jehanne/sys/src/lib/sec/port/md4.c

272 lines
4.3 KiB
C
Raw Normal View History

#include "os.h"
#include <libsec.h>
/*
* This MD4 is implemented from the description in Stinson's Cryptography,
* theory and practice. -- presotto
*/
/*
* Rotate ammounts used in the algorithm
*/
enum
{
S11= 3,
S12= 7,
S13= 11,
S14= 19,
S21= 3,
S22= 5,
S23= 9,
S24= 13,
S31= 3,
S32= 9,
S33= 11,
S34= 15,
};
typedef struct MD4Table MD4Table;
struct MD4Table
{
uint8_t x; /* index into data block */
uint8_t rot; /* amount to rotate left by */
};
static MD4Table tab[] =
{
/* round 1 */
/*[0]*/ { 0, S11},
{ 1, S12},
{ 2, S13},
{ 3, S14},
{ 4, S11},
{ 5, S12},
{ 6, S13},
{ 7, S14},
{ 8, S11},
{ 9, S12},
{ 10, S13},
{ 11, S14},
{ 12, S11},
{ 13, S12},
{ 14, S13},
{ 15, S14},
/* round 2 */
/*[16]*/{ 0, S21},
{ 4, S22},
{ 8, S23},
{ 12, S24},
{ 1, S21},
{ 5, S22},
{ 9, S23},
{ 13, S24},
{ 2, S21},
{ 6, S22},
{ 10, S23},
{ 14, S24},
{ 3, S21},
{ 7, S22},
{ 11, S23},
{ 15, S24},
/* round 3 */
/*[32]*/{ 0, S31},
{ 8, S32},
{ 4, S33},
{ 12, S34},
{ 2, S31},
{ 10, S32},
{ 6, S33},
{ 14, S34},
{ 1, S31},
{ 9, S32},
{ 5, S33},
{ 13, S34},
{ 3, S31},
{ 11, S32},
{ 7, S33},
{ 15, S34},
};
static void encode(uint8_t*, uint32_t*, uint32_t);
static void decode(uint32_t*, uint8_t*, uint32_t);
static void
md4block(uint8_t *p, uint32_t len, MD4state *s)
{
int i;
uint32_t a, b, c, d, tmp;
MD4Table *t;
uint8_t *end;
uint32_t x[16];
for(end = p+len; p < end; p += 64){
a = s->state[0];
b = s->state[1];
c = s->state[2];
d = s->state[3];
decode(x, p, 64);
for(i = 0; i < 48; i++){
t = tab + i;
switch(i>>4){
case 0:
a += (b & c) | (~b & d);
break;
case 1:
a += ((b & c) | (b & d) | (c & d)) + 0x5A827999;
break;
case 2:
a += (b ^ c ^ d) + 0x6ED9EBA1;
break;
}
a += x[t->x];
a = (a << t->rot) | (a >> (32 - t->rot));
/* rotate variables */
tmp = d;
d = c;
c = b;
b = a;
a = tmp;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->len += 64;
}
}
MD4state*
md4(uint8_t *p, uint32_t len, uint8_t *digest, MD4state *s)
{
uint32_t x[16];
uint8_t buf[128];
int i;
uint8_t *e;
if(s == nil){
s = jehanne_malloc(sizeof(*s));
if(s == nil)
return nil;
jehanne_memset(s, 0, sizeof(*s));
s->malloced = 1;
}
if(s->seeded == 0){
/* seed the state, these constants would look nicer big-endian */
s->state[0] = 0x67452301;
s->state[1] = 0xefcdab89;
s->state[2] = 0x98badcfe;
s->state[3] = 0x10325476;
s->seeded = 1;
}
/* fill out the partial 64 byte block from previous calls */
if(s->blen){
i = 64 - s->blen;
if(len < i)
i = len;
jehanne_memmove(s->buf + s->blen, p, i);
len -= i;
s->blen += i;
p += i;
if(s->blen == 64){
md4block(s->buf, s->blen, s);
s->blen = 0;
}
}
/* do 64 byte blocks */
i = len & ~0x3f;
if(i){
md4block(p, i, s);
len -= i;
p += i;
}
/* save the left overs if not last call */
if(digest == 0){
if(len){
jehanne_memmove(s->buf, p, len);
s->blen += len;
}
return s;
}
/*
* this is the last time through, pad what's left with 0x80,
* 0's, and the input count to create a multiple of 64 bytes
*/
if(s->blen){
p = s->buf;
len = s->blen;
} else {
jehanne_memmove(buf, p, len);
p = buf;
}
s->len += len;
e = p + len;
if(len < 56)
i = 56 - len;
else
i = 120 - len;
jehanne_memset(e, 0, i);
*e = 0x80;
len += i;
/* append the count */
x[0] = s->len<<3;
x[1] = s->len>>29;
encode(p+len, x, 8);
/* digest the last part */
md4block(p, len+8, s);
/* return result and free state */
encode(digest, s->state, MD4dlen);
if(s->malloced == 1)
jehanne_free(s);
return nil;
}
/*
* encodes input (uint32_t) into output (uint8_t). Assumes len is
* a multiple of 4.
*/
static void
encode(uint8_t *output, uint32_t *input, uint32_t len)
{
uint32_t x;
uint8_t *e;
for(e = output + len; output < e;) {
x = *input++;
*output++ = x;
*output++ = x >> 8;
*output++ = x >> 16;
*output++ = x >> 24;
}
}
/*
* decodes input (uint8_t) into output (uint32_t). Assumes len is
* a multiple of 4.
*/
static void
decode(uint32_t *output, uint8_t *input, uint32_t len)
{
uint8_t *e;
for(e = input+len; input < e; input += 4)
*output++ = input[0] | (input[1] << 8) |
(input[2] << 16) | (input[3] << 24);
}