/* Copyright (C) Charles Forsyth * See /doc/license/NOTICE.Plan9-9k.txt for details about the licensing. */ /* Portions of this file are Copyright (C) 2015-2018 Giacomo Tesio * See /doc/license/gpl-2.0.txt for details about the licensing. */ /* Portions of this file are Copyright (C) 9front's team. * See /doc/license/9front-mit for details about the licensing. * See http://git.9front.org/plan9front/plan9front/HEAD/info.html for a list of authors. */ #include "u.h" #include "../port/lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "io.h" #include "ureg.h" #include "../port/error.h" typedef struct IOMap IOMap; struct IOMap { IOMap *next; int reserved; char tag[13]; uint32_t start; uint32_t end; }; static struct { Lock; IOMap *m; IOMap *free; IOMap maps[32]; /* some initial free maps */ QLock ql; /* lock for reading map */ } iomap; enum { Qdir = 0, Qioalloc = 1, Qiob, Qiow, Qiol, Qmsr, Qbase, Qmax = 32, }; enum { CR4Osfxsr = 1 << 9, CR4Oxmmex = 1 << 10, }; enum { /* cpuid standard function codes */ Highstdfunc = 0, /* also returns vendor string */ Procsig, Proctlbcache, Procserial, }; typedef long Rdwrfn(Chan*, void*, long, int64_t); static Rdwrfn *readfn[Qmax]; static Rdwrfn *writefn[Qmax]; static Dirtab archdir[Qmax] = { ".", { Qdir, 0, QTDIR }, 0, 0555, "ioalloc", { Qioalloc, 0 }, 0, 0444, "iob", { Qiob, 0 }, 0, 0660, "iow", { Qiow, 0 }, 0, 0660, "iol", { Qiol, 0 }, 0, 0660, "msr", { Qmsr, 0 }, 0, 0660, }; Lock archwlock; /* the lock is only for changing archdir */ int narchdir = Qbase; int (*_pcmspecial)(char*, ISAConf*); void (*_pcmspecialclose)(int); /* * Add a file to the #P listing. Once added, you can't delete it. * You can't add a file with the same name as one already there, * and you get a pointer to the Dirtab entry so you can do things * like change the Qid version. Changing the Qid path is disallowed. */ Dirtab* addarchfile(char *name, int perm, Rdwrfn *rdfn, Rdwrfn *wrfn) { int i; Dirtab d; Dirtab *dp; memset(&d, 0, sizeof d); strcpy(d.name, name); d.perm = perm; lock(&archwlock); if(narchdir >= Qmax){ unlock(&archwlock); print("addarchfile: out of entries for %s\n", name); return nil; } for(i=0; inext){ m = *l; if (m->start < 0x400) continue; i = m->start - port; if(i > size) break; if(align > 0) port = ((port+align-1)/align)*align; else port = m->end; } if(*l == nil){ unlock(&iomap); return -1; } m = iomap.free; if(m == nil){ print("ioalloc: out of maps"); unlock(&iomap); return port; } iomap.free = m->next; m->next = *l; m->start = port; m->end = port + size; m->reserved = 1; strncpy(m->tag, tag, sizeof(m->tag)-1); m->tag[sizeof(m->tag)-1] = 0; *l = m; archdir[0].qid.vers++; unlock(&iomap); return m->start; } /* * alloc some io port space and remember who it was * alloced to. if port < 0, find a free region. */ int ioalloc(int port, int size, int align, char *tag) { IOMap *m, **l; int i; lock(&iomap); if(port < 0){ /* find a free port above 0x400 and below 0x1000 */ port = 0x400; for(l = &iomap.m; (m = *l) != nil; l = &m->next){ if (m->start < 0x400) continue; i = m->start - port; if(i > size) break; if(align > 0) port = ((port+align-1)/align)*align; else port = m->end; } if(m == nil){ unlock(&iomap); return -1; } } else { /* Only 64KB I/O space on the x86. */ if((port+size) > 0x10000){ unlock(&iomap); return -1; } /* see if the space clashes with previously allocated ports */ for(l = &iomap.m; (m = *l) != nil; l = &m->next){ if(m->end <= port) continue; if(m->reserved && m->start == port && m->end >= port + size) { m->reserved = 0; unlock(&iomap); return m->start; } if(m->start >= port+size) break; unlock(&iomap); return -1; } } m = iomap.free; if(m == nil){ print("ioalloc: out of maps"); unlock(&iomap); return port; } iomap.free = m->next; m->next = *l; m->start = port; m->end = port + size; strncpy(m->tag, tag, sizeof(m->tag)-1); m->tag[sizeof(m->tag)-1] = 0; *l = m; archdir[0].qid.vers++; unlock(&iomap); return m->start; } void iofree(int port) { IOMap *m, **l; lock(&iomap); for(l = &iomap.m; (m = *l) != nil; l = &m->next){ if(m->start == port){ *l = m->next; m->next = iomap.free; iomap.free = m; break; } if(m->start > port) break; } archdir[0].qid.vers++; unlock(&iomap); } int iounused(int start, int end) { IOMap *m; for(m = iomap.m; m != nil; m = m->next){ if(start >= m->start && start < m->end || start <= m->start && end > m->start) return 0; } return 1; } static void checkport(int start, int end) { /* standard vga regs are OK */ if(start >= 0x2b0 && end <= 0x2df+1) return; if(start >= 0x3c0 && end <= 0x3da+1) return; if(iounused(start, end)) return; error(Eperm); } static Chan* archattach(Chan *c, Chan *ac, char *spec, int flags) { return devattach('P', spec); } Walkqid* archwalk(Chan* c, Chan *nc, char** name, int nname) { return devwalk(c, nc, name, nname, archdir, narchdir, devgen); } static long archstat(Chan* c, uint8_t* dp, long n) { return devstat(c, dp, n, archdir, narchdir, devgen); } static Chan* archopen(Chan* c, unsigned long omode) { return devopen(c, omode, archdir, narchdir, devgen); } static void archclose(Chan* _) { } static long archread(Chan *c, void *a, long n, int64_t offset) { char buf[32], *p; int port, i; uint16_t *sp; uint32_t *lp; long *vp; IOMap *m; Rdwrfn *fn; switch((uint32_t)c->qid.path){ case Qdir: return devdirread(c, a, n, archdir, narchdir, devgen); case Qiob: port = offset; checkport(offset, offset+n); for(p = a; port < offset+n; port++) *p++ = inb(port); return n; case Qiow: if(n & 1) error(Ebadarg); checkport(offset, offset+n); sp = a; for(port = offset; port < offset+n; port += 2) *sp++ = ins(port); return n; case Qiol: if(n & 3) error(Ebadarg); checkport(offset, offset+n); lp = a; for(port = offset; port < offset+n; port += 4) *lp++ = inl(port); return n; case Qmsr: if(n & 7) error(Ebadarg); vp = a; for(port = offset; port < offset+n; port += 8) if(rdmsr(port, vp++) < 0) error(Ebadarg); return n; case Qioalloc: lock(&iomap); i = 0; for(m = iomap.m; m != nil; m = m->next){ i = snprint(buf, sizeof(buf), "%8lux %8lux %-12.12s\n", m->start, m->end-1, m->tag); offset -= i; if(offset < 0) break; } unlock(&iomap); if(offset >= 0) return 0; if(n > -offset) n = -offset; offset += i; memmove(a, buf+offset, n); return n; default: if(c->qid.path < narchdir && (fn = readfn[c->qid.path])) return fn(c, a, n, offset); error(Eperm); return 0; } } static long archwrite(Chan *c, void *a, long n, int64_t offset) { char *p; int port; uint16_t *sp; uint32_t *lp; long *vp; Rdwrfn *fn; switch((uint32_t)c->qid.path){ case Qiob: p = a; checkport(offset, offset+n); for(port = offset; port < offset+n; port++) outb(port, *p++); return n; case Qiow: if(n & 1) error(Ebadarg); checkport(offset, offset+n); sp = a; for(port = offset; port < offset+n; port += 2) outs(port, *sp++); return n; case Qiol: if(n & 3) error(Ebadarg); checkport(offset, offset+n); lp = a; for(port = offset; port < offset+n; port += 4) outl(port, *lp++); return n; case Qmsr: if(n & 7) error(Ebadarg); vp = a; for(port = offset; port < offset+n; port += 8) if(wrmsr(port, *vp++) < 0) error(Ebadarg); return n; default: if(c->qid.path < narchdir && (fn = writefn[c->qid.path]) != nil) return fn(c, a, n, offset); error(Eperm); break; } return 0; } Dev archdevtab = { 'P', "arch", devreset, devinit, devshutdown, archattach, archwalk, archstat, archopen, devcreate, archclose, archread, devbread, archwrite, devbwrite, devremove, devwstat, }; /* * the following is a generic version of the * architecture specific stuff */ static int unimplemented(int _) { return 0; } static void nop(void) { } void archreset(void) { // i8042reset(); /* * Often the BIOS hangs during restart if a conventional 8042 * warm-boot sequence is tried. The following is Intel specific and * seems to perform a cold-boot, but at least it comes back. * And sometimes there is no keyboard... * * The reset register (0xcf9) is usually in one of the bridge * chips. The actual location and sequence could be extracted from * ACPI but why bother, this is the end of the line anyway. */ print("Takes a licking and keeps on ticking...\n"); *(uint16_t*)KADDR(0x472) = 0x1234; /* BIOS warm-boot flag */ outb(0xcf9, 0x02); outb(0xcf9, 0x06); print("can't reset\n"); for(;;) idle(); } /* * On a uniprocessor, you'd think that coherence could be nop, * but it can't. We still need a barrier when using coherence() in * device drivers. * * On VMware, it's safe (and a huge win) to set this to nop. * Aux/vmware does this via the #P/archctl file. */ void (*coherence)(void) = nop; PCArch* arch; extern PCArch archacpi; extern PCArch archmp; static PCArch* knownarch[] = { &archacpi, &archmp, nil }; PCArch archgeneric = { .id= "generic", .ident= 0, .reset= archreset, .serialpower= unimplemented, .modempower= unimplemented, .intrinit= i8259init, .intrenable= i8259enable, .intrvecno= i8259vecno, .intrdisable= i8259disable, .intron= i8259on, .introff= i8259off, .clockenable= i8253enable, .fastclock= i8253read, .timerset= i8253timerset, }; typedef struct X86type X86type; struct X86type { int family; int model; int aalcycles; char* name; }; static X86type x86intel[] = { { 4, 0, 22, "486DX", }, /* known chips */ { 4, 1, 22, "486DX50", }, { 4, 2, 22, "486SX", }, { 4, 3, 22, "486DX2", }, { 4, 4, 22, "486SL", }, { 4, 5, 22, "486SX2", }, { 4, 7, 22, "DX2WB", }, /* P24D */ { 4, 8, 22, "DX4", }, /* P24C */ { 4, 9, 22, "DX4WB", }, /* P24CT */ { 5, 0, 23, "P5", }, { 5, 1, 23, "P5", }, { 5, 2, 23, "P54C", }, { 5, 3, 23, "P24T", }, { 5, 4, 23, "P55C MMX", }, { 5, 7, 23, "P54C VRT", }, { 6, 1, 16, "PentiumPro", },/* trial and error */ { 6, 3, 16, "PentiumII", }, { 6, 5, 16, "PentiumII/Xeon", }, { 6, 6, 16, "Celeron", }, { 6, 7, 16, "PentiumIII/Xeon", }, { 6, 8, 16, "PentiumIII/Xeon", }, { 6, 0xB, 16, "PentiumIII/Xeon", }, { 6, 0xF, 16, "Xeon5000-series", }, { 6, 0x16, 16, "Celeron", }, { 6, 0x17, 16, "Core 2/Xeon", }, { 6, 0x1A, 16, "Core i7/Xeon", }, { 6, 0x1C, 16, "Atom", }, { 6, 0x1D, 16, "Xeon MP", }, { 0xF, 1, 16, "P4", }, /* P4 */ { 0xF, 2, 16, "PentiumIV/Xeon", }, { 0xF, 6, 16, "PentiumIV/Xeon", }, { 3, -1, 32, "386", }, /* family defaults */ { 4, -1, 22, "486", }, { 5, -1, 23, "P5", }, { 6, -1, 16, "P6", }, { 0xF, -1, 16, "P4", }, /* P4 */ { -1, -1, 16, "unknown", }, /* total default */ }; /* * The AMD processors all implement the CPUID instruction. * The later ones also return the processor name via functions * 0x80000002, 0x80000003 and 0x80000004 in registers AX, BX, CX * and DX: * K5 "AMD-K5(tm) Processor" * K6 "AMD-K6tm w/ multimedia extensions" * K6 3D "AMD-K6(tm) 3D processor" * K6 3D+ ? */ static X86type x86amd[] = { { 5, 0, 23, "AMD-K5", }, /* guesswork */ { 5, 1, 23, "AMD-K5", }, /* guesswork */ { 5, 2, 23, "AMD-K5", }, /* guesswork */ { 5, 3, 23, "AMD-K5", }, /* guesswork */ { 5, 4, 23, "AMD Geode GX1", }, /* guesswork */ { 5, 5, 23, "AMD Geode GX2", }, /* guesswork */ { 5, 6, 11, "AMD-K6", }, /* trial and error */ { 5, 7, 11, "AMD-K6", }, /* trial and error */ { 5, 8, 11, "AMD-K6-2", }, /* trial and error */ { 5, 9, 11, "AMD-K6-III", },/* trial and error */ { 5, 0xa, 23, "AMD Geode LX", }, /* guesswork */ { 6, 1, 11, "AMD-Athlon", },/* trial and error */ { 6, 2, 11, "AMD-Athlon", },/* trial and error */ { 0x1F, 9, 11, "AMD-K10 Opteron G34", },/* guesswork */ { 4, -1, 22, "Am486", }, /* guesswork */ { 5, -1, 23, "AMD-K5/K6", }, /* guesswork */ { 6, -1, 11, "AMD-Athlon", },/* guesswork */ { 0xF, -1, 11, "AMD-K8", }, /* guesswork */ { 0x1F, -1, 11, "AMD-K10", }, /* guesswork */ { -1, -1, 11, "unknown", }, /* total default */ }; /* * WinChip 240MHz */ static X86type x86winchip[] = { {5, 4, 23, "Winchip",}, /* guesswork */ {6, 7, 23, "Via C3 Samuel 2 or Ezra",}, {6, 8, 23, "Via C3 Ezra-T",}, {6, 9, 23, "Via C3 Eden-N",}, { -1, -1, 23, "unknown", }, /* total default */ }; /* * SiS 55x */ static X86type x86sis[] = { {5, 0, 23, "SiS 55x",}, /* guesswork */ { -1, -1, 23, "unknown", }, /* total default */ }; static X86type *cputype; static void simplecycles(uint64_t*); void (*cycles)(uint64_t*) = simplecycles; static void _cycles(uint64_t*t) { *t = rdtsc(); } static void simplecycles(uint64_t*x) { *x = m->ticks; } void cpuidprint(void) { print("cpu%d: %dMHz %s %s (AX %8.8uX CX %8.8uX DX %8.8uX)\n", m->machno, m->cpumhz, m->cpuidid, m->cpuidtype, m->cpuidax, m->cpuidcx, m->cpuiddx); } /* * figure out: * - cpu type * - whether or not we have a TSC (cycle counter) * - whether or not it supports page size extensions * (if so turn it on) * - whether or not it supports machine check exceptions * (if so turn it on) * - whether or not it supports the page global flag * (if so turn it on) */ int cpuidentify(void) { char *p; int family, model, nomce; X86type *t, *tab; uintptr_t cr4; uint32_t regs[4]; long mca, mct; cpuid(Highstdfunc, regs); memmove(m->cpuidid, ®s[1], BY2WD); /* bx */ memmove(m->cpuidid+4, ®s[3], BY2WD); /* dx */ memmove(m->cpuidid+8, ®s[2], BY2WD); /* cx */ m->cpuidid[12] = '\0'; cpuid(Procsig, regs); m->cpuidax = regs[0]; m->cpuidcx = regs[2]; m->cpuiddx = regs[3]; if(strncmp(m->cpuidid, "AuthenticAMD", 12) == 0 || strncmp(m->cpuidid, "Geode by NSC", 12) == 0) tab = x86amd; else if(strncmp(m->cpuidid, "CentaurHauls", 12) == 0) tab = x86winchip; else if(strncmp(m->cpuidid, "SiS SiS SiS ", 12) == 0) tab = x86sis; else tab = x86intel; family = X86FAMILY(m->cpuidax); model = X86MODEL(m->cpuidax); for(t=tab; t->name; t++) if((t->family == family && t->model == model) || (t->family == family && t->model == -1) || (t->family == -1)) break; m->cpuidtype = t->name; /* * if there is one, set tsc to a known value */ if(m->cpuiddx & Tsc){ m->havetsc = 1; cycles = _cycles; if(m->cpuiddx & Cpumsr) wrmsr(0x10, 0); } /* * use i8253 to guess our cpu speed */ guesscpuhz(t->aalcycles); /* * If machine check exception, page size extensions or page global bit * are supported enable them in CR4 and clear any other set extensions. * If machine check was enabled clear out any lingering status. */ if(m->cpuiddx & (Pge|Mce|Pse)){ cr4 = cr4get(); if(m->cpuiddx & Pse) cr4 |= 0x10; /* page size extensions */ if(p = getconf("*nomce")) nomce = strtoul(p, 0, 0); else nomce = 0; if((m->cpuiddx & Mce) != 0 && !nomce){ if((m->cpuiddx & Mca) != 0){ long cap; int bank; cap = 0; rdmsr(0x179, &cap); if(cap & 0x100) wrmsr(0x17B, ~0ULL); /* enable all mca features */ bank = cap & 0xFF; if(bank > 64) bank = 64; /* init MCi .. MC1 (except MC0) */ while(--bank > 0){ wrmsr(0x400 + bank*4, ~0ULL); wrmsr(0x401 + bank*4, 0); } if(family != 6 || model >= 0x1A) wrmsr(0x400, ~0ULL); wrmsr(0x401, 0); } else if(family == 5){ rdmsr(0x00, &mca); rdmsr(0x01, &mct); } cr4 |= 0x40; /* machine check enable */ } /* * Detect whether the chip supports the global bit * in page directory and page table entries. When set * in a particular entry, it means ``don't bother removing * this from the TLB when CR3 changes.'' * * We flag all kernel pages with this bit. Doing so lessens the * overhead of switching processes on bare hardware, * even more so on VMware. See mmu.c:/^memglobal. * * For future reference, should we ever need to do a * full TLB flush, it can be accomplished by clearing * the PGE bit in CR4, writing to CR3, and then * restoring the PGE bit. */ if(m->cpuiddx & Pge){ cr4 |= 0x80; /* page global enable bit */ m->havepge = 1; } cr4put(cr4); if((m->cpuiddx & (Mca|Mce)) == Mce) rdmsr(0x01, &mct); } if(m->cpuiddx & Mtrr) mtrrsync(); if((m->cpuiddx & (Sse|Fxsr)) == (Sse|Fxsr)){ /* have sse fp? */ fpsave = fpssesave; fprestore = fpsserestore; cr4put(cr4get() | CR4Osfxsr|CR4Oxmmex); } else { panic("AMD64 without Sse and Fxsr"); } if(strcmp(m->cpuidid, "GenuineIntel") == 0 && (m->cpuidcx & Rdrnd) != 0) hwrandbuf = rdrandbuf; else hwrandbuf = nil; cputype = t; return t->family; } static long cputyperead(Chan* _, void *a, long n, int64_t offset) { char str[32]; uint32_t mhz; mhz = (m->cpuhz+999999)/1000000; snprint(str, sizeof(str), "%s %lud\n", cputype->name, mhz); return readstr(offset, a, n, str); } static long archctlread(Chan* _, void *a, long nn, int64_t offset) { int n; char *buf, *p, *ep; p = buf = smalloc(READSTR); ep = p + READSTR; p = seprint(p, ep, "cpu %s %lud%s\n", cputype->name, (uint32_t)(m->cpuhz+999999)/1000000, m->havepge ? " pge" : ""); p = seprint(p, ep, "pge %s\n", cr4get()&0x80 ? "on" : "off"); p = seprint(p, ep, "coherence "); if(coherence == mfence) p = seprint(p, ep, "mfence\n"); else if(coherence == nop) p = seprint(p, ep, "nop\n"); else p = seprint(p, ep, "0x%p\n", coherence); p = seprint(p, ep, "arch %s\n", arch->id); n = p - buf; n += mtrrprint(p, ep - p); buf[n] = '\0'; n = readstr(offset, a, nn, buf); free(buf); return n; } enum { CMpge, CMcoherence, CMcache, }; static Cmdtab archctlmsg[] = { CMpge, "pge", 2, CMcoherence, "coherence", 2, CMcache, "cache", 4, }; static long archctlwrite(Chan* _, void *a, long n, int64_t __) { uint64_t base, size; Cmdbuf *cb; Cmdtab *ct; char *ep; cb = parsecmd(a, n); if(waserror()){ free(cb); nexterror(); } ct = lookupcmd(cb, archctlmsg, nelem(archctlmsg)); switch(ct->index){ case CMpge: if(!m->havepge) error("processor does not support pge"); if(strcmp(cb->f[1], "on") == 0) cr4put(cr4get() | 0x80); else if(strcmp(cb->f[1], "off") == 0) cr4put(cr4get() & ~0x80); else cmderror(cb, "invalid pge ctl"); break; case CMcoherence: if(strcmp(cb->f[1], "mfence") == 0){ if((m->cpuiddx & Sse2) == 0) error("invalid coherence ctl on this cpu family"); coherence = mfence; }else if(strcmp(cb->f[1], "nop") == 0){ /* only safe on vmware */ if(sys->nmach > 1) error("cannot disable coherence on a multiprocessor"); coherence = nop; }else cmderror(cb, "invalid coherence ctl"); break; case CMcache: base = strtoull(cb->f[1], &ep, 0); if(*ep) error("cache: parse error: base not a number?"); size = strtoull(cb->f[2], &ep, 0); if(*ep) error("cache: parse error: size not a number?"); ep = mtrr(base, size, cb->f[3]); if(ep != nil) error(ep); break; } free(cb); poperror(); return n; } static int32_t rmemrw(int isr, void *a, int32_t n, long off) { uintptr_t addr = off; if(off < 0 || n < 0) error("bad offset/count"); if(isr){ if(addr >= MB) return 0; if(addr+n > MB) n = MB - addr; memmove(a, KADDR(addr), n); }else{ /* allow vga framebuf's write access */ if(addr >= MB || addr+n > MB || (addr < 0xA0000 || addr+n > 0xB0000+0x10000)) error("bad offset/count in write"); memmove(KADDR(addr), a, n); } return n; } static long rmemread(Chan* _, void *a, long n, int64_t off) { return rmemrw(1, a, n, off); } static long rmemwrite(Chan* _, void *a, long n, int64_t off) { return rmemrw(0, a, n, off); } void archinit(void) { PCArch **p; arch = &archgeneric; for(p = knownarch; *p != nil; p++){ if((*p)->ident != nil && (*p)->ident() == 0){ arch = *p; break; } } if(arch != &archgeneric){ if(arch->id == nil) arch->id = archgeneric.id; if(arch->reset == nil) arch->reset = archgeneric.reset; if(arch->serialpower == nil) arch->serialpower = archgeneric.serialpower; if(arch->modempower == nil) arch->modempower = archgeneric.modempower; if(arch->intrinit == nil) arch->intrinit = archgeneric.intrinit; if(arch->intrenable == nil) arch->intrenable = archgeneric.intrenable; } /* * Decide whether to use copy-on-reference (386 and mp). * We get another chance to set it in mpinit() for a * multiprocessor. */ if(X86FAMILY(m->cpuidax) == 3) sys->copymode = 1; if(m->cpuiddx & Sse2) coherence = mfence; addarchfile("cputype", 0444, cputyperead, nil); addarchfile("archctl", 0664, archctlread, archctlwrite); addarchfile("realmodemem", 0660, rmemread, rmemwrite); } /* * call either the pcmcia or pccard device setup */ int pcmspecial(char *idstr, ISAConf *isa) { return (_pcmspecial != nil)? _pcmspecial(idstr, isa): -1; } /* * call either the pcmcia or pccard device teardown */ void pcmspecialclose(int a) { if (_pcmspecialclose != nil) _pcmspecialclose(a); } /* * return value and speed of timer set in arch->clockenable */ uint64_t fastticks(uint64_t *hz) { return (*arch->fastclock)(hz); } uint32_t microseconds(void) { return fastticks2us((*arch->fastclock)(nil)); } /* * set next timer interrupt */ void timerset(Tval x) { (*arch->timerset)(x); } /* int isaconfig(char *class, int ctlrno, ISAConf *isa) { char cc[32], *p; int i; snprint(cc, sizeof cc, "%s%d", class, ctlrno); p = getconf(cc); if(p == nil) return 0; isa->type = ""; isa->nopt = tokenize(p, isa->opt, NISAOPT); for(i = 0; i < isa->nopt; i++){ p = isa->opt[i]; if(cistrncmp(p, "type=", 5) == 0) isa->type = p + 5; else if(cistrncmp(p, "port=", 5) == 0) isa->port = strtoul(p+5, &p, 0); else if(cistrncmp(p, "irq=", 4) == 0) isa->irq = strtoul(p+4, &p, 0); else if(cistrncmp(p, "dma=", 4) == 0) isa->dma = strtoul(p+4, &p, 0); else if(cistrncmp(p, "mem=", 4) == 0) isa->mem = strtoul(p+4, &p, 0); else if(cistrncmp(p, "size=", 5) == 0) isa->size = strtoul(p+5, &p, 0); else if(cistrncmp(p, "freq=", 5) == 0) isa->freq = strtoul(p+5, &p, 0); } return 1; } */ void dumpmcregs(void) { long v, w; int bank; if((m->cpuiddx & (Mce|Cpumsr)) != (Mce|Cpumsr)) return; if((m->cpuiddx & Mca) == 0){ rdmsr(0x00, &v); rdmsr(0x01, &w); iprint("MCA %8.8llux MCT %8.8llux\n", v, w); return; } rdmsr(0x179, &v); rdmsr(0x17A, &w); iprint("MCG CAP %.16llux STATUS %.16llux\n", v, w); bank = v & 0xFF; if(bank > 64) bank = 64; while(--bank >= 0){ rdmsr(0x401 + bank*4, &v); if((v & (1ull << 63)) == 0) continue; iprint("MC%d STATUS %.16llux", bank, v); if(v & (1ull << 58)){ rdmsr(0x402 + bank*4, &w); iprint(" ADDR %.16llux", w); } if(v & (1ull << 59)){ rdmsr(0x403 + bank*4, &w); iprint(" MISC %.16llux", w); } iprint("\n"); } }