jehanne/sys/include/libsec.h
Giacomo Tesio 38aca7a581 first usable version of kernel and commands
After an year of hard work, this is a first "usable" version of Jehanne.
2016-11-26 03:49:29 +01:00

576 lines
15 KiB
C

#pragma lib "libsec.a"
#pragma src "/sys/src/lib/sec"
#ifndef _MPINT
typedef struct mpint mpint;
#endif
/*
* AES definitions
*/
enum
{
AESbsize= 16,
AESmaxkey= 32,
AESmaxrounds= 14
};
typedef struct AESstate AESstate;
struct AESstate
{
uint32_t setup;
int rounds;
int keybytes;
uint8_t key[AESmaxkey]; /* unexpanded key */
uint32_t ekey[4*(AESmaxrounds + 1)]; /* encryption key */
uint32_t dkey[4*(AESmaxrounds + 1)]; /* decryption key */
uint8_t ivec[AESbsize]; /* initialization vector */
uint8_t mackey[3 * AESbsize]; /* 3 XCBC mac 96 keys */
};
/* block ciphers */
void aes_encrypt(uint32_t rk[], int Nr, uint8_t pt[16], uint8_t ct[16]);
void aes_decrypt(uint32_t rk[], int Nr, uint8_t ct[16], uint8_t pt[16]);
void setupAESstate(AESstate *s, uint8_t key[], int keybytes, uint8_t *ivec);
void aesCBCencrypt(uint8_t *p, int len, AESstate *s);
void aesCBCdecrypt(uint8_t *p, int len, AESstate *s);
void setupAESXCBCstate(AESstate *s);
uint8_t* aesXCBCmac(uint8_t *p, int len, AESstate *s);
typedef struct AESGCMstate AESGCMstate;
struct AESGCMstate
{
AESstate;
uint32_t H[4];
uint32_t M[16][256][4];
};
void setupAESGCMstate(AESGCMstate *s, uint8_t *key, int keylen, uint8_t *iv, int ivlen);
void aesgcm_setiv(AESGCMstate *s, uint8_t *iv, int ivlen);
void aesgcm_encrypt(uint8_t *dat, uint32_t ndat, uint8_t *aad, uint32_t naad, uint8_t tag[16], AESGCMstate *s);
int aesgcm_decrypt(uint8_t *dat, uint32_t ndat, uint8_t *aad, uint32_t naad, uint8_t tag[16], AESGCMstate *s);
/*
* Blowfish Definitions
*/
enum
{
BFbsize = 8,
BFrounds= 16
};
/* 16-round Blowfish */
typedef struct BFstate BFstate;
struct BFstate
{
uint32_t setup;
uint8_t key[56];
uint8_t ivec[8];
uint32_t pbox[BFrounds+2];
uint32_t sbox[1024];
};
void setupBFstate(BFstate *s, uint8_t key[], int keybytes, uint8_t *ivec);
void bfCBCencrypt(uint8_t*, int, BFstate*);
void bfCBCdecrypt(uint8_t*, int, BFstate*);
void bfECBencrypt(uint8_t*, int, BFstate*);
void bfECBdecrypt(uint8_t*, int, BFstate*);
/*
* Chacha definitions
*/
enum
{
ChachaBsize= 64,
ChachaKeylen= 256/8,
ChachaIVlen= 96/8,
};
typedef struct Chachastate Chachastate;
struct Chachastate
{
union{
uint32_t input[16];
struct {
uint32_t constant[4];
uint32_t key[8];
uint32_t counter;
uint32_t iv[3];
};
};
int rounds;
int ivwords;
};
void setupChachastate(Chachastate*, uint8_t*, uint32_t, uint8_t*, uint32_t, int);
void chacha_setiv(Chachastate *, uint8_t*);
void chacha_setblock(Chachastate*, uint64_t);
void chacha_encrypt(uint8_t*, uint32_t, Chachastate*);
void chacha_encrypt2(uint8_t*, uint8_t*, uint32_t, Chachastate*);
void ccpoly_encrypt(uint8_t *dat, uint32_t ndat, uint8_t *aad, uint32_t naad, uint8_t tag[16], Chachastate *cs);
int ccpoly_decrypt(uint8_t *dat, uint32_t ndat, uint8_t *aad, uint32_t naad, uint8_t tag[16], Chachastate *cs);
/*
* Salsa definitions
*/
enum
{
SalsaBsize= 64,
SalsaKeylen= 256/8,
SalsaIVlen= 64/8,
XSalsaIVlen= 192/8,
};
typedef struct Salsastate Salsastate;
struct Salsastate
{
uint32_t input[16];
uint32_t key[8];
int rounds;
int ivwords;
};
void setupSalsastate(Salsastate*, uint8_t*, uint32_t, uint8_t*, uint32_t, int);
void salsa_setiv(Salsastate*, uint8_t*);
void salsa_setblock(Salsastate*, uint64_t);
void salsa_encrypt(uint8_t*, uint32_t, Salsastate*);
void salsa_encrypt2(uint8_t*, uint8_t*, uint32_t, Salsastate*);
void hsalsa(uint8_t h[32], uint8_t *key, uint32_t keylen, uint8_t nonce[16], int rounds);
/*
* DES definitions
*/
enum
{
DESbsize= 8
};
/* single des */
typedef struct DESstate DESstate;
struct DESstate
{
uint32_t setup;
uint8_t key[8]; /* unexpanded key */
uint32_t expanded[32]; /* expanded key */
uint8_t ivec[8]; /* initialization vector */
};
void setupDESstate(DESstate *s, uint8_t key[8], uint8_t *ivec);
void des_key_setup(uint8_t[8], uint32_t[32]);
void block_cipher(uint32_t*, uint8_t*, int);
void desCBCencrypt(uint8_t*, int, DESstate*);
void desCBCdecrypt(uint8_t*, int, DESstate*);
void desECBencrypt(uint8_t*, int, DESstate*);
void desECBdecrypt(uint8_t*, int, DESstate*);
/* for backward compatibility with 7-byte DES key format */
void des56to64(uint8_t *k56, uint8_t *k64);
void des64to56(uint8_t *k64, uint8_t *k56);
void key_setup(uint8_t[7], uint32_t[32]);
/* triple des encrypt/decrypt orderings */
enum {
DES3E= 0,
DES3D= 1,
DES3EEE= 0,
DES3EDE= 2,
DES3DED= 5,
DES3DDD= 7
};
typedef struct DES3state DES3state;
struct DES3state
{
uint32_t setup;
uint8_t key[3][8]; /* unexpanded key */
uint32_t expanded[3][32]; /* expanded key */
uint8_t ivec[8]; /* initialization vector */
};
void setupDES3state(DES3state *s, uint8_t key[3][8], uint8_t *ivec);
void triple_block_cipher(uint32_t keys[3][32], uint8_t*, int);
void des3CBCencrypt(uint8_t*, int, DES3state*);
void des3CBCdecrypt(uint8_t*, int, DES3state*);
void des3ECBencrypt(uint8_t*, int, DES3state*);
void des3ECBdecrypt(uint8_t*, int, DES3state*);
/*
* digests
*/
enum
{
SHA1dlen= 20, /* SHA digest length */
SHA2_224dlen= 28, /* SHA-224 digest length */
SHA2_256dlen= 32, /* SHA-256 digest length */
SHA2_384dlen= 48, /* SHA-384 digest length */
SHA2_512dlen= 64, /* SHA-512 digest length */
MD4dlen= 16, /* MD4 digest length */
MD5dlen= 16, /* MD5 digest length */
Poly1305dlen= 16, /* Poly1305 digest length */
Hmacblksz = 64, /* in bytes; from rfc2104 */
};
typedef struct DigestState DigestState;
struct DigestState
{
uint64_t len;
union {
uint32_t state[16];
uint64_t bstate[8];
};
uint8_t buf[256];
int blen;
char malloced;
char seeded;
};
typedef struct DigestState SHAstate; /* obsolete name */
typedef struct DigestState SHA1state;
typedef struct DigestState SHA2_224state;
typedef struct DigestState SHA2_256state;
typedef struct DigestState SHA2_384state;
typedef struct DigestState SHA2_512state;
typedef struct DigestState MD5state;
typedef struct DigestState MD4state;
DigestState* md4(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* md5(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* sha1(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* sha2_224(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* sha2_256(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* sha2_384(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* sha2_512(uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* hmac_x(uint8_t *p, uint32_t len, uint8_t *key, uint32_t klen,
uint8_t *digest, DigestState *s,
DigestState*(*x)(uint8_t*, uint32_t, uint8_t*, DigestState*),
int xlen);
DigestState* hmac_md5(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* hmac_sha1(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* hmac_sha2_224(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* hmac_sha2_256(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* hmac_sha2_384(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
DigestState* hmac_sha2_512(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
char* md5pickle(MD5state*);
MD5state* md5unpickle(char*);
char* sha1pickle(SHA1state*);
SHA1state* sha1unpickle(char*);
DigestState* poly1305(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*);
/*
* random number generation
*/
void genrandom(uint8_t *buf, int nbytes);
void prng(uint8_t *buf, int nbytes);
uint32_t fastrand(void);
uint32_t nfastrand(uint32_t);
/*
* primes
*/
void genprime(mpint *p, int n, int accuracy); /* generate n-bit probable prime */
void gensafeprime(mpint *p, mpint *alpha, int n, int accuracy); /* prime & generator */
void genstrongprime(mpint *p, int n, int accuracy); /* generate n-bit strong prime */
void DSAprimes(mpint *q, mpint *p, uint8_t seed[SHA1dlen]);
int probably_prime(mpint *n, int nrep); /* miller-rabin test */
int smallprimetest(mpint *p); /* returns -1 if not prime, 0 otherwise */
/*
* rc4
*/
typedef struct RC4state RC4state;
struct RC4state
{
uint8_t state[256];
uint8_t x;
uint8_t y;
};
void setupRC4state(RC4state*, uint8_t*, int);
void rc4(RC4state*, uint8_t*, int);
void rc4skip(RC4state*, int);
void rc4back(RC4state*, int);
/*
* rsa
*/
typedef struct RSApub RSApub;
typedef struct RSApriv RSApriv;
typedef struct PEMChain PEMChain;
/* public/encryption key */
struct RSApub
{
mpint *n; /* modulus */
mpint *ek; /* exp (encryption key) */
};
/* private/decryption key */
struct RSApriv
{
RSApub pub;
mpint *dk; /* exp (decryption key) */
/* precomputed values to help with chinese remainder theorem calc */
mpint *p;
mpint *q;
mpint *kp; /* dk mod p-1 */
mpint *kq; /* dk mod q-1 */
mpint *c2; /* (inv p) mod q */
};
struct PEMChain{
PEMChain*next;
uint8_t *pem;
int pemlen;
};
RSApriv* rsagen(int nlen, int elen, int rounds);
RSApriv* rsafill(mpint *n, mpint *e, mpint *d, mpint *p, mpint *q);
mpint* rsaencrypt(RSApub *k, mpint *in, mpint *out);
mpint* rsadecrypt(RSApriv *k, mpint *in, mpint *out);
RSApub* rsapuballoc(void);
void rsapubfree(RSApub*);
RSApriv* rsaprivalloc(void);
void rsaprivfree(RSApriv*);
RSApub* rsaprivtopub(RSApriv*);
RSApub* X509toRSApub(uint8_t*, int, char*, int);
RSApriv* asn1toRSApriv(uint8_t*, int);
void asn1dump(uint8_t *der, int len);
uint8_t* decodePEM(char *s, char *type, int *len, char **new_s);
PEMChain* decodepemchain(char *s, char *type);
uint8_t* X509rsagen(RSApriv *priv, char *subj, uint32_t valid[2], int *certlen);
uint8_t* X509rsareq(RSApriv *priv, char *subj, int *certlen);
char* X509rsaverifydigest(uint8_t *sig, int siglen, uint8_t *edigest, int edigestlen, RSApub *pk);
char* X509rsaverify(uint8_t *cert, int ncert, RSApub *pk);
void X509dump(uint8_t *cert, int ncert);
/*
* elgamal
*/
typedef struct EGpub EGpub;
typedef struct EGpriv EGpriv;
typedef struct EGsig EGsig;
/* public/encryption key */
struct EGpub
{
mpint *p; /* modulus */
mpint *alpha; /* generator */
mpint *key; /* (encryption key) alpha**secret mod p */
};
/* private/decryption key */
struct EGpriv
{
EGpub pub;
mpint *secret; /* (decryption key) */
};
/* signature */
struct EGsig
{
mpint *r, *s;
};
EGpriv* eggen(int nlen, int rounds);
mpint* egencrypt(EGpub *k, mpint *in, mpint *out); /* deprecated */
mpint* egdecrypt(EGpriv *k, mpint *in, mpint *out);
EGsig* egsign(EGpriv *k, mpint *m);
int egverify(EGpub *k, EGsig *sig, mpint *m);
EGpub* egpuballoc(void);
void egpubfree(EGpub*);
EGpriv* egprivalloc(void);
void egprivfree(EGpriv*);
EGsig* egsigalloc(void);
void egsigfree(EGsig*);
EGpub* egprivtopub(EGpriv*);
/*
* dsa
*/
typedef struct DSApub DSApub;
typedef struct DSApriv DSApriv;
typedef struct DSAsig DSAsig;
/* public/encryption key */
struct DSApub
{
mpint *p; /* modulus */
mpint *q; /* group order, q divides p-1 */
mpint *alpha; /* group generator */
mpint *key; /* (encryption key) alpha**secret mod p */
};
/* private/decryption key */
struct DSApriv
{
DSApub pub;
mpint *secret; /* (decryption key) */
};
/* signature */
struct DSAsig
{
mpint *r, *s;
};
DSApriv* dsagen(DSApub *opub); /* opub not checked for consistency! */
DSAsig* dsasign(DSApriv *k, mpint *m);
int dsaverify(DSApub *k, DSAsig *sig, mpint *m);
DSApub* dsapuballoc(void);
void dsapubfree(DSApub*);
DSApriv* dsaprivalloc(void);
void dsaprivfree(DSApriv*);
DSAsig* dsasigalloc(void);
void dsasigfree(DSAsig*);
DSApub* dsaprivtopub(DSApriv*);
DSApriv* asn1toDSApriv(uint8_t*, int);
/*
* TLS
*/
typedef struct Thumbprint{
struct Thumbprint *next;
uint8_t sha1[SHA1dlen];
} Thumbprint;
typedef struct TLSconn{
char dir[40]; /* connection directory */
uint8_t *cert; /* certificate (local on input, remote on output) */
uint8_t *sessionID;
uint8_t *psk;
int certlen;
int sessionIDlen;
int psklen;
int (*trace)(char*fmt, ...);
PEMChain*chain; /* optional extra certificate evidence for servers to present */
char *sessionType;
uint8_t *sessionKey;
int sessionKeylen;
char *sessionConst;
char *serverName;
char *pskID;
} TLSconn;
/* tlshand.c */
int tlsClient(int fd, TLSconn *c);
int tlsServer(int fd, TLSconn *c);
/* thumb.c */
Thumbprint* initThumbprints(char *ok, char *crl);
void freeThumbprints(Thumbprint *ok);
int okThumbprint(uint8_t *sha1, Thumbprint *ok);
/* readcert.c */
uint8_t *readcert(char *filename, int *pcertlen);
PEMChain*readcertchain(char *filename);
/* aes_xts.c */
int aes_xts_encrypt(uint32_t tweak[], uint32_t ecb[], int64_t sectorNumber, uint8_t *input, uint8_t *output, uint32_t len) ;
int aes_xts_decrypt(uint32_t tweak[], uint32_t ecb[], int64_t sectorNumber, uint8_t *input, uint8_t *output, uint32_t len);
typedef struct ECpoint{
int inf;
mpint *x;
mpint *y;
mpint *z; /* nil when using affine coordinates */
} ECpoint;
typedef ECpoint ECpub;
typedef struct ECpriv{
ECpoint;
mpint *d;
} ECpriv;
typedef struct ECdomain{
mpint *p;
mpint *a;
mpint *b;
ECpoint G;
mpint *n;
mpint *h;
} ECdomain;
void ecdominit(ECdomain *, void (*init)(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h));
void ecdomfree(ECdomain *);
void ecassign(ECdomain *, ECpoint *old, ECpoint *new);
void ecadd(ECdomain *, ECpoint *a, ECpoint *b, ECpoint *s);
void ecmul(ECdomain *, ECpoint *a, mpint *k, ECpoint *s);
ECpoint* strtoec(ECdomain *, char *, char **, ECpoint *);
ECpriv* ecgen(ECdomain *, ECpriv*);
int ecverify(ECdomain *, ECpoint *);
int ecpubverify(ECdomain *, ECpub *);
void ecdsasign(ECdomain *, ECpriv *, uint8_t *, int, mpint *, mpint *);
int ecdsaverify(ECdomain *, ECpub *, uint8_t *, int, mpint *, mpint *);
void base58enc(uint8_t *, char *, int);
int base58dec(char *, uint8_t *, int);
ECpub* ecdecodepub(ECdomain *dom, uint8_t *, int);
int ecencodepub(ECdomain *dom, ECpub *, uint8_t *, int);
void ecpubfree(ECpub *);
ECpub* X509toECpub(uint8_t *cert, int ncert, ECdomain *dom);
char* X509ecdsaverifydigest(uint8_t *sig, int siglen, uint8_t *edigest, int edigestlen, ECdomain *dom, ECpub *pub);
char* X509ecdsaverify(uint8_t *sig, int siglen, ECdomain *dom, ECpub *pub);
/* curves */
void secp256r1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h);
void secp256k1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h);
DigestState* ripemd160(uint8_t *, uint32_t, uint8_t *, DigestState *);
/*
* Diffie-Hellman key exchange
*/
typedef struct DHstate DHstate;
struct DHstate
{
mpint *g; /* base g */
mpint *p; /* large prime */
mpint *q; /* subgroup prime */
mpint *x; /* random secret */
mpint *y; /* public key y = g**x % p */
};
/* generate new public key: y = g**x % p */
mpint* dh_new(DHstate *dh, mpint *p, mpint *q, mpint *g);
/* calculate shared key: k = y**x % p */
mpint* dh_finish(DHstate *dh, mpint *y);
/* Curve25519 elliptic curve, public key function */
void curve25519(uint8_t mypublic[32], uint8_t secret[32], uint8_t basepoint[32]);
/* Curve25519 diffie hellman */
void curve25519_dh_new(uint8_t x[32], uint8_t y[32]);
void curve25519_dh_finish(uint8_t x[32], uint8_t y[32], uint8_t z[32]);
/* password-based key derivation function 2 (rfc2898) */
void pbkdf2_x(uint8_t *p, uint32_t plen, uint8_t *s, uint32_t slen, uint32_t rounds, uint8_t *d, uint32_t dlen,
DigestState* (*x)(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*), int xlen);
/* hmac-based key derivation function (rfc5869) */
void hkdf_x(uint8_t *salt, uint32_t nsalt, uint8_t *info, uint32_t ninfo, uint8_t *key, uint32_t nkey, uint8_t *d, uint32_t dlen,
DigestState* (*x)(uint8_t*, uint32_t, uint8_t*, uint32_t, uint8_t*, DigestState*), int xlen);
/* timing safe memcmp() */
int tsmemcmp(void*, void*, uint32_t);