* libc/include/machine/ieeefp.h: Comment about new configuration
macros _FLT_LARGEST_EXPONENT_IS_NORMAL and _FLT_NO_DENORMALS. * libm/common/fdlib.h: Define new macros for testing floats. * libm/common/sf_*: Use them. * libm/math/ef_*: Likewise. * libm/math/sf_*: Likewise.
This commit is contained in:
@ -18,14 +18,116 @@
|
||||
/* CYGNUS LOCAL: Default to XOPEN_MODE. */
|
||||
#define _XOPEN_MODE
|
||||
|
||||
/* Most routines need to check whether a float is finite, infinite, or not a
|
||||
number, and many need to know whether the result of an operation will
|
||||
overflow. These conditions depend on whether the largest exponent is
|
||||
used for NaNs & infinities, or whether it's used for finite numbers. The
|
||||
macros below wrap up that kind of information:
|
||||
|
||||
FLT_UWORD_IS_FINITE(X)
|
||||
True if a positive float with bitmask X is finite.
|
||||
|
||||
FLT_UWORD_IS_NAN(X)
|
||||
True if a positive float with bitmask X is not a number.
|
||||
|
||||
FLT_UWORD_IS_INFINITE(X)
|
||||
True if a positive float with bitmask X is +infinity.
|
||||
|
||||
FLT_UWORD_MAX
|
||||
The bitmask of FLT_MAX.
|
||||
|
||||
FLT_UWORD_HALF_MAX
|
||||
The bitmask of FLT_MAX/2.
|
||||
|
||||
FLT_UWORD_EXP_MAX
|
||||
The bitmask of the largest finite exponent (129 if the largest
|
||||
exponent is used for finite numbers, 128 otherwise).
|
||||
|
||||
FLT_UWORD_LOG_MAX
|
||||
The bitmask of log(FLT_MAX), rounded down. This value is the largest
|
||||
input that can be passed to exp() without producing overflow.
|
||||
|
||||
FLT_UWORD_LOG_2MAX
|
||||
The bitmask of log(2*FLT_MAX), rounded down. This value is the
|
||||
largest input than can be passed to cosh() without producing
|
||||
overflow.
|
||||
|
||||
FLT_LARGEST_EXP
|
||||
The largest biased exponent that can be used for finite numbers
|
||||
(255 if the largest exponent is used for finite numbers, 254
|
||||
otherwise) */
|
||||
|
||||
#ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
|
||||
#define FLT_UWORD_IS_FINITE(x) 1
|
||||
#define FLT_UWORD_IS_NAN(x) 0
|
||||
#define FLT_UWORD_IS_INFINITE(x) 0
|
||||
#define FLT_UWORD_MAX 0x7fffffff
|
||||
#define FLT_UWORD_EXP_MAX 0x43010000
|
||||
#define FLT_UWORD_LOG_MAX 0x42b2d4fc
|
||||
#define FLT_UWORD_LOG_2MAX 0x42b437e0
|
||||
#define HUGE ((float)0X1.FFFFFEP128)
|
||||
#else
|
||||
#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
|
||||
#define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
|
||||
#define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
|
||||
#define FLT_UWORD_MAX 0x7f7fffff
|
||||
#define FLT_UWORD_EXP_MAX 0x43000000
|
||||
#define FLT_UWORD_LOG_MAX 0x42b17217
|
||||
#define FLT_UWORD_LOG_2MAX 0x42b2d4fc
|
||||
#define HUGE ((float)3.40282346638528860e+38)
|
||||
#endif
|
||||
#define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1<<23))
|
||||
#define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
|
||||
|
||||
/* Many routines check for zero and subnormal numbers. Such things depend
|
||||
on whether the target supports denormals or not:
|
||||
|
||||
FLT_UWORD_IS_ZERO(X)
|
||||
True if a positive float with bitmask X is +0. Without denormals,
|
||||
any float with a zero exponent is a +0 representation. With
|
||||
denormals, the only +0 representation is a 0 bitmask.
|
||||
|
||||
FLT_UWORD_IS_SUBNORMAL(X)
|
||||
True if a non-zero positive float with bitmask X is subnormal.
|
||||
(Routines should check for zeros first.)
|
||||
|
||||
FLT_UWORD_MIN
|
||||
The bitmask of the smallest float above +0. Call this number
|
||||
REAL_FLT_MIN...
|
||||
|
||||
FLT_UWORD_EXP_MIN
|
||||
The bitmask of the float representation of REAL_FLT_MIN's exponent.
|
||||
|
||||
FLT_UWORD_LOG_MIN
|
||||
The bitmask of |log(REAL_FLT_MIN)|, rounding down.
|
||||
|
||||
FLT_SMALLEST_EXP
|
||||
REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
|
||||
-22 if they are).
|
||||
*/
|
||||
|
||||
#ifdef _FLT_NO_DENORMALS
|
||||
#define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
|
||||
#define FLT_UWORD_IS_SUBNORMAL(x) 0
|
||||
#define FLT_UWORD_MIN 0x00800000
|
||||
#define FLT_UWORD_EXP_MIN 0x42fc0000
|
||||
#define FLT_UWORD_LOG_MIN 0x42aeac50
|
||||
#define FLT_SMALLEST_EXP 1
|
||||
#else
|
||||
#define FLT_UWORD_IS_ZERO(x) ((x)==0)
|
||||
#define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
|
||||
#define FLT_UWORD_MIN 0x00000001
|
||||
#define FLT_UWORD_EXP_MIN 0x43160000
|
||||
#define FLT_UWORD_LOG_MIN 0x42cff1b5
|
||||
#define FLT_SMALLEST_EXP -22
|
||||
#endif
|
||||
|
||||
#ifdef __STDC__
|
||||
#define __P(p) p
|
||||
#else
|
||||
#define __P(p) ()
|
||||
#endif
|
||||
|
||||
#define HUGE ((float)3.40282346638528860e+38)
|
||||
|
||||
/*
|
||||
* set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
|
||||
* (one may replace the following line by "#include <values.h>")
|
||||
|
@ -53,13 +53,14 @@ G = 3.5714286566e-01; /* 5/14 = 0x3eb6db6e */
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
sign=hx&0x80000000; /* sign= sign(x) */
|
||||
hx ^=sign;
|
||||
if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
|
||||
if(hx==0)
|
||||
return(x); /* cbrt(0) is itself */
|
||||
if(!FLT_UWORD_IS_FINITE(hx))
|
||||
return(x+x); /* cbrt(NaN,INF) is itself */
|
||||
if(FLT_UWORD_IS_ZERO(hx))
|
||||
return(x); /* cbrt(0) is itself */
|
||||
|
||||
SET_FLOAT_WORD(x,hx); /* x <- |x| */
|
||||
/* rough cbrt to 5 bits */
|
||||
if(hx<0x00800000) /* subnormal number */
|
||||
if(FLT_UWORD_IS_SUBNORMAL(hx)) /* subnormal number */
|
||||
{SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
|
||||
t*=x; GET_FLOAT_WORD(high,t); SET_FLOAT_WORD(t,high/3+B2);
|
||||
}
|
||||
|
@ -27,7 +27,6 @@ static float
|
||||
one = 1.0,
|
||||
huge = 1.0e+30,
|
||||
tiny = 1.0e-30,
|
||||
o_threshold = 8.8721679688e+01,/* 0x42b17180 */
|
||||
ln2_hi = 6.9313812256e-01,/* 0x3f317180 */
|
||||
ln2_lo = 9.0580006145e-06,/* 0x3717f7d1 */
|
||||
invln2 = 1.4426950216e+00,/* 0x3fb8aa3b */
|
||||
@ -56,13 +55,12 @@ Q5 = -2.0109921195e-07; /* 0xb457edbb */
|
||||
|
||||
/* filter out huge and non-finite argument */
|
||||
if(hx >= 0x4195b844) { /* if |x|>=27*ln2 */
|
||||
if(hx >= 0x42b17218) { /* if |x|>=88.721... */
|
||||
if(hx>0x7f800000)
|
||||
return x+x; /* NaN */
|
||||
if(hx==0x7f800000)
|
||||
return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
||||
if(x > o_threshold) return huge*huge; /* overflow */
|
||||
}
|
||||
if(FLT_UWORD_IS_NAN(hx))
|
||||
return x+x;
|
||||
if(FLT_UWORD_IS_INFINITE(hx))
|
||||
return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
||||
if(xsb == 0 && hx > FLT_UWORD_LOG_MAX) /* if x>=o_threshold */
|
||||
return huge*huge; /* overflow */
|
||||
if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */
|
||||
if(x+tiny<(float)0.0) /* raise inexact */
|
||||
return tiny-one; /* return -1 */
|
||||
|
@ -29,7 +29,8 @@
|
||||
{
|
||||
__int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
return (int)((__uint32_t)((ix&0x7fffffff)-0x7f800000)>>31);
|
||||
ix &= 0x7fffffff;
|
||||
return (FLT_UWORD_IS_FINITE(ix));
|
||||
}
|
||||
|
||||
#ifdef _DOUBLE_IS_32BITS
|
||||
|
@ -27,15 +27,14 @@
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
hx &= 0x7fffffff;
|
||||
if(hx<0x00800000) {
|
||||
if(hx==0)
|
||||
return - INT_MAX; /* ilogb(0) = 0x80000001 */
|
||||
else /* subnormal x */
|
||||
for (ix = -126,hx<<=8; hx>0; hx<<=1) ix -=1;
|
||||
if(FLT_UWORD_IS_ZERO(hx))
|
||||
return - INT_MAX; /* ilogb(0) = 0x80000001 */
|
||||
if(FLT_UWORD_IS_SUBNORMAL(hx)) {
|
||||
for (ix = -126,hx<<=8; hx>0; hx<<=1) ix -=1;
|
||||
return ix;
|
||||
}
|
||||
else if (hx<0x7f800000) return (hx>>23)-127;
|
||||
else return INT_MAX;
|
||||
else if (!FLT_UWORD_IS_FINITE(hx)) return INT_MAX;
|
||||
else return (hx>>23)-127;
|
||||
}
|
||||
|
||||
#ifdef _DOUBLE_IS_32BITS
|
||||
|
@ -51,6 +51,7 @@ static float zero = 0.0;
|
||||
ax = hx&0x7fffffff;
|
||||
|
||||
k = 1;
|
||||
if (!FLT_UWORD_IS_FINITE(hx)) return x+x;
|
||||
if (hx < 0x3ed413d7) { /* x < 0.41422 */
|
||||
if(ax>=0x3f800000) { /* x <= -1.0 */
|
||||
if(x==(float)-1.0) return -two25/zero; /* log1p(-1)=+inf */
|
||||
@ -65,8 +66,7 @@ static float zero = 0.0;
|
||||
}
|
||||
if(hx>0||hx<=((__int32_t)0xbe95f61f)) {
|
||||
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
|
||||
}
|
||||
if (hx >= 0x7f800000) return x+x;
|
||||
}
|
||||
if(k!=0) {
|
||||
if(hx<0x5a000000) {
|
||||
u = (float)1.0+x;
|
||||
|
@ -25,8 +25,8 @@
|
||||
__int32_t ix;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
ix &= 0x7fffffff; /* high |x| */
|
||||
if(ix==0) return (float)-1.0/fabsf(x);
|
||||
if(ix>=0x7f800000) return x*x;
|
||||
if(FLT_UWORD_IS_ZERO(ix)) return (float)-1.0/fabsf(x);
|
||||
if(!FLT_UWORD_IS_FINITE(ix)) return x*x;
|
||||
if((ix>>=23)==0) /* IEEE 754 logb */
|
||||
return -126.0;
|
||||
else
|
||||
|
@ -21,3 +21,4 @@
|
||||
}
|
||||
|
||||
#endif /* defined(_DOUBLE_IS_32BITS) */
|
||||
|
||||
|
@ -29,15 +29,15 @@
|
||||
ix = hx&0x7fffffff; /* |x| */
|
||||
iy = hy&0x7fffffff; /* |y| */
|
||||
|
||||
if((ix>0x7f800000) || /* x is nan */
|
||||
(iy>0x7f800000)) /* y is nan */
|
||||
return x+y;
|
||||
if(FLT_UWORD_IS_NAN(ix) ||
|
||||
FLT_UWORD_IS_NAN(iy))
|
||||
return x+y;
|
||||
if(x==y) return x; /* x=y, return x */
|
||||
if(ix==0) { /* x == 0 */
|
||||
SET_FLOAT_WORD(x,(hy&0x80000000)|1);/* return +-minsubnormal */
|
||||
if(FLT_UWORD_IS_ZERO(ix)) { /* x == 0 */
|
||||
SET_FLOAT_WORD(x,(hy&0x80000000)|FLT_UWORD_MIN);
|
||||
y = x*x;
|
||||
if(y==x) return y; else return x; /* raise underflow flag */
|
||||
}
|
||||
}
|
||||
if(hx>=0) { /* x > 0 */
|
||||
if(hx>hy) { /* x > y, x -= ulp */
|
||||
hx -= 1;
|
||||
@ -52,7 +52,7 @@
|
||||
}
|
||||
}
|
||||
hy = hx&0x7f800000;
|
||||
if(hy>=0x7f800000) return x+x; /* overflow */
|
||||
if(hy>FLT_UWORD_MAX) return x+x; /* overflow */
|
||||
if(hy<0x00800000) { /* underflow */
|
||||
y = x*x;
|
||||
if(y!=x) { /* raise underflow flag */
|
||||
|
@ -33,15 +33,17 @@ TWO23[2]={
|
||||
#endif
|
||||
{
|
||||
__int32_t i0,j0,sx;
|
||||
__uint32_t i,i1;
|
||||
__uint32_t i,i1,ix;
|
||||
float t;
|
||||
volatile float w;
|
||||
GET_FLOAT_WORD(i0,x);
|
||||
sx = (i0>>31)&1;
|
||||
j0 = ((i0>>23)&0xff)-0x7f;
|
||||
ix = (i0&0x7fffffff);
|
||||
j0 = (ix>>23)-0x7f;
|
||||
if(j0<23) {
|
||||
if(j0<0) {
|
||||
if((i0&0x7fffffff)==0) return x;
|
||||
if(FLT_UWORD_IS_ZERO(ix))
|
||||
return x;
|
||||
if(j0<0) {
|
||||
i1 = (i0&0x07fffff);
|
||||
i0 &= 0xfff00000;
|
||||
i0 |= ((i1|-i1)>>9)&0x400000;
|
||||
@ -58,8 +60,9 @@ TWO23[2]={
|
||||
if((i0&i)!=0) i0 = (i0&(~i))|((0x100000)>>j0);
|
||||
}
|
||||
} else {
|
||||
if(j0==0x80) return x+x; /* inf or NaN */
|
||||
else return x; /* x is integral */
|
||||
if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* inf or NaN */
|
||||
else
|
||||
return x; /* x is integral */
|
||||
}
|
||||
SET_FLOAT_WORD(x,i0);
|
||||
w = TWO23[sx]+x;
|
||||
|
@ -15,6 +15,7 @@
|
||||
|
||||
#include "fdlibm.h"
|
||||
#include <limits.h>
|
||||
#include <float.h>
|
||||
|
||||
#if INT_MAX > 50000
|
||||
#define OVERFLOW_INT 50000
|
||||
@ -40,25 +41,30 @@ tiny = 1.0e-30;
|
||||
#endif
|
||||
{
|
||||
__int32_t k,ix;
|
||||
__uint32_t hx;
|
||||
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
k = (ix&0x7f800000)>>23; /* extract exponent */
|
||||
if (k==0) { /* 0 or subnormal x */
|
||||
if ((ix&0x7fffffff)==0) return x; /* +-0 */
|
||||
hx = ix&0x7fffffff;
|
||||
k = hx>>23; /* extract exponent */
|
||||
if (FLT_UWORD_IS_ZERO(hx))
|
||||
return x;
|
||||
if (!FLT_UWORD_IS_FINITE(hx))
|
||||
return x+x; /* NaN or Inf */
|
||||
if (FLT_UWORD_IS_SUBNORMAL(hx)) {
|
||||
x *= two25;
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
k = ((ix&0x7f800000)>>23) - 25;
|
||||
if (n< -50000) return tiny*x; /*underflow*/
|
||||
}
|
||||
if (k==0xff) return x+x; /* NaN or Inf */
|
||||
}
|
||||
k = k+n;
|
||||
if (k > 0xfe) return huge*copysignf(huge,x); /* overflow */
|
||||
if (k > FLT_LARGEST_EXP) return huge*copysignf(huge,x); /* overflow */
|
||||
if (k > 0) /* normal result */
|
||||
{SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;}
|
||||
if (k <= -25) {
|
||||
if (k < FLT_SMALLEST_EXP) {
|
||||
if (n > OVERFLOW_INT) /* in case integer overflow in n+k */
|
||||
return huge*copysignf(huge,x); /*overflow*/
|
||||
else return tiny*copysignf(tiny,x); /*underflow*/
|
||||
}
|
||||
}
|
||||
k += 25; /* subnormal result */
|
||||
SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
|
||||
return x*twom25;
|
||||
|
Reference in New Issue
Block a user