexp += EXONE; - nexp -= 4096; - } - } -p = &etens[NTEN][0]; -emov( eone, xt ); -exp = 1; -do - { - if( exp & nexp ) - emul( p, xt, xt, ldp ); - p -= NE; - exp = exp + exp; - } -while( exp <= MAXP ); - -emovi( xt, tt ); -if( esign < 0 ) - { - lexp -= tt[E]; - k = edivm( tt, yy, ldp ); - lexp += EXONE; - } -else - { - lexp += tt[E]; - k = emulm( tt, yy, ldp ); - lexp -= EXONE - 1; - } - -expdon: - -/* Round and convert directly to the destination type */ -if( oprec == 53 ) - lexp -= EXONE - 0x3ff; -else if( oprec == 24 ) - lexp -= EXONE - 0177; -#ifdef DEC -else if( oprec == 56 ) - lexp -= EXONE - 0201; -#endif -ldp->rndprc = oprec; -emdnorm( yy, k, 0, lexp, 64, ldp ); - -aexit: - -ldp->rndprc = rndsav; -yy[0] = nsign; -switch( oprec ) - { -#ifdef DEC - case 56: - todec( yy, y ); /* see etodec.c */ - break; -#endif -#if LDBL_MANT_DIG == 53 - case 53: - toe53( yy, y ); - break; -#elif LDBL_MANT_DIG == 24 - case 24: - toe24( yy, y ); - break; -#elif LDBL_MANT_DIG == 64 - case 64: - toe64( yy, y ); - break; -#elif LDBL_MANT_DIG == 113 - case 113: - toe113( yy, y ); - break; -#else - case NBITS: - emovo( yy, y, ldp ); - break; -#endif - } -lenldstr += s - lstr; -return lenldstr; -} - - - -/* y = largest integer not greater than x - * (truncated toward minus infinity) - * - * unsigned short x[NE], y[NE] - * LDPARMS *ldp - * - * efloor( x, y, ldp ); - */ -static unsigned short bmask[] = { -0xffff, -0xfffe, -0xfffc, -0xfff8, -0xfff0, -0xffe0, -0xffc0, -0xff80, -0xff00, -0xfe00, -0xfc00, -0xf800, -0xf000, -0xe000, -0xc000, -0x8000, -0x0000, -}; - -static void efloor(short unsigned int *x, short unsigned int *y, LDPARMS *ldp) -{ -register unsigned short *p; -int e, expon, i; -unsigned short f[NE]; - -emov( x, f ); /* leave in external format */ -expon = (int )f[NE-1]; -e = (expon & 0x7fff) - (EXONE - 1); -if( e <= 0 ) - { - eclear(y); - goto isitneg; - } -/* number of bits to clear out */ -e = NBITS - e; -emov( f, y ); -if( e <= 0 ) - return; - -p = &y[0]; -while( e >= 16 ) - { - *p++ = 0; - e -= 16; - } -/* clear the remaining bits */ -*p &= bmask[e]; -/* truncate negatives toward minus infinity */ -isitneg: - -if( (unsigned short )expon & (unsigned short )0x8000 ) - { - for( i=0; iequot; - -ld = den[E]; -ld -= enormlz( den ); -ln = num[E]; -ln -= enormlz( num ); -ecleaz( equot ); -while( ln >= ld ) - { - if( ecmpm(den,num) <= 0 ) - { - esubm(den, num); - j = 1; - } - else - { - j = 0; - } - eshup1(equot); - equot[NI-1] |= j; - eshup1(num); - ln -= 1; - } -emdnorm( num, 0, 0, ln, 0, ldp ); -} - -/* NaN bit patterns - */ -#ifdef MIEEE -static unsigned short nan113[8] = { - 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; -static unsigned short nan64[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; -static unsigned short nan53[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; -static unsigned short nan24[2] = {0x7fff, 0xffff}; -#else /* !MIEEE */ -static unsigned short nan113[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0x7fff}; -static unsigned short nan64[6] = {0, 0, 0, 0, 0xc000, 0x7fff}; -static unsigned short nan53[4] = {0, 0, 0, 0x7ff8}; -static unsigned short nan24[2] = {0, 0x7fc0}; -#endif /* !MIEEE */ - - -static void enan (short unsigned int *nan, int size) -{ -int i, n; -unsigned short *p; - -switch( size ) - { -#ifndef DEC - case 113: - n = 8; - p = nan113; - break; - - case 64: - n = 6; - p = nan64; - break; - - case 53: - n = 4; - p = nan53; - break; - - case 24: - n = 2; - p = nan24; - break; - - case NBITS: - for( i=0; i +#include +#include +#include +#include "mprec.h" + +/* These are the externally visible entries. */ +/* linux name: long double _IO_strtold (char *, char **); */ +long double _strtold (char *, char **); +char * _ldtoa_r (struct _reent *, long double, int, int, int *, int *, char **); +#if 0 +void _IO_ldtostr(long double *, char *, int, int, char); +#endif + + /* Number of 16 bit words in external x type format */ + #define NE 10 + + /* Number of 16 bit words in internal format */ + #define NI (NE+3) + + /* Array offset to exponent */ + #define E 1 + + /* Array offset to high guard word */ + #define M 2 + + /* Number of bits of precision */ + #define NBITS ((NI-4)*16) + + /* Maximum number of decimal digits in ASCII conversion + * = NBITS*log10(2) + */ + #define NDEC (NBITS*8/27) + + /* The exponent of 1.0 */ + #define EXONE (0x3fff) + +/* Control structure for long doublue conversion including rounding precision values. + * rndprc can be set to 80 (if NE=6), 64, 56, 53, or 24 bits. + */ +typedef struct +{ + int rlast; + int rndprc; + int rw; + int re; + int outexpon; + unsigned short rmsk; + unsigned short rmbit; + unsigned short rebit; + unsigned short rbit[NI]; + unsigned short equot[NI]; +} LDPARMS; + +static void esub(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); +static void emul(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); +static void ediv(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp); +static int ecmp(short unsigned int *a, short unsigned int *b); +static int enormlz(short unsigned int *x); +static int eshift(short unsigned int *x, int sc); +static void eshup1(register short unsigned int *x); +static void eshup8(register short unsigned int *x); +static void eshup6(register short unsigned int *x); +static void eshdn1(register short unsigned int *x); +static void eshdn8(register short unsigned int *x); +static void eshdn6(register short unsigned int *x); +static void eneg(short unsigned int *x); +static void emov(register short unsigned int *a, register short unsigned int *b); +static void eclear(register short unsigned int *x); +static void einfin(register short unsigned int *x, register LDPARMS *ldp); +static void efloor(short unsigned int *x, short unsigned int *y, LDPARMS *ldp); +static void etoasc(short unsigned int *x, char *string, int ndigs, int outformat, LDPARMS *ldp); + +#if LDBL_MANT_DIG == 24 +static void e24toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); +#elif LDBL_MANT_DIG == 53 +static void e53toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); +#elif LDBL_MANT_DIG == 64 +static void e64toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); +#else +static void e113toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp); +#endif + +/* econst.c */ +/* e type constants used by high precision check routines */ + +#if NE == 10 +/* 0.0 */ +static unsigned short ezero[NE] = + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; + +/* 1.0E0 */ +static unsigned short eone[NE] = + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; + +#else + +/* 0.0 */ +static unsigned short ezero[NE] = { +0, 0000000,0000000,0000000,0000000,0000000,}; +/* 1.0E0 */ +static unsigned short eone[NE] = { +0, 0000000,0000000,0000000,0100000,0x3fff,}; + +#endif + +/* Debugging routine for displaying errors */ +#ifdef DEBUG +/* Notice: the order of appearance of the following + * messages is bound to the error codes defined + * in mconf.h. + */ +static char *ermsg[7] = { +"unknown", /* error code 0 */ +"domain", /* error code 1 */ +"singularity", /* et seq. */ +"overflow", +"underflow", +"total loss of precision", +"partial loss of precision" +}; +#define mtherr(name, code) printf( "\n%s %s error\n", name, ermsg[code] ); +#else +#define mtherr(name, code) +#endif + +/* ieee.c + * + * Extended precision IEEE binary floating point arithmetic routines + * + * Numbers are stored in C language as arrays of 16-bit unsigned + * short integers. The arguments of the routines are pointers to + * the arrays. + * + * + * External e type data structure, simulates Intel 8087 chip + * temporary real format but possibly with a larger significand: + * + * NE-1 significand words (least significant word first, + * most significant bit is normally set) + * exponent (value = EXONE for 1.0, + * top bit is the sign) + * + * + * Internal data structure of a number (a "word" is 16 bits): + * + * ei[0] sign word (0 for positive, 0xffff for negative) + * ei[1] biased exponent (value = EXONE for the number 1.0) + * ei[2] high guard word (always zero after normalization) + * ei[3] + * to ei[NI-2] significand (NI-4 significand words, + * most significant word first, + * most significant bit is set) + * ei[NI-1] low guard word (0x8000 bit is rounding place) + * + * + * + * Routines for external format numbers + * + * asctoe( string, e ) ASCII string to extended double e type + * asctoe64( string, &d ) ASCII string to long double + * asctoe53( string, &d ) ASCII string to double + * asctoe24( string, &f ) ASCII string to single + * asctoeg( string, e, prec, ldp ) ASCII string to specified precision + * e24toe( &f, e, ldp ) IEEE single precision to e type + * e53toe( &d, e, ldp ) IEEE double precision to e type + * e64toe( &d, e, ldp ) IEEE long double precision to e type + * e113toe( &d, e, ldp ) IEEE long double precision to e type + * eabs(e) absolute value + * eadd( a, b, c ) c = b + a + * eclear(e) e = 0 + * ecmp (a, b) Returns 1 if a > b, 0 if a == b, + * -1 if a < b, -2 if either a or b is a NaN. + * ediv( a, b, c, ldp ) c = b / a + * efloor( a, b, ldp ) truncate to integer, toward -infinity + * efrexp( a, exp, s ) extract exponent and significand + * eifrac( e, &l, frac ) e to long integer and e type fraction + * euifrac( e, &l, frac ) e to unsigned long integer and e type fraction + * einfin( e, ldp ) set e to infinity, leaving its sign alone + * eldexp( a, n, b ) multiply by 2**n + * emov( a, b ) b = a + * emul( a, b, c, ldp ) c = b * a + * eneg(e) e = -e + * eround( a, b ) b = nearest integer value to a + * esub( a, b, c, ldp ) c = b - a + * e24toasc( &f, str, n ) single to ASCII string, n digits after decimal + * e53toasc( &d, str, n ) double to ASCII string, n digits after decimal + * e64toasc( &d, str, n ) long double to ASCII string + * etoasc(e,str,n,fmt,ldp)e to ASCII string, n digits after decimal + * etoe24( e, &f ) convert e type to IEEE single precision + * etoe53( e, &d ) convert e type to IEEE double precision + * etoe64( e, &d ) convert e type to IEEE long double precision + * ltoe( &l, e ) long (32 bit) integer to e type + * ultoe( &l, e ) unsigned long (32 bit) integer to e type + * eisneg( e ) 1 if sign bit of e != 0, else 0 + * eisinf( e ) 1 if e has maximum exponent (non-IEEE) + * or is infinite (IEEE) + * eisnan( e ) 1 if e is a NaN + * esqrt( a, b ) b = square root of a + * + * + * Routines for internal format numbers + * + * eaddm( ai, bi ) add significands, bi = bi + ai + * ecleaz(ei) ei = 0 + * ecleazs(ei) set ei = 0 but leave its sign alone + * ecmpm( ai, bi ) compare significands, return 1, 0, or -1 + * edivm( ai, bi, ldp ) divide significands, bi = bi / ai + * emdnorm(ai,l,s,exp,ldp) normalize and round off + * emovi( a, ai ) convert external a to internal ai + * emovo( ai, a, ldp ) convert internal ai to external a + * emovz( ai, bi ) bi = ai, low guard word of bi = 0 + * emulm( ai, bi, ldp ) multiply significands, bi = bi * ai + * enormlz(ei) left-justify the significand + * eshdn1( ai ) shift significand and guards down 1 bit + * eshdn8( ai ) shift down 8 bits + * eshdn6( ai ) shift down 16 bits + * eshift( ai, n ) shift ai n bits up (or down if n < 0) + * eshup1( ai ) shift significand and guards up 1 bit + * eshup8( ai ) shift up 8 bits + * eshup6( ai ) shift up 16 bits + * esubm( ai, bi ) subtract significands, bi = bi - ai + * + * + * The result is always normalized and rounded to NI-4 word precision + * after each arithmetic operation. + * + * Exception flags are NOT fully supported. + * + * Define INFINITY in mconf.h for support of infinity; otherwise a + * saturation arithmetic is implemented. + * + * Define NANS for support of Not-a-Number items; otherwise the + * arithmetic will never produce a NaN output, and might be confused + * by a NaN input. + * If NaN's are supported, the output of ecmp(a,b) is -2 if + * either a or b is a NaN. This means asking if(ecmp(a,b) < 0) + * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than + * if in doubt. + * Signaling NaN's are NOT supported; they are treated the same + * as quiet NaN's. + * + * Denormals are always supported here where appropriate (e.g., not + * for conversion to DEC numbers). + */ + +/* + * Revision history: + * + * 5 Jan 84 PDP-11 assembly language version + * 6 Dec 86 C language version + * 30 Aug 88 100 digit version, improved rounding + * 15 May 92 80-bit long double support + * 22 Nov 00 Revised to fit into newlib by Jeff Johnston + * + * Author: S. L. Moshier. + * + * Copyright (c) 1984,2000 S.L. Moshier + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION + * OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS + * SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + */ + +#include +/* #include "\usr\include\stdio.h" */ +/*#include "ehead.h"*/ +/*#include "mconf.h"*/ +/* mconf.h + * + * Common include file for math routines + * + * + * + * SYNOPSIS: + * + * #include "mconf.h" + * + * + * + * DESCRIPTION: + * + * This file contains definitions for error codes that are + * passed to the common error handling routine mtherr() + * (which see). + * + * The file also includes a conditional assembly definition + * for the type of computer arithmetic (IEEE, DEC, Motorola + * IEEE, or UNKnown). + * + * For Digital Equipment PDP-11 and VAX computers, certain + * IBM systems, and others that use numbers with a 56-bit + * significand, the symbol DEC should be defined. In this + * mode, most floating point constants are given as arrays + * of octal integers to eliminate decimal to binary conversion + * errors that might be introduced by the compiler. + * + * For computers, such as IBM PC, that follow the IEEE + * Standard for Binary Floating Point Arithmetic (ANSI/IEEE + * Std 754-1985), the symbol IBMPC should be defined. These + * numbers have 53-bit significands. In this mode, constants + * are provided as arrays of hexadecimal 16 bit integers. + * + * To accommodate other types of computer arithmetic, all + * constants are also provided in a normal decimal radix + * which one can hope are correctly converted to a suitable + * format by the available C language compiler. To invoke + * this mode, the symbol UNK is defined. + * + * An important difference among these modes is a predefined + * set of machine arithmetic constants for each. The numbers + * MACHEP (the machine roundoff error), MAXNUM (largest number + * represented), and several other parameters are preset by + * the configuration symbol. Check the file const.c to + * ensure that these values are correct for your computer. + * + * For ANSI C compatibility, define ANSIC equal to 1. Currently + * this affects only the atan2() function and others that use it. + */ + +/* Constant definitions for math error conditions + */ + +#define DOMAIN 1 /* argument domain error */ +#define SING 2 /* argument singularity */ +#define OVERFLOW 3 /* overflow range error */ +#define UNDERFLOW 4 /* underflow range error */ +#define TLOSS 5 /* total loss of precision */ +#define PLOSS 6 /* partial loss of precision */ + +#define EDOM 33 +#define ERANGE 34 + +typedef struct + { + double r; + double i; + }cmplx; + +/* Type of computer arithmetic */ + +#ifndef DEC +#ifdef __IEEE_LITTLE_ENDIAN +#define IBMPC 1 +#else /* !__IEEE_LITTLE_ENDIAN */ +#define MIEEE 1 +#endif /* !__IEEE_LITTLE_ENDIAN */ +#endif /* !DEC */ + +/* Define 1 for ANSI C atan2() function + * See atan.c and clog.c. + */ +#define ANSIC 1 + +/*define VOLATILE volatile*/ +#define VOLATILE + +#define NANS +#define INFINITY + +/* NaN's require infinity support. */ +#ifdef NANS +#ifndef INFINITY +#define INFINITY +#endif +#endif + +/* This handles 64-bit long ints. */ +#define LONGBITS (8 * sizeof(long)) + + +static void eaddm(short unsigned int *x, short unsigned int *y); +static void esubm(short unsigned int *x, short unsigned int *y); +static void emdnorm(short unsigned int *s, int lost, int subflg, long int exp, int rcntrl, LDPARMS *ldp); +static int asctoeg(char *ss, short unsigned int *y, int oprec, LDPARMS *ldp); +static void enan(short unsigned int *nan, int size); +#if LDBL_MANT_DIG == 24 +static void toe24(short unsigned int *x, short unsigned int *y); +#elif LDBL_MANT_DIG == 53 +static void toe53(short unsigned int *x, short unsigned int *y); +#elif LDBL_MANT_DIG == 64 +static void toe64(short unsigned int *a, short unsigned int *b); +#else +static void toe113(short unsigned int *a, short unsigned int *b); +#endif +static void eiremain(short unsigned int *den, short unsigned int *num, LDPARMS *ldp); +static int ecmpm(register short unsigned int *a, register short unsigned int *b); +static int edivm(short unsigned int *den, short unsigned int *num, LDPARMS *ldp); +static int emulm(short unsigned int *a, short unsigned int *b, LDPARMS *ldp); +static int eisneg(short unsigned int *x); +static int eisinf(short unsigned int *x); +static void emovi(short unsigned int *a, short unsigned int *b); +static void emovo(short unsigned int *a, short unsigned int *b, LDPARMS *ldp); +static void emovz(register short unsigned int *a, register short unsigned int *b); +static void ecleaz(register short unsigned int *xi); +static void eadd1(short unsigned int *a, short unsigned int *b, short unsigned int *c, int subflg, LDPARMS *ldp); +static int eisnan(short unsigned int *x); +static int eiisnan(short unsigned int *x); + +#ifdef DEC +static void etodec(), todec(), dectoe(); +#endif + +/* +; Clear out entire external format number. +; +; unsigned short x[]; +; eclear( x ); +*/ + +static void eclear(register short unsigned int *x) +{ +register int i; + +for( i=0; irndprc < NBITS ) + { + if (ldp->rndprc == 113) + { + *(x - 9) = 0; + *(x - 8) = 0; + } + if( ldp->rndprc == 64 ) + { + *(x-5) = 0; + } + if( ldp->rndprc == 53 ) + { + *(x-4) = 0xf800; + } + else + { + *(x-4) = 0; + *(x-3) = 0; + *(x-2) = 0xff00; + } + } +#endif +} + +/* Move in external format number, + * converting it to internal format. + */ +static void emovi(short unsigned int *a, short unsigned int *b) +{ +register unsigned short *p, *q; +int i; + +q = b; +p = a + (NE-1); /* point to last word of external number */ +/* get the sign bit */ +if( *p & 0x8000 ) + *q++ = 0xffff; +else + *q++ = 0; +/* get the exponent */ +*q = *p--; +*q++ &= 0x7fff; /* delete the sign bit */ +#ifdef INFINITY +if( (*(q-1) & 0x7fff) == 0x7fff ) + { +#ifdef NANS + if( eisnan(a) ) + { + *q++ = 0; + for( i=3; i b +; 0 if a == b +; -1 if a < b +*/ +static int ecmpm(register short unsigned int *a, register short unsigned int *b) +{ +int i; + +a += M; /* skip up to significand area */ +b += M; +for( i=M; i *(--b) ) + return(1); +else + return(-1); +} + + +/* +; Shift significand down by 1 bit +*/ + +static void eshdn1(register short unsigned int *x) +{ +register unsigned short bits; +int i; + +x += M; /* point to significand area */ + +bits = 0; +for( i=M; i>= 1; + if( bits & 2 ) + *x |= 0x8000; + bits <<= 1; + ++x; + } +} + + + +/* +; Shift significand up by 1 bit +*/ + +static void eshup1(register short unsigned int *x) +{ +register unsigned short bits; +int i; + +x += NI-1; +bits = 0; + +for( i=M; i>= 8; + *x |= oldbyt; + oldbyt = newbyt; + ++x; + } +} + +/* +; Shift significand up by 8 bits +*/ + +static void eshup8(register short unsigned int *x) +{ +int i; +register unsigned short newbyt, oldbyt; + +x += NI-1; +oldbyt = 0; + +for( i=M; i> 8; + *x <<= 8; + *x |= oldbyt; + oldbyt = newbyt; + --x; + } +} + +/* +; Shift significand up by 16 bits +*/ + +static void eshup6(register short unsigned int *x) +{ +int i; +register unsigned short *p; + +p = x + M; +x += M + 1; + +for( i=M; i> 16) + (m >> 16) + *pp; + *pp = (unsigned short )carry; + *(pp-1) = carry >> 16; + } + } +for( i=M; iequot; + +p = &equot[0]; +*p++ = num[0]; +*p++ = num[1]; + +for( i=M; i tdenm ) + tquot = 0xffff; +*/ + /* Multiply denominator by trial quotient digit. */ + m16m( tquot, den, tprod ); + /* The quotient digit may have been overestimated. */ + if( ecmpm( tprod, num ) > 0 ) + { + tquot -= 1; + esubm( den, tprod ); + if( ecmpm( tprod, num ) > 0 ) + { + tquot -= 1; + esubm( den, tprod ); + } + } +/* + if( ecmpm( tprod, num ) > 0 ) + { + eshow( "tprod", tprod ); + eshow( "num ", num ); + printf( "tnum = %08lx, tden = %04x, tquot = %04x\n", + tnum, den[M+1], tquot ); + } +*/ + esubm( tprod, num ); +/* + if( ecmpm( num, den ) >= 0 ) + { + eshow( "num ", num ); + eshow( "den ", den ); + printf( "tnum = %08lx, tden = %04x, tquot = %04x\n", + tnum, den[M+1], tquot ); + } +*/ + equot[i] = tquot; + eshup6(num); + } +/* test for nonzero remainder after roundoff bit */ +p = &num[M]; +j = 0; +for( i=M; iequot; + +equot[0] = b[0]; +equot[1] = b[1]; +for( i=M; i NBITS ) + { + ecleazs( s ); + return; + } +#endif +exp -= j; +#ifndef INFINITY +if( exp >= 32767L ) + goto overf; +#else +if( (j > NBITS) && (exp < 32767L) ) + { + ecleazs( s ); + return; + } +#endif +if( exp < 0L ) + { + if( exp > (long )(-NBITS-1) ) + { + j = (int )exp; + i = eshift( s, j ); + if( i ) + lost = 1; + } + else + { + ecleazs( s ); + return; + } + } +/* Round off, unless told not to by rcntrl. */ +if( rcntrl == 0 ) + goto mdfin; +/* Set up rounding parameters if the control register changed. */ +if( ldp->rndprc != ldp->rlast ) + { + ecleaz( ldp->rbit ); + switch( ldp->rndprc ) + { + default: + case NBITS: + ldp->rw = NI-1; /* low guard word */ + ldp->rmsk = 0xffff; + ldp->rmbit = 0x8000; + ldp->rebit = 1; + ldp->re = ldp->rw - 1; + break; + case 113: + ldp->rw = 10; + ldp->rmsk = 0x7fff; + ldp->rmbit = 0x4000; + ldp->rebit = 0x8000; + ldp->re = ldp->rw; + break; + case 64: + ldp->rw = 7; + ldp->rmsk = 0xffff; + ldp->rmbit = 0x8000; + ldp->rebit = 1; + ldp->re = ldp->rw-1; + break; +/* For DEC arithmetic */ + case 56: + ldp->rw = 6; + ldp->rmsk = 0xff; + ldp->rmbit = 0x80; + ldp->rebit = 0x100; + ldp->re = ldp->rw; + break; + case 53: + ldp->rw = 6; + ldp->rmsk = 0x7ff; + ldp->rmbit = 0x0400; + ldp->rebit = 0x800; + ldp->re = ldp->rw; + break; + case 24: + ldp->rw = 4; + ldp->rmsk = 0xff; + ldp->rmbit = 0x80; + ldp->rebit = 0x100; + ldp->re = ldp->rw; + break; + } + ldp->rbit[ldp->re] = ldp->rebit; + ldp->rlast = ldp->rndprc; + } + +/* Shift down 1 temporarily if the data structure has an implied + * most significant bit and the number is denormal. + * For rndprc = 64 or NBITS, there is no implied bit. + * But Intel long double denormals lose one bit of significance even so. + */ +#if IBMPC +if( (exp <= 0) && (ldp->rndprc != NBITS) ) +#else +if( (exp <= 0) && (ldp->rndprc != 64) && (ldp->rndprc != NBITS) ) +#endif + { + lost |= s[NI-1] & 1; + eshdn1(s); + } +/* Clear out all bits below the rounding bit, + * remembering in r if any were nonzero. + */ +r = s[ldp->rw] & ldp->rmsk; +if( ldp->rndprc < NBITS ) + { + i = ldp->rw + 1; + while( i < NI ) + { + if( s[i] ) + r |= 1; + s[i] = 0; + ++i; + } + } +s[ldp->rw] &= ~ldp->rmsk; +if( (r & ldp->rmbit) != 0 ) + { + if( r == ldp->rmbit ) + { + if( lost == 0 ) + { /* round to even */ + if( (s[ldp->re] & ldp->rebit) == 0 ) + goto mddone; + } + else + { + if( subflg != 0 ) + goto mddone; + } + } + eaddm( ldp->rbit, s ); + } +mddone: +#if IBMPC +if( (exp <= 0) && (ldp->rndprc != NBITS) ) +#else +if( (exp <= 0) && (ldp->rndprc != 64) && (ldp->rndprc != NBITS) ) +#endif + { + eshup1(s); + } +if( s[2] != 0 ) + { /* overflow on roundoff */ + eshdn1(s); + exp += 1; + } +mdfin: +s[NI-1] = 0; +if( exp >= 32767L ) + { +#ifndef INFINITY +overf: +#endif +#ifdef INFINITY + s[1] = 32767; + for( i=2; irndprc < 64) || (ldp->rndprc == 113) ) + { + s[ldp->rw] &= ~ldp->rmsk; + if( ldp->rndprc == 24 ) + { + s[5] = 0; + s[6] = 0; + } + } +#endif + return; + } +if( exp < 0 ) + s[1] = 0; +else + s[1] = (unsigned short )exp; +} + + + +/* +; Subtract external format numbers. +; +; unsigned short a[NE], b[NE], c[NE]; +; LDPARMS *ldp; +; esub( a, b, c, ldp ); c = b - a +*/ + +static void esub(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) +{ + +#ifdef NANS +if( eisnan(a) ) + { + emov (a, c); + return; + } +if( eisnan(b) ) + { + emov(b,c); + return; + } +/* Infinity minus infinity is a NaN. + * Test for subtracting infinities of the same sign. + */ +if( eisinf(a) && eisinf(b) && ((eisneg (a) ^ eisneg (b)) == 0)) + { + mtherr( "esub", DOMAIN ); + enan( c, NBITS ); + return; + } +#endif +eadd1( a, b, c, 1, ldp ); +} + + + +static void eadd1(short unsigned int *a, short unsigned int *b, short unsigned int *c, int subflg, LDPARMS *ldp) +{ +unsigned short ai[NI], bi[NI], ci[NI]; +int i, lost, j, k; +long lt, lta, ltb; + +#ifdef INFINITY +if( eisinf(a) ) + { + emov(a,c); + if( subflg ) + eneg(c); + return; + } +if( eisinf(b) ) + { + emov(b,c); + return; + } +#endif +emovi( a, ai ); +emovi( b, bi ); +if( subflg ) + ai[0] = ~ai[0]; + +/* compare exponents */ +lta = ai[E]; +ltb = bi[E]; +lt = lta - ltb; +if( lt > 0L ) + { /* put the larger number in bi */ + emovz( bi, ci ); + emovz( ai, bi ); + emovz( ci, ai ); + ltb = bi[E]; + lt = -lt; + } +lost = 0; +if( lt != 0L ) + { + if( lt < (long )(-NBITS-1) ) + goto done; /* answer same as larger addend */ + k = (int )lt; + lost = eshift( ai, k ); /* shift the smaller number down */ + } +else + { +/* exponents were the same, so must compare significands */ + i = ecmpm( ai, bi ); + if( i == 0 ) + { /* the numbers are identical in magnitude */ + /* if different signs, result is zero */ + if( ai[0] != bi[0] ) + { + eclear(c); + return; + } + /* if same sign, result is double */ + /* double denomalized tiny number */ + if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) ) + { + eshup1( bi ); + goto done; + } + /* add 1 to exponent unless both are zero! */ + for( j=1; j 0 ) + { /* put the larger number in bi */ + emovz( bi, ci ); + emovz( ai, bi ); + emovz( ci, ai ); + } + } +if( ai[0] == bi[0] ) + { + eaddm( ai, bi ); + subflg = 0; + } +else + { + esubm( ai, bi ); + subflg = 1; + } +emdnorm( bi, lost, subflg, ltb, 64, ldp ); + +done: +emovo( bi, c, ldp ); +} + + + +/* +; Divide. +; +; unsigned short a[NE], b[NE], c[NE]; +; LDPARMS *ldp; +; ediv( a, b, c, ldp ); c = b / a +*/ +static void ediv(short unsigned int *a, short unsigned int *b, short unsigned int *c, LDPARMS *ldp) +{ +unsigned short ai[NI], bi[NI]; +int i; +long lt, lta, ltb; + +#ifdef NANS +/* Return any NaN input. */ +if( eisnan(a) ) + { + emov(a,c); + return; + } +if( eisnan(b) ) + { + emov(b,c); + return; + } +/* Zero over zero, or infinity over infinity, is a NaN. */ +if( ((ecmp(a,ezero) == 0) && (ecmp(b,ezero) == 0)) + || (eisinf (a) && eisinf (b)) ) + { + mtherr( "ediv", DOMAIN ); + enan( c, NBITS ); + return; + } +#endif +/* Infinity over anything else is infinity. */ +#ifdef INFINITY +if( eisinf(b) ) + { + if( eisneg(a) ^ eisneg(b) ) + *(c+(NE-1)) = 0x8000; + else + *(c+(NE-1)) = 0; + einfin(c, ldp); + return; + } +if( eisinf(a) ) + { + eclear(c); + return; + } +#endif +emovi( a, ai ); +emovi( b, bi ); +lta = ai[E]; +ltb = bi[E]; +if( bi[E] == 0 ) + { /* See if numerator is zero. */ + for( i=1; i 64 +static void e113toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) +{ +register unsigned short r; +unsigned short *e, *p; +unsigned short yy[NI]; +int denorm, i; + +e = pe; +denorm = 0; +ecleaz(yy); +#ifdef IBMPC +e += 7; +#endif +r = *e; +yy[0] = 0; +if( r & 0x8000 ) + yy[0] = 0xffff; +r &= 0x7fff; +#ifdef INFINITY +if( r == 0x7fff ) + { +#ifdef NANS +#ifdef IBMPC + for( i=0; i<7; i++ ) + { + if( pe[i] != 0 ) + { + enan( y, NBITS ); + return; + } + } +#else /* !IBMPC */ + for( i=1; i<8; i++ ) + { + if( pe[i] != 0 ) + { + enan( y, NBITS ); + return; + } + } +#endif /* !IBMPC */ +#endif /* NANS */ + eclear( y ); + einfin( y, ldp ); + if( *e & 0x8000 ) + eneg(y); + return; + } +#endif /* INFINITY */ +yy[E] = r; +p = &yy[M + 1]; +#ifdef IBMPC +for( i=0; i<7; i++ ) + *p++ = *(--e); +#else /* IBMPC */ +++e; +for( i=0; i<7; i++ ) + *p++ = *e++; +#endif /* IBMPC */ +/* If denormal, remove the implied bit; else shift down 1. */ +if( r == 0 ) + { + yy[M] = 0; + } +else + { + yy[M] = 1; + eshift( yy, -1 ); + } +emovo(yy,y,ldp); +} + +/* move out internal format to ieee long double */ +static void toe113(short unsigned int *a, short unsigned int *b) +{ +register unsigned short *p, *q; +unsigned short i; + +#ifdef NANS +if( eiisnan(a) ) + { + enan( b, 113 ); + return; + } +#endif +p = a; +#ifdef MIEEE +q = b; +#else +q = b + 7; /* point to output exponent */ +#endif + +/* If not denormal, delete the implied bit. */ +if( a[E] != 0 ) + { + eshup1 (a); + } +/* combine sign and exponent */ +i = *p++; +#ifdef MIEEE +if( i ) + *q++ = *p++ | 0x8000; +else + *q++ = *p++; +#else +if( i ) + *q-- = *p++ | 0x8000; +else + *q-- = *p++; +#endif +/* skip over guard word */ +++p; +/* move the significand */ +#ifdef MIEEE +for (i = 0; i < 7; i++) + *q++ = *p++; +#else +for (i = 0; i < 7; i++) + *q-- = *p++; +#endif +} +#endif /* LDBL_MANT_DIG > 64 */ + + +#if LDBL_MANT_DIG == 64 +static void e64toe(short unsigned int *pe, short unsigned int *y, LDPARMS *ldp) +{ +unsigned short yy[NI]; +unsigned short *p, *q, *e; +int i; + +e = pe; +p = yy; + +for( i=0; i>= 4; +/* If zero exponent, then the significand is denormalized. + * So, take back the understood high significand bit. */ +if( r == 0 ) + { + denorm = 1; + yy[M] &= ~0x10; + } +r += EXONE - 01777; +yy[E] = r; +p = &yy[M+1]; +#ifdef IBMPC +*p++ = *(--e); +*p++ = *(--e); +*p++ = *(--e); +#else /* !IBMPC */ +++e; +*p++ = *e++; +*p++ = *e++; +*p++ = *e++; +#endif /* !IBMPC */ +(void )eshift( yy, -5 ); +if( denorm ) + { /* if zero exponent, then normalize the significand */ + if( (k = enormlz(yy)) > NBITS ) + ecleazs(yy); + else + yy[E] -= (unsigned short )(k-1); + } +emovo( yy, y, ldp ); +#endif /* !DEC */ +} + +/* +; e type to IEEE double precision +; double d; +; unsigned short x[NE]; +; etoe53( x, &d ); +*/ + +#ifdef DEC + +static void etoe53( x, e ) +unsigned short *x, *e; +{ +etodec( x, e ); /* see etodec.c */ +} + +static void toe53( x, y ) +unsigned short *x, *y; +{ +todec( x, y ); +} + +#else + +static void toe53(short unsigned int *x, short unsigned int *y) +{ +unsigned short i; +unsigned short *p; + + +#ifdef NANS +if( eiisnan(x) ) + { + enan( y, 53 ); + return; + } +#endif +p = &x[0]; +#ifdef IBMPC +y += 3; +#endif +#ifdef DEC +y += 3; +#endif +*y = 0; /* output high order */ +if( *p++ ) + *y = 0x8000; /* output sign bit */ + +i = *p++; +if( i >= (unsigned int )2047 ) + { /* Saturate at largest number less than infinity. */ +#ifdef INFINITY + *y |= 0x7ff0; +#ifdef IBMPC + *(--y) = 0; + *(--y) = 0; + *(--y) = 0; +#else /* !IBMPC */ + ++y; + *y++ = 0; + *y++ = 0; + *y++ = 0; +#endif /* IBMPC */ +#else /* !INFINITY */ + *y |= (unsigned short )0x7fef; +#ifdef IBMPC + *(--y) = 0xffff; + *(--y) = 0xffff; + *(--y) = 0xffff; +#else /* !IBMPC */ + ++y; + *y++ = 0xffff; + *y++ = 0xffff; + *y++ = 0xffff; +#endif +#endif /* !INFINITY */ + return; + } +if( i == 0 ) + { + (void )eshift( x, 4 ); + } +else + { + i <<= 4; + (void )eshift( x, 5 ); + } +i |= *p++ & (unsigned short )0x0f; /* *p = xi[M] */ +*y |= (unsigned short )i; /* high order output already has sign bit set */ +#ifdef IBMPC +*(--y) = *p++; +*(--y) = *p++; +*(--y) = *p; +#else /* !IBMPC */ +++y; +*y++ = *p++; +*y++ = *p++; +*y++ = *p++; +#endif /* !IBMPC */ +} + +#endif /* not DEC */ +#endif /* LDBL_MANT_DIG == 53 */ + +#if LDBL_MANT_DIG == 24 +/* +; Convert IEEE single precision to e type +; float d; +; unsigned short x[N+2]; +; dtox( &d, x ); +*/ +void e24toe( short unsigned int *pe, short unsigned int *y, LDPARMS *ldp ) +{ +register unsigned short r; +register unsigned short *p, *e; +unsigned short yy[NI]; +int denorm, k; + +e = pe; +denorm = 0; /* flag if denormalized number */ +ecleaz(yy); +#ifdef IBMPC +e += 1; +#endif +#ifdef DEC +e += 1; +#endif +r = *e; +yy[0] = 0; +if( r & 0x8000 ) + yy[0] = 0xffff; +yy[M] = (r & 0x7f) | 0200; +r &= ~0x807f; /* strip sign and 7 significand bits */ +#ifdef INFINITY +if( r == 0x7f80 ) + { +#ifdef NANS +#ifdef MIEEE + if( ((pe[0] & 0x7f) != 0) || (pe[1] != 0) ) + { + enan( y, NBITS ); + return; + } +#else /* !MIEEE */ + if( ((pe[1] & 0x7f) != 0) || (pe[0] != 0) ) + { + enan( y, NBITS ); + return; + } +#endif /* !MIEEE */ +#endif /* NANS */ + eclear( y ); + einfin( y, ldp ); + if( yy[0] ) + eneg(y); + return; + } +#endif +r >>= 7; +/* If zero exponent, then the significand is denormalized. + * So, take back the understood high significand bit. */ +if( r == 0 ) + { + denorm = 1; + yy[M] &= ~0200; + } +r += EXONE - 0177; +yy[E] = r; +p = &yy[M+1]; +#ifdef IBMPC +*p++ = *(--e); +#endif +#ifdef DEC +*p++ = *(--e); +#endif +#ifdef MIEEE +++e; +*p++ = *e++; +#endif +(void )eshift( yy, -8 ); +if( denorm ) + { /* if zero exponent, then normalize the significand */ + if( (k = enormlz(yy)) > NBITS ) + ecleazs(yy); + else + yy[E] -= (unsigned short )(k-1); + } +emovo( yy, y, ldp ); +} + +static void toe24(short unsigned int *x, short unsigned int *y) +{ +unsigned short i; +unsigned short *p; + +#ifdef NANS +if( eiisnan(x) ) + { + enan( y, 24 ); + return; + } +#endif +p = &x[0]; +#ifdef IBMPC +y += 1; +#endif +#ifdef DEC +y += 1; +#endif +*y = 0; /* output high order */ +if( *p++ ) + *y = 0x8000; /* output sign bit */ + +i = *p++; +if( i >= 255 ) + { /* Saturate at largest number less than infinity. */ +#ifdef INFINITY + *y |= (unsigned short )0x7f80; +#ifdef IBMPC + *(--y) = 0; +#endif +#ifdef DEC + *(--y) = 0; +#endif +#ifdef MIEEE + ++y; + *y = 0; +#endif +#else /* !INFINITY */ + *y |= (unsigned short )0x7f7f; +#ifdef IBMPC + *(--y) = 0xffff; +#endif +#ifdef DEC + *(--y) = 0xffff; +#endif +#ifdef MIEEE + ++y; + *y = 0xffff; +#endif +#endif /* !INFINITY */ + return; + } +if( i == 0 ) + { + (void )eshift( x, 7 ); + } +else + { + i <<= 7; + (void )eshift( x, 8 ); + } +i |= *p++ & (unsigned short )0x7f; /* *p = xi[M] */ +*y |= i; /* high order output already has sign bit set */ +#ifdef IBMPC +*(--y) = *p; +#endif +#ifdef DEC +*(--y) = *p; +#endif +#ifdef MIEEE +++y; +*y = *p; +#endif +} +#endif /* LDBL_MANT_DIG == 24 */ + +/* Compare two e type numbers. + * + * unsigned short a[NE], b[NE]; + * ecmp( a, b ); + * + * returns +1 if a > b + * 0 if a == b + * -1 if a < b + * -2 if either a or b is a NaN. + */ +static int ecmp(short unsigned int *a, short unsigned int *b) +{ +unsigned short ai[NI], bi[NI]; +register unsigned short *p, *q; +register int i; +int msign; + +#ifdef NANS +if (eisnan (a) || eisnan (b)) + return( -2 ); +#endif +emovi( a, ai ); +p = ai; +emovi( b, bi ); +q = bi; + +if( *p != *q ) + { /* the signs are different */ +/* -0 equals + 0 */ + for( i=1; i 0 ); + +return(0); /* equality */ + + + +diff: + +if( *(--p) > *(--q) ) + return( msign ); /* p is bigger */ +else + return( -msign ); /* p is littler */ +} + + +/* +; Shift significand +; +; Shifts significand area up or down by the number of bits +; given by the variable sc. +*/ +static int eshift(short unsigned int *x, int sc) +{ +unsigned short lost; +unsigned short *p; + +if( sc == 0 ) + return( 0 ); + +lost = 0; +p = x + NI-1; + +if( sc < 0 ) + { + sc = -sc; + while( sc >= 16 ) + { + lost |= *p; /* remember lost bits */ + eshdn6(x); + sc -= 16; + } + + while( sc >= 8 ) + { + lost |= *p & 0xff; + eshdn8(x); + sc -= 8; + } + + while( sc > 0 ) + { + lost |= *p & 1; + eshdn1(x); + sc -= 1; + } + } +else + { + while( sc >= 16 ) + { + eshup6(x); + sc -= 16; + } + + while( sc >= 8 ) + { + eshup8(x); + sc -= 8; + } + + while( sc > 0 ) + { + eshup1(x); + sc -= 1; + } + } +if( lost ) + lost = 1; +return( (int )lost ); +} + + + +/* +; normalize +; +; Shift normalizes the significand area pointed to by argument +; shift count (up = positive) is returned. +*/ +static int enormlz(short unsigned int *x) +{ +register unsigned short *p; +int sc; + +sc = 0; +p = &x[M]; +if( *p != 0 ) + goto normdn; +++p; +if( *p & 0x8000 ) + return( 0 ); /* already normalized */ +while( *p == 0 ) + { + eshup6(x); + sc += 16; +/* With guard word, there are NBITS+16 bits available. + * return true if all are zero. + */ + if( sc > NBITS ) + return( sc ); + } +/* see if high byte is zero */ +while( (*p & 0xff00) == 0 ) + { + eshup8(x); + sc += 8; + } +/* now shift 1 bit at a time */ +while( (*p & 0x8000) == 0) + { + eshup1(x); + sc += 1; + if( sc > (NBITS+16) ) + { + mtherr( "enormlz", UNDERFLOW ); + return( sc ); + } + } +return( sc ); + +/* Normalize by shifting down out of the high guard word + of the significand */ +normdn: + +if( *p & 0xff00 ) + { + eshdn8(x); + sc -= 8; + } +while( *p != 0 ) + { + eshdn1(x); + sc -= 1; + + if( sc < -NBITS ) + { + mtherr( "enormlz", OVERFLOW ); + return( sc ); + } + } +return( sc ); +} + + + + +/* Convert e type number to decimal format ASCII string. + * The constants are for 64 bit precision. + */ + +#define NTEN 12 +#define MAXP 4096 + +#if NE == 10 +static unsigned short etens[NTEN + 1][NE] = +{ + {0x6576, 0x4a92, 0x804a, 0x153f, + 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ + {0x6a32, 0xce52, 0x329a, 0x28ce, + 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ + {0x526c, 0x50ce, 0xf18b, 0x3d28, + 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, + {0x9c66, 0x58f8, 0xbc50, 0x5c54, + 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, + {0x851e, 0xeab7, 0x98fe, 0x901b, + 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, + {0x0235, 0x0137, 0x36b1, 0x336c, + 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, + {0x50f8, 0x25fb, 0xc76b, 0x6b71, + 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, + {0x0000, 0x0000, 0x0000, 0x0000, + 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, + {0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ +}; + +static unsigned short emtens[NTEN + 1][NE] = +{ + {0x2030, 0xcffc, 0xa1c3, 0x8123, + 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ + {0x8264, 0xd2cb, 0xf2ea, 0x12d4, + 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ + {0xf53f, 0xf698, 0x6bd3, 0x0158, + 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, + {0xe731, 0x04d4, 0xe3f2, 0xd332, + 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, + {0xa23e, 0x5308, 0xfefb, 0x1155, + 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, + {0xe26d, 0xdbde, 0xd05d, 0xb3f6, + 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, + {0x2a20, 0x6224, 0x47b3, 0x98d7, + 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, + {0x0b5b, 0x4af2, 0xa581, 0x18ed, + 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, + {0xbf71, 0xa9b3, 0x7989, 0xbe68, + 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, + {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, + 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, + {0xc155, 0xa4a8, 0x404e, 0x6113, + 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, + {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, + 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, + {0xcccd, 0xcccc, 0xcccc, 0xcccc, + 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ +}; +#else +static unsigned short etens[NTEN+1][NE] = { +{0xc94c,0x979a,0x8a20,0x5202,0xc460,0x7525,},/* 10**4096 */ +{0xa74d,0x5de4,0xc53d,0x3b5d,0x9e8b,0x5a92,},/* 10**2048 */ +{0x650d,0x0c17,0x8175,0x7586,0xc976,0x4d48,}, +{0xcc65,0x91c6,0xa60e,0xa0ae,0xe319,0x46a3,}, +{0xddbc,0xde8d,0x9df9,0xebfb,0xaa7e,0x4351,}, +{0xc66f,0x8cdf,0x80e9,0x47c9,0x93ba,0x41a8,}, +{0x3cbf,0xa6d5,0xffcf,0x1f49,0xc278,0x40d3,}, +{0xf020,0xb59d,0x2b70,0xada8,0x9dc5,0x4069,}, +{0x0000,0x0000,0x0400,0xc9bf,0x8e1b,0x4034,}, +{0x0000,0x0000,0x0000,0x2000,0xbebc,0x4019,}, +{0x0000,0x0000,0x0000,0x0000,0x9c40,0x400c,}, +{0x0000,0x0000,0x0000,0x0000,0xc800,0x4005,}, +{0x0000,0x0000,0x0000,0x0000,0xa000,0x4002,}, /* 10**1 */ +}; + +static unsigned short emtens[NTEN+1][NE] = { +{0x2de4,0x9fde,0xd2ce,0x04c8,0xa6dd,0x0ad8,}, /* 10**-4096 */ +{0x4925,0x2de4,0x3436,0x534f,0xceae,0x256b,}, /* 10**-2048 */ +{0x87a6,0xc0bd,0xda57,0x82a5,0xa2a6,0x32b5,}, +{0x7133,0xd21c,0xdb23,0xee32,0x9049,0x395a,}, +{0xfa91,0x1939,0x637a,0x4325,0xc031,0x3cac,}, +{0xac7d,0xe4a0,0x64bc,0x467c,0xddd0,0x3e55,}, +{0x3f24,0xe9a5,0xa539,0xea27,0xa87f,0x3f2a,}, +{0x67de,0x94ba,0x4539,0x1ead,0xcfb1,0x3f94,}, +{0x4c2f,0xe15b,0xc44d,0x94be,0xe695,0x3fc9,}, +{0xfdc2,0xcefc,0x8461,0x7711,0xabcc,0x3fe4,}, +{0xd3c3,0x652b,0xe219,0x1758,0xd1b7,0x3ff1,}, +{0x3d71,0xd70a,0x70a3,0x0a3d,0xa3d7,0x3ff8,}, +{0xcccd,0xcccc,0xcccc,0xcccc,0xcccc,0x3ffb,}, /* 10**-1 */ +}; +#endif + + + +/* ASCII string outputs for unix */ + + +#if 0 +void _IO_ldtostr(x, string, ndigs, flags, fmt) +long double *x; +char *string; +int ndigs; +int flags; +char fmt; +{ +unsigned short w[NI]; +char *t, *u; +LDPARMS rnd; +LDPARMS *ldp = &rnd; + +rnd.rlast = -1; +rnd.rndprc = NBITS; + +if (sizeof(long double) == 16) + e113toe( (unsigned short *)x, w, ldp ); +else + e64toe( (unsigned short *)x, w, ldp ); + +etoasc( w, string, ndigs, -1, ldp ); +if( ndigs == 0 && flags == 0 ) + { + /* Delete the decimal point unless alternate format. */ + t = string; + while( *t != '.' ) + ++t; + u = t + 1; + while( *t != '\0' ) + *t++ = *u++; + } +if (*string == ' ') + { + t = string; + u = t + 1; + while( *t != '\0' ) + *t++ = *u++; + } +if (fmt == 'E') + { + t = string; + while( *t != 'e' ) + ++t; + *t = 'E'; + } +} + +#endif + +/* This routine will not return more than NDEC+1 digits. */ + +char * +_ldtoa_r (struct _reent *ptr, long double d, int mode, int ndigits, int *decpt, + int *sign, char **rve) +{ +unsigned short e[NI]; +char *s, *p; +int k; +LDPARMS rnd; +LDPARMS *ldp = &rnd; +char *outstr; + +rnd.rlast = -1; +rnd.rndprc = NBITS; + +/* reentrancy addition to use mprec storage pool */ +if (ptr->_result) + { + ptr->_result->_k = ptr->_result_k; + ptr->_result->_maxwds = 1 << ptr->_result_k; + Bfree (ptr, ptr->_result); + ptr->_result = 0; + } + +#if LDBL_MANT_DIG == 24 +e24toe( (unsigned short *)&d, e, ldp ); +#elif LDBL_MANT_DIG == 53 +e53toe( (unsigned short *)&d, e, ldp ); +#elif LDBL_MANT_DIG == 64 +e64toe( (unsigned short *)&d, e, ldp ); +#else +e113toe( (unsigned short *)&d, e, ldp ); +#endif + +if( eisneg(e) ) + *sign = 1; +else + *sign = 0; +/* Mode 3 is "f" format. */ +if( mode != 3 ) + ndigits -= 1; +/* Mode 0 is for %.999 format, which is supposed to give a + minimum length string that will convert back to the same binary value. + For now, just ask for 20 digits which is enough but sometimes too many. */ +if( mode == 0 ) + ndigits = 20; +/* This sanity limit must agree with the corresponding one in etoasc, to + keep straight the returned value of outexpon. */ +if( ndigits > NDEC ) + ndigits = NDEC; + +/* reentrancy addition to use mprec storage pool */ +ptr->_result = Balloc (ptr, 3); +ptr->_result_k = 3; +outstr = (char *)ptr->_result; + +etoasc( e, outstr, ndigits, mode, ldp ); +s = outstr; +if( eisinf(e) || eisnan(e) ) + { + *decpt = 9999; + goto stripspaces; + } +*decpt = ldp->outexpon + 1; + +/* Transform the string returned by etoasc into what the caller wants. */ + +/* Look for decimal point and delete it from the string. */ +s = outstr; +while( *s != '\0' ) + { + if( *s == '.' ) + goto yesdecpt; + ++s; + } +goto nodecpt; + +yesdecpt: + +/* Delete the decimal point. */ +while( *s != '\0' ) + { + *s = *(s+1); + ++s; + } + +nodecpt: + +/* Back up over the exponent field. */ +while( *s != 'E' && s > outstr) + --s; +*s = '\0'; + +stripspaces: + +/* Strip leading spaces and sign. */ +p = outstr; +while( *p == ' ' || *p == '-') + ++p; + +/* Find new end of string. */ +s = outstr; +while( (*s++ = *p++) != '\0' ) + ; +--s; + +/* Strip trailing zeros. */ +if( mode == 2 ) + k = 1; +else if( ndigits > ldp->outexpon ) + k = ndigits; +else + k = ldp->outexpon; + +while( *(s-1) == '0' && ((s - outstr) > k)) + *(--s) = '\0'; + +/* In f format, flush small off-scale values to zero. + Rounding has been taken care of by etoasc. */ +if( mode == 3 && ((ndigits + ldp->outexpon) < 0)) + { + s = outstr; + *s = '\0'; + *decpt = 0; + } + +if( rve ) + *rve = s; +return outstr; +} + +static void etoasc(short unsigned int *x, char *string, int ndigits, int outformat, LDPARMS *ldp) +{ +long digit; +unsigned short y[NI], t[NI], u[NI], w[NI]; +unsigned short *p, *r, *ten; +unsigned short sign; +int i, j, k, expon, rndsav, ndigs; +char *s, *ss; +unsigned short m; +unsigned short *equot = ldp->equot; + +ndigs = ndigits; +rndsav = ldp->rndprc; +#ifdef NANS +if( eisnan(x) ) + { + sprintf( string, " NaN " ); + expon = 9999; + goto bxit; + } +#endif +ldp->rndprc = NBITS; /* set to full precision */ +emov( x, y ); /* retain external format */ +if( y[NE-1] & 0x8000 ) + { + sign = 0xffff; + y[NE-1] &= 0x7fff; + } +else + { + sign = 0; + } +expon = 0; +ten = &etens[NTEN][0]; +emov( eone, t ); +/* Test for zero exponent */ +if( y[NE-1] == 0 ) + { + for( k=0; k>= 1; + } +while( m != 0 ); + +/* Rescale from integer significand */ + u[NE-1] += y[NE-1] - (unsigned int )(EXONE + NBITS - 1); + emov( u, y ); +/* Find power of 10 */ + emov( eone, t ); + m = MAXP; + p = &etens[0][0]; + while( ecmp( ten, u ) <= 0 ) + { + if( ecmp( p, u ) <= 0 ) + { + ediv( p, u, u, ldp ); + emul( p, t, t, ldp ); + expon += (int )m; + } + m >>= 1; + if( m == 0 ) + break; + p += NE; + } + } +else + { /* Number is less than 1.0 */ +/* Pad significand with trailing decimal zeros. */ + if( y[NE-1] == 0 ) + { + while( (y[NE-2] & 0x8000) == 0 ) + { + emul( ten, y, y, ldp ); + expon -= 1; + } + } + else + { + emovi( y, w ); + for( i=0; i 0 ) + { + if( ecmp( p, w ) >= 0 ) + { + emul( r, w, w, ldp ); + emul( r, t, t, ldp ); + expon += k; + } + k /= 2; + if( k == 0 ) + break; + p += NE; + r += NE; + } + ediv( t, eone, t, ldp ); + } +isone: +/* Find the first (leading) digit. */ +emovi( t, w ); +emovz( w, t ); +emovi( y, w ); +emovz( w, y ); +eiremain( t, y, ldp ); +digit = equot[NI-1]; +while( (digit == 0) && (ecmp(y,ezero) != 0) ) + { + eshup1( y ); + emovz( y, u ); + eshup1( u ); + eshup1( u ); + eaddm( u, y ); + eiremain( t, y, ldp ); + digit = equot[NI-1]; + expon -= 1; + } +s = string; +if( sign ) + *s++ = '-'; +else + *s++ = ' '; +/* Examine number of digits requested by caller. */ +if( outformat == 3 ) + ndigs += expon; +/* +else if( ndigs < 0 ) + ndigs = 0; +*/ +if( ndigs > NDEC ) + ndigs = NDEC; +if( digit == 10 ) + { + *s++ = '1'; + *s++ = '.'; + if( ndigs > 0 ) + { + *s++ = '0'; + ndigs -= 1; + } + expon += 1; + if( ndigs < 0 ) + { + ss = s; + goto doexp; + } + } +else + { + *s++ = (char )digit + '0'; + *s++ = '.'; + } +/* Generate digits after the decimal point. */ +for( k=0; k<=ndigs; k++ ) + { +/* multiply current number by 10, without normalizing */ + eshup1( y ); + emovz( y, u ); + eshup1( u ); + eshup1( u ); + eaddm( u, y ); + eiremain( t, y, ldp ); + *s++ = (char )equot[NI-1] + '0'; + } +digit = equot[NI-1]; +--s; +ss = s; +/* round off the ASCII string */ +if( digit > 4 ) + { +/* Test for critical rounding case in ASCII output. */ + if( digit == 5 ) + { + emovo( y, t, ldp ); + if( ecmp(t,ezero) != 0 ) + goto roun; /* round to nearest */ + if( (*(s-1) & 1) == 0 ) + goto doexp; /* round to even */ + } +/* Round up and propagate carry-outs */ +roun: + --s; + k = *s & 0x7f; +/* Carry out to most significant digit? */ + if( ndigs < 0 ) + { + /* This will print like "1E-6". */ + *s = '1'; + expon += 1; + goto doexp; + } + else if( k == '.' ) + { + --s; + k = *s; + k += 1; + *s = (char )k; +/* Most significant digit carries to 10? */ + if( k > '9' ) + { + expon += 1; + *s = '1'; + } + goto doexp; + } +/* Round up and carry out from less significant digits */ + k += 1; + *s = (char )k; + if( k > '9' ) + { + *s = '0'; + goto roun; + } + } +doexp: +#ifdef __GO32__ +if( expon >= 0 ) + sprintf( ss, "e+%02d", expon ); +else + sprintf( ss, "e-%02d", -expon ); +#else + sprintf( ss, "E%d", expon ); +#endif +bxit: +ldp->rndprc = rndsav; +ldp->outexpon = expon; +} + + + + +/* +; ASCTOQ +; ASCTOQ.MAC LATEST REV: 11 JAN 84 +; SLM, 3 JAN 78 +; +; Convert ASCII string to quadruple precision floating point +; +; Numeric input is free field decimal number +; with max of 15 digits with or without +; decimal point entered as ASCII from teletype. +; Entering E after the number followed by a second +; number causes the second number to be interpreted +; as a power of 10 to be multiplied by the first number +; (i.e., "scientific" notation). +; +; Usage: +; asctoq( string, q ); +*/ + +long double _strtold (char *s, char **se) +{ + long double x; + LDPARMS rnd; + LDPARMS *ldp = &rnd; + int lenldstr; + + rnd.rlast = -1; + rnd.rndprc = NBITS; + + lenldstr = asctoeg( s, (unsigned short *)&x, LDBL_MANT_DIG, ldp ); + if (se) + *se = s + lenldstr; + return x; +} + +#define REASONABLE_LEN 200 + +static int +asctoeg(char *ss, short unsigned int *y, int oprec, LDPARMS *ldp) +{ +unsigned short yy[NI], xt[NI], tt[NI]; +int esign, decflg, sgnflg, nexp, exp, prec, lost; +int k, trail, c, rndsav; +long lexp; +unsigned short nsign, *p; +char *sp, *s, *lstr; +int lenldstr; +int mflag = 0; +char tmpstr[REASONABLE_LEN]; + +/* Copy the input string. */ +c = strlen (ss) + 2; +if (c <= REASONABLE_LEN) + lstr = tmpstr; +else + { + lstr = (char *) calloc (c, 1); + mflag = 1; + } +s = ss; +lenldstr = 0; +while( *s == ' ' ) /* skip leading spaces */ + { + ++s; + ++lenldstr; + } +sp = lstr; +for( k=0; krndprc; +ldp->rndprc = NBITS; /* Set to full precision */ +lost = 0; +nsign = 0; +decflg = 0; +sgnflg = 0; +nexp = 0; +exp = 0; +prec = 0; +ecleaz( yy ); +trail = 0; + +nxtcom: +k = *s - '0'; +if( (k >= 0) && (k <= 9) ) + { +/* Ignore leading zeros */ + if( (prec == 0) && (decflg == 0) && (k == 0) ) + goto donchr; +/* Identify and strip trailing zeros after the decimal point. */ + if( (trail == 0) && (decflg != 0) ) + { + sp = s; + while( (*sp >= '0') && (*sp <= '9') ) + ++sp; +/* Check for syntax error */ + c = *sp & 0x7f; + if( (c != 'e') && (c != 'E') && (c != '\0') + && (c != '\n') && (c != '\r') && (c != ' ') + && (c != ',') ) + goto error; + --sp; + while( *sp == '0' ) + *sp-- = 'z'; + trail = 1; + if( *s == 'z' ) + goto donchr; + } +/* If enough digits were given to more than fill up the yy register, + * continuing until overflow into the high guard word yy[2] + * guarantees that there will be a roundoff bit at the top + * of the low guard word after normalization. + */ + if( yy[2] == 0 ) + { + if( decflg ) + nexp += 1; /* count digits after decimal point */ + eshup1( yy ); /* multiply current number by 10 */ + emovz( yy, xt ); + eshup1( xt ); + eshup1( xt ); + eaddm( xt, yy ); + ecleaz( xt ); + xt[NI-2] = (unsigned short )k; + eaddm( xt, yy ); + } + else + { + /* Mark any lost non-zero digit. */ + lost |= k; + /* Count lost digits before the decimal point. */ + if (decflg == 0) + nexp -= 1; + } + prec += 1; + goto donchr; + } + +switch( *s ) + { + case 'z': + break; + case 'E': + case 'e': + goto expnt; + case '.': /* decimal point */ + if( decflg ) + goto error; + ++decflg; + break; + case '-': + nsign = 0xffff; + if( sgnflg ) + goto error; + ++sgnflg; + break; + case '+': + if( sgnflg ) + goto error; + ++sgnflg; + break; + case ',': + case ' ': + case '\0': + case '\n': + case '\r': + goto daldone; + case 'i': + case 'I': + goto infinite; + default: + error: +#ifdef NANS + enan( yy, NI*16 ); +#else + mtherr( "asctoe", DOMAIN ); + ecleaz(yy); +#endif + goto aexit; + } +donchr: +++s; +goto nxtcom; + +/* Exponent interpretation */ +expnt: + +esign = 1; +exp = 0; +++s; +/* check for + or - */ +if( *s == '-' ) + { + esign = -1; + ++s; + } +if( *s == '+' ) + ++s; +while( (*s >= '0') && (*s <= '9') ) + { + exp *= 10; + exp += *s++ - '0'; + if (exp > 4977) + { + if (esign < 0) + goto zero; + else + goto infinite; + } + } +if( esign < 0 ) + exp = -exp; +if( exp > 4932 ) + { +infinite: + ecleaz(yy); + yy[E] = 0x7fff; /* infinity */ + goto aexit; + } +if( exp < -4977 ) + { +zero: + ecleaz(yy); + goto aexit; + } + +daldone: +nexp = exp - nexp; +/* Pad trailing zeros to minimize power of 10, per IEEE spec. */ +while( (nexp > 0) && (yy[2] == 0) ) + { + emovz( yy, xt ); + eshup1( xt ); + eshup1( xt ); + eaddm( yy, xt ); + eshup1( xt ); + if( xt[2] != 0 ) + break; + nexp -= 1; + emovz( xt, yy ); + } +if( (k = enormlz(yy)) > NBITS ) + { + ecleaz(yy); + goto aexit; + } +lexp = (EXONE - 1 + NBITS) - k; +emdnorm( yy, lost, 0, lexp, 64, ldp ); +/* convert to external format */ + + +/* Multiply by 10**nexp. If precision is 64 bits, + * the maximum relative error incurred in forming 10**n + * for 0 <= n <= 324 is 8.2e-20, at 10**180. + * For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. + * For 0 >= n >= -999, it is -1.55e-19 at 10**-435. + */ +lexp = yy[E]; +if( nexp == 0 ) + { + k = 0; + goto expdon; + } +esign = 1; +if( nexp < 0 ) + { + nexp = -nexp; + esign = -1; + if( nexp > 4096 ) + { /* Punt. Can't handle this without 2 divides. */ + emovi( etens[0], tt ); + lexp -= tt[E]; + k = edivm( tt, yy, ldp ); + lexp += EXONE; + nexp -= 4096; + } + } +p = &etens[NTEN][0]; +emov( eone, xt ); +exp = 1; +do + { + if( exp & nexp ) + emul( p, xt, xt, ldp ); + p -= NE; + exp = exp + exp; + } +while( exp <= MAXP ); + +emovi( xt, tt ); +if( esign < 0 ) + { + lexp -= tt[E]; + k = edivm( tt, yy, ldp ); + lexp += EXONE; + } +else + { + lexp += tt[E]; + k = emulm( tt, yy, ldp ); + lexp -= EXONE - 1; + } + +expdon: + +/* Round and convert directly to the destination type */ +if( oprec == 53 ) + lexp -= EXONE - 0x3ff; +else if( oprec == 24 ) + lexp -= EXONE - 0177; +#ifdef DEC +else if( oprec == 56 ) + lexp -= EXONE - 0201; +#endif +ldp->rndprc = oprec; +emdnorm( yy, k, 0, lexp, 64, ldp ); + +aexit: + +ldp->rndprc = rndsav; +yy[0] = nsign; +switch( oprec ) + { +#ifdef DEC + case 56: + todec( yy, y ); /* see etodec.c */ + break; +#endif +#if LDBL_MANT_DIG == 53 + case 53: + toe53( yy, y ); + break; +#elif LDBL_MANT_DIG == 24 + case 24: + toe24( yy, y ); + break; +#elif LDBL_MANT_DIG == 64 + case 64: + toe64( yy, y ); + break; +#elif LDBL_MANT_DIG == 113 + case 113: + toe113( yy, y ); + break; +#else + case NBITS: + emovo( yy, y, ldp ); + break; +#endif + } +lenldstr += s - lstr; +if (mflag) + free (lstr); +return lenldstr; +} + + + +/* y = largest integer not greater than x + * (truncated toward minus infinity) + * + * unsigned short x[NE], y[NE] + * LDPARMS *ldp + * + * efloor( x, y, ldp ); + */ +static unsigned short bmask[] = { +0xffff, +0xfffe, +0xfffc, +0xfff8, +0xfff0, +0xffe0, +0xffc0, +0xff80, +0xff00, +0xfe00, +0xfc00, +0xf800, +0xf000, +0xe000, +0xc000, +0x8000, +0x0000, +}; + +static void efloor(short unsigned int *x, short unsigned int *y, LDPARMS *ldp) +{ +register unsigned short *p; +int e, expon, i; +unsigned short f[NE]; + +emov( x, f ); /* leave in external format */ +expon = (int )f[NE-1]; +e = (expon & 0x7fff) - (EXONE - 1); +if( e <= 0 ) + { + eclear(y); + goto isitneg; + } +/* number of bits to clear out */ +e = NBITS - e; +emov( f, y ); +if( e <= 0 ) + return; + +p = &y[0]; +while( e >= 16 ) + { + *p++ = 0; + e -= 16; + } +/* clear the remaining bits */ +*p &= bmask[e]; +/* truncate negatives toward minus infinity */ +isitneg: + +if( (unsigned short )expon & (unsigned short )0x8000 ) + { + for( i=0; iequot; + +ld = den[E]; +ld -= enormlz( den ); +ln = num[E]; +ln -= enormlz( num ); +ecleaz( equot ); +while( ln >= ld ) + { + if( ecmpm(den,num) <= 0 ) + { + esubm(den, num); + j = 1; + } + else + { + j = 0; + } + eshup1(equot); + equot[NI-1] |= j; + eshup1(num); + ln -= 1; + } +emdnorm( num, 0, 0, ln, 0, ldp ); +} + +/* NaN bit patterns + */ +#ifdef MIEEE +static unsigned short nan113[8] = { + 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; +static unsigned short nan64[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; +static unsigned short nan53[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; +static unsigned short nan24[2] = {0x7fff, 0xffff}; +#else /* !MIEEE */ +static unsigned short nan113[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0x7fff}; +static unsigned short nan64[6] = {0, 0, 0, 0, 0xc000, 0x7fff}; +static unsigned short nan53[4] = {0, 0, 0, 0x7ff8}; +static unsigned short nan24[2] = {0, 0x7fc0}; +#endif /* !MIEEE */ + + +static void enan (short unsigned int *nan, int size) +{ +int i, n; +unsigned short *p; + +switch( size ) + { +#ifndef DEC + case 113: + n = 8; + p = nan113; + break; + + case 64: + n = 6; + p = nan64; + break; + + case 53: + n = 4; + p = nan53; + break; + + case 24: + n = 2; + p = nan24; + break; + + case NBITS: + for( i=0; i