2500 lines
54 KiB
C
2500 lines
54 KiB
C
#include <u.h>
|
||
#include <libc.h>
|
||
#include <draw.h>
|
||
#include <memdraw.h>
|
||
|
||
int drawdebug;
|
||
static int tablesbuilt;
|
||
|
||
/* perfect approximation to NTSC = .299r+.587g+.114b when 0 ≤ r,g,b < 256 */
|
||
#define RGB2K(r,g,b) ((156763*(r)+307758*(g)+59769*(b))>>19)
|
||
|
||
/*
|
||
* for 0 ≤ x ≤ 255*255, (x*0x0101+0x100)>>16 is a perfect approximation.
|
||
* for 0 ≤ x < (1<<16), x/255 = ((x+1)*0x0101)>>16 is a perfect approximation.
|
||
* the last one is perfect for all up to 1<<16, avoids a multiply, but requires a rathole.
|
||
*/
|
||
/* #define DIV255(x) (((x)*257+256)>>16) */
|
||
#define DIV255(x) ((((x)+1)*257)>>16)
|
||
/* #define DIV255(x) (tmp=(x)+1, (tmp+(tmp>>8))>>8) */
|
||
|
||
#define MUL(x, y, t) (t = (x)*(y)+128, (t+(t>>8))>>8)
|
||
#define MASK13 0xFF00FF00
|
||
#define MASK02 0x00FF00FF
|
||
#define MUL13(a, x, t) (t = (a)*(((x)&MASK13)>>8)+128, ((t+((t>>8)&MASK02))>>8)&MASK02)
|
||
#define MUL02(a, x, t) (t = (a)*(((x)&MASK02)>>0)+128, ((t+((t>>8)&MASK02))>>8)&MASK02)
|
||
#define MUL0123(a, x, s, t) ((MUL13(a, x, s)<<8)|MUL02(a, x, t))
|
||
|
||
#define MUL2(u, v, x, y) (t = (u)*(v)+(x)*(y)+256, (t+(t>>8))>>8)
|
||
|
||
static void mktables(void);
|
||
typedef int Subdraw(Memdrawparam*);
|
||
static Subdraw chardraw, alphadraw, memoptdraw;
|
||
|
||
static Memimage* memones;
|
||
static Memimage* memzeros;
|
||
Memimage *memwhite;
|
||
Memimage *memblack;
|
||
Memimage *memtransparent;
|
||
Memimage *memopaque;
|
||
|
||
int _ifmt(Fmt*);
|
||
|
||
void
|
||
_memimageinit(void)
|
||
{
|
||
static int didinit = 0;
|
||
|
||
if(didinit)
|
||
return;
|
||
|
||
didinit = 1;
|
||
|
||
mktables();
|
||
_memmkcmap();
|
||
|
||
fmtinstall('R', Rfmt);
|
||
fmtinstall('P', Pfmt);
|
||
fmtinstall('b', _ifmt);
|
||
|
||
memones = allocmemimage(Rect(0,0,1,1), GREY1);
|
||
memones->flags |= Frepl;
|
||
memones->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
|
||
*byteaddr(memones, ZP) = ~0;
|
||
|
||
memzeros = allocmemimage(Rect(0,0,1,1), GREY1);
|
||
memzeros->flags |= Frepl;
|
||
memzeros->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF);
|
||
*byteaddr(memzeros, ZP) = 0;
|
||
|
||
if(memones == nil || memzeros == nil)
|
||
assert(0 /*cannot initialize memimage library */); /* RSC BUG */
|
||
|
||
memwhite = memones;
|
||
memblack = memzeros;
|
||
memopaque = memones;
|
||
memtransparent = memzeros;
|
||
}
|
||
|
||
ulong _imgtorgba(Memimage*, ulong);
|
||
ulong _rgbatoimg(Memimage*, ulong);
|
||
ulong _pixelbits(Memimage*, Point);
|
||
|
||
#define DBG if(0)
|
||
static Memdrawparam par;
|
||
|
||
Memdrawparam*
|
||
_memimagedrawsetup(Memimage *dst, Rectangle r, Memimage *src, Point p0, Memimage *mask, Point p1, int op)
|
||
{
|
||
static int n = 0;
|
||
|
||
if(mask == nil)
|
||
mask = memopaque;
|
||
|
||
DBG print("memimagedraw %p/%luX %R @ %p %p/%luX %P %p/%luX %P... ", dst, dst->chan, r, dst->data->bdata, src, src->chan, p0, mask, mask->chan, p1);
|
||
|
||
if(drawclip(dst, &r, src, &p0, mask, &p1, &par.sr, &par.mr) == 0){
|
||
// if(drawdebug)
|
||
// iprint("empty clipped rectangle\n");
|
||
return nil;
|
||
}
|
||
|
||
if(op < Clear || op > SoverD){
|
||
// if(drawdebug)
|
||
// iprint("op out of range: %d\n", op);
|
||
return nil;
|
||
}
|
||
|
||
par.op = op;
|
||
par.dst = dst;
|
||
par.r = r;
|
||
par.src = src;
|
||
/* par.sr set by drawclip */
|
||
par.mask = mask;
|
||
/* par.mr set by drawclip */
|
||
|
||
par.state = 0;
|
||
if(src->flags&Frepl){
|
||
par.state |= Replsrc;
|
||
if(Dx(src->r)==1 && Dy(src->r)==1){
|
||
par.sval = _pixelbits(src, src->r.min);
|
||
par.state |= Simplesrc;
|
||
par.srgba = _imgtorgba(src, par.sval);
|
||
par.sdval = _rgbatoimg(dst, par.srgba);
|
||
if((par.srgba&0xFF) == 0 && (op&DoutS)){
|
||
// if (drawdebug) iprint("fill with transparent source\n");
|
||
return nil; /* no-op successfully handled */
|
||
}
|
||
}
|
||
}
|
||
|
||
if(mask->flags & Frepl){
|
||
par.state |= Replmask;
|
||
if(Dx(mask->r)==1 && Dy(mask->r)==1){
|
||
par.mval = _pixelbits(mask, mask->r.min);
|
||
if(par.mval == 0 && (op&DoutS)){
|
||
// if(drawdebug) iprint("fill with zero mask\n");
|
||
return nil; /* no-op successfully handled */
|
||
}
|
||
par.state |= Simplemask;
|
||
if(par.mval == ~0)
|
||
par.state |= Fullmask;
|
||
par.mrgba = _imgtorgba(mask, par.mval);
|
||
}
|
||
}
|
||
|
||
// if(drawdebug)
|
||
// iprint("dr %R sr %R mr %R...", r, par.sr, par.mr);
|
||
DBG print("draw dr %R sr %R mr %R %lux\n", r, par.sr, par.mr, par.state);
|
||
|
||
return ∥
|
||
}
|
||
|
||
void
|
||
_memimagedraw(Memdrawparam *par)
|
||
{
|
||
if (par == nil)
|
||
return;
|
||
|
||
/*
|
||
* Now that we've clipped the parameters down to be consistent, we
|
||
* simply try sub-drawing routines in order until we find one that was able
|
||
* to handle us. If the sub-drawing routine returns zero, it means it was
|
||
* unable to satisfy the request, so we do not return.
|
||
*/
|
||
|
||
/*
|
||
* Hardware support. Each video driver provides this function,
|
||
* which checks to see if there is anything it can help with.
|
||
* There could be an if around this checking to see if dst is in video memory.
|
||
*/
|
||
DBG print("test hwdraw\n");
|
||
if(hwdraw(par)){
|
||
//if(drawdebug) iprint("hw handled\n");
|
||
DBG print("hwdraw handled\n");
|
||
return;
|
||
}
|
||
/*
|
||
* Optimizations using memmove and memset.
|
||
*/
|
||
DBG print("test memoptdraw\n");
|
||
if(memoptdraw(par)){
|
||
//if(drawdebug) iprint("memopt handled\n");
|
||
DBG print("memopt handled\n");
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Character drawing.
|
||
* Solid source color being painted through a boolean mask onto a high res image.
|
||
*/
|
||
DBG print("test chardraw\n");
|
||
if(chardraw(par)){
|
||
//if(drawdebug) iprint("chardraw handled\n");
|
||
DBG print("chardraw handled\n");
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* General calculation-laden case that does alpha for each pixel.
|
||
*/
|
||
DBG print("do alphadraw\n");
|
||
alphadraw(par);
|
||
//if(drawdebug) iprint("alphadraw handled\n");
|
||
DBG print("alphadraw handled\n");
|
||
}
|
||
#undef DBG
|
||
|
||
/*
|
||
* Clip the destination rectangle further based on the properties of the
|
||
* source and mask rectangles. Once the destination rectangle is properly
|
||
* clipped, adjust the source and mask rectangles to be the same size.
|
||
* Then if source or mask is replicated, move its clipped rectangle
|
||
* so that its minimum point falls within the repl rectangle.
|
||
*
|
||
* Return zero if the final rectangle is null.
|
||
*/
|
||
int
|
||
drawclip(Memimage *dst, Rectangle *r, Memimage *src, Point *p0, Memimage *mask, Point *p1, Rectangle *sr, Rectangle *mr)
|
||
{
|
||
Point rmin, delta;
|
||
int splitcoords;
|
||
Rectangle omr;
|
||
|
||
if(r->min.x>=r->max.x || r->min.y>=r->max.y)
|
||
return 0;
|
||
splitcoords = (p0->x!=p1->x) || (p0->y!=p1->y);
|
||
/* clip to destination */
|
||
rmin = r->min;
|
||
if(!rectclip(r, dst->r) || !rectclip(r, dst->clipr))
|
||
return 0;
|
||
/* move mask point */
|
||
p1->x += r->min.x-rmin.x;
|
||
p1->y += r->min.y-rmin.y;
|
||
/* move source point */
|
||
p0->x += r->min.x-rmin.x;
|
||
p0->y += r->min.y-rmin.y;
|
||
/* map destination rectangle into source */
|
||
sr->min = *p0;
|
||
sr->max.x = p0->x+Dx(*r);
|
||
sr->max.y = p0->y+Dy(*r);
|
||
/* sr is r in source coordinates; clip to source */
|
||
if(!(src->flags&Frepl) && !rectclip(sr, src->r))
|
||
return 0;
|
||
if(!rectclip(sr, src->clipr))
|
||
return 0;
|
||
/* compute and clip rectangle in mask */
|
||
if(splitcoords){
|
||
/* move mask point with source */
|
||
p1->x += sr->min.x-p0->x;
|
||
p1->y += sr->min.y-p0->y;
|
||
mr->min = *p1;
|
||
mr->max.x = p1->x+Dx(*sr);
|
||
mr->max.y = p1->y+Dy(*sr);
|
||
omr = *mr;
|
||
/* mr is now rectangle in mask; clip it */
|
||
if(!(mask->flags&Frepl) && !rectclip(mr, mask->r))
|
||
return 0;
|
||
if(!rectclip(mr, mask->clipr))
|
||
return 0;
|
||
/* reflect any clips back to source */
|
||
sr->min.x += mr->min.x-omr.min.x;
|
||
sr->min.y += mr->min.y-omr.min.y;
|
||
sr->max.x += mr->max.x-omr.max.x;
|
||
sr->max.y += mr->max.y-omr.max.y;
|
||
*p1 = mr->min;
|
||
}else{
|
||
if(!(mask->flags&Frepl) && !rectclip(sr, mask->r))
|
||
return 0;
|
||
if(!rectclip(sr, mask->clipr))
|
||
return 0;
|
||
*p1 = sr->min;
|
||
}
|
||
|
||
/* move source clipping back to destination */
|
||
delta.x = r->min.x - p0->x;
|
||
delta.y = r->min.y - p0->y;
|
||
r->min.x = sr->min.x + delta.x;
|
||
r->min.y = sr->min.y + delta.y;
|
||
r->max.x = sr->max.x + delta.x;
|
||
r->max.y = sr->max.y + delta.y;
|
||
|
||
/* move source rectangle so sr->min is in src->r */
|
||
if(src->flags&Frepl) {
|
||
delta.x = drawreplxy(src->r.min.x, src->r.max.x, sr->min.x) - sr->min.x;
|
||
delta.y = drawreplxy(src->r.min.y, src->r.max.y, sr->min.y) - sr->min.y;
|
||
sr->min.x += delta.x;
|
||
sr->min.y += delta.y;
|
||
sr->max.x += delta.x;
|
||
sr->max.y += delta.y;
|
||
}
|
||
*p0 = sr->min;
|
||
|
||
/* move mask point so it is in mask->r */
|
||
*p1 = drawrepl(mask->r, *p1);
|
||
mr->min = *p1;
|
||
mr->max.x = p1->x+Dx(*sr);
|
||
mr->max.y = p1->y+Dy(*sr);
|
||
|
||
assert(Dx(*sr) == Dx(*mr) && Dx(*mr) == Dx(*r));
|
||
assert(Dy(*sr) == Dy(*mr) && Dy(*mr) == Dy(*r));
|
||
assert(ptinrect(*p0, src->r));
|
||
assert(ptinrect(*p1, mask->r));
|
||
assert(ptinrect(r->min, dst->r));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* Conversion tables.
|
||
*/
|
||
static uchar replbit[1+8][256]; /* replbit[x][y] is the replication of the x-bit quantity y to 8-bit depth */
|
||
static uchar conv18[256][8]; /* conv18[x][y] is the yth pixel in the depth-1 pixel x */
|
||
static uchar conv28[256][4]; /* ... */
|
||
static uchar conv48[256][2];
|
||
|
||
/*
|
||
* bitmap of how to replicate n bits to fill 8, for 1 ≤ n ≤ 8.
|
||
* the X's are where to put the bottom (ones) bit of the n-bit pattern.
|
||
* only the top 8 bits of the result are actually used.
|
||
* (the lower 8 bits are needed to get bits in the right place
|
||
* when n is not a divisor of 8.)
|
||
*
|
||
* Should check to see if its easier to just refer to replmul than
|
||
* use the precomputed values in replbit. On PCs it may well
|
||
* be; on machines with slow multiply instructions it probably isn't.
|
||
*/
|
||
#define a ((((((((((((((((0
|
||
#define X *2+1)
|
||
#define _ *2)
|
||
static int replmul[1+8] = {
|
||
0,
|
||
a X X X X X X X X X X X X X X X X,
|
||
a _ X _ X _ X _ X _ X _ X _ X _ X,
|
||
a _ _ X _ _ X _ _ X _ _ X _ _ X _,
|
||
a _ _ _ X _ _ _ X _ _ _ X _ _ _ X,
|
||
a _ _ _ _ X _ _ _ _ X _ _ _ _ X _,
|
||
a _ _ _ _ _ X _ _ _ _ _ X _ _ _ _,
|
||
a _ _ _ _ _ _ X _ _ _ _ _ _ X _ _,
|
||
a _ _ _ _ _ _ _ X _ _ _ _ _ _ _ X,
|
||
};
|
||
#undef a
|
||
#undef X
|
||
#undef _
|
||
|
||
static void
|
||
mktables(void)
|
||
{
|
||
int i, j, mask, sh, small;
|
||
|
||
if(tablesbuilt)
|
||
return;
|
||
|
||
fmtinstall('R', Rfmt);
|
||
fmtinstall('P', Pfmt);
|
||
tablesbuilt = 1;
|
||
|
||
/* bit replication up to 8 bits */
|
||
for(i=0; i<256; i++){
|
||
for(j=0; j<=8; j++){ /* j <= 8 [sic] */
|
||
small = i & ((1<<j)-1);
|
||
replbit[j][i] = (small*replmul[j])>>8;
|
||
}
|
||
}
|
||
|
||
/* bit unpacking up to 8 bits, only powers of 2 */
|
||
for(i=0; i<256; i++){
|
||
for(j=0, sh=7, mask=1; j<8; j++, sh--)
|
||
conv18[i][j] = replbit[1][(i>>sh)&mask];
|
||
|
||
for(j=0, sh=6, mask=3; j<4; j++, sh-=2)
|
||
conv28[i][j] = replbit[2][(i>>sh)&mask];
|
||
|
||
for(j=0, sh=4, mask=15; j<2; j++, sh-=4)
|
||
conv48[i][j] = replbit[4][(i>>sh)&mask];
|
||
}
|
||
}
|
||
|
||
static uchar ones = 0xff;
|
||
|
||
/*
|
||
* General alpha drawing case. Can handle anything.
|
||
*/
|
||
typedef struct Buffer Buffer;
|
||
struct Buffer {
|
||
/* used by most routines */
|
||
uchar *red;
|
||
uchar *grn;
|
||
uchar *blu;
|
||
uchar *alpha;
|
||
uchar *grey;
|
||
ulong *rgba;
|
||
int delta; /* number of bytes to add to pointer to get next pixel to the right */
|
||
|
||
/* used by boolcalc* for mask data */
|
||
uchar *m; /* ptr to mask data r.min byte; like p->bytermin */
|
||
int mskip; /* no. of left bits to skip in *m */
|
||
uchar *bm; /* ptr to mask data img->r.min byte; like p->bytey0s */
|
||
int bmskip; /* no. of left bits to skip in *bm */
|
||
uchar *em; /* ptr to mask data img->r.max.x byte; like p->bytey0e */
|
||
int emskip; /* no. of right bits to skip in *em */
|
||
};
|
||
|
||
typedef struct Param Param;
|
||
typedef Buffer Readfn(Param*, uchar*, int);
|
||
typedef void Writefn(Param*, uchar*, Buffer);
|
||
typedef Buffer Calcfn(Buffer, Buffer, Buffer, int, int, int);
|
||
|
||
enum {
|
||
MAXBCACHE = 16
|
||
};
|
||
|
||
/* giant rathole to customize functions with */
|
||
struct Param {
|
||
Readfn *replcall;
|
||
Readfn *greymaskcall;
|
||
Readfn *convreadcall;
|
||
Writefn *convwritecall;
|
||
|
||
Memimage *img;
|
||
Rectangle r;
|
||
int dx; /* of r */
|
||
int needbuf;
|
||
int convgrey;
|
||
int alphaonly;
|
||
|
||
uchar *bytey0s; /* byteaddr(Pt(img->r.min.x, img->r.min.y)) */
|
||
uchar *bytermin; /* byteaddr(Pt(r.min.x, img->r.min.y)) */
|
||
uchar *bytey0e; /* byteaddr(Pt(img->r.max.x, img->r.min.y)) */
|
||
int bwidth;
|
||
|
||
int replcache; /* if set, cache buffers */
|
||
Buffer bcache[MAXBCACHE];
|
||
ulong bfilled;
|
||
uchar *bufbase;
|
||
int bufoff;
|
||
int bufdelta;
|
||
|
||
int dir;
|
||
|
||
int convbufoff;
|
||
uchar *convbuf;
|
||
Param *convdpar;
|
||
int convdx;
|
||
};
|
||
|
||
static uchar *drawbuf;
|
||
static int ndrawbuf;
|
||
static int mdrawbuf;
|
||
static Param spar, mpar, dpar; /* easier on the stacks */
|
||
static Readfn greymaskread, replread, readptr;
|
||
static Writefn nullwrite;
|
||
static Calcfn alphacalc0, alphacalc14, alphacalc2810, alphacalc3679, alphacalc5, alphacalc11, alphacalcS;
|
||
static Calcfn boolcalc14, boolcalc236789, boolcalc1011;
|
||
|
||
static Readfn* readfn(Memimage*);
|
||
static Readfn* readalphafn(Memimage*);
|
||
static Writefn* writefn(Memimage*);
|
||
|
||
static Calcfn* boolcopyfn(Memimage*, Memimage*);
|
||
static Readfn* convfn(Memimage*, Param*, Memimage*, Param*);
|
||
static Readfn* ptrfn(Memimage*);
|
||
|
||
static Calcfn *alphacalc[Ncomp] =
|
||
{
|
||
alphacalc0, /* Clear */
|
||
alphacalc14, /* DoutS */
|
||
alphacalc2810, /* SoutD */
|
||
alphacalc3679, /* DxorS */
|
||
alphacalc14, /* DinS */
|
||
alphacalc5, /* D */
|
||
alphacalc3679, /* DatopS */
|
||
alphacalc3679, /* DoverS */
|
||
alphacalc2810, /* SinD */
|
||
alphacalc3679, /* SatopD */
|
||
alphacalc2810, /* S */
|
||
alphacalc11, /* SoverD */
|
||
};
|
||
|
||
static Calcfn *boolcalc[Ncomp] =
|
||
{
|
||
alphacalc0, /* Clear */
|
||
boolcalc14, /* DoutS */
|
||
boolcalc236789, /* SoutD */
|
||
boolcalc236789, /* DxorS */
|
||
boolcalc14, /* DinS */
|
||
alphacalc5, /* D */
|
||
boolcalc236789, /* DatopS */
|
||
boolcalc236789, /* DoverS */
|
||
boolcalc236789, /* SinD */
|
||
boolcalc236789, /* SatopD */
|
||
boolcalc1011, /* S */
|
||
boolcalc1011, /* SoverD */
|
||
};
|
||
|
||
static int
|
||
allocdrawbuf(void)
|
||
{
|
||
uchar *p;
|
||
|
||
if(ndrawbuf > mdrawbuf){
|
||
p = realloc(drawbuf, ndrawbuf);
|
||
if(p == nil){
|
||
werrstr("memimagedraw out of memory");
|
||
return -1;
|
||
}
|
||
drawbuf = p;
|
||
mdrawbuf = ndrawbuf;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static Param
|
||
getparam(Memimage *img, Rectangle r, int convgrey, int needbuf)
|
||
{
|
||
Param p;
|
||
int nbuf;
|
||
|
||
memset(&p, 0, sizeof p);
|
||
|
||
p.img = img;
|
||
p.r = r;
|
||
p.dx = Dx(r);
|
||
p.needbuf = needbuf;
|
||
p.convgrey = convgrey;
|
||
|
||
assert(img->r.min.x <= r.min.x && r.min.x < img->r.max.x);
|
||
|
||
p.bytey0s = byteaddr(img, Pt(img->r.min.x, img->r.min.y));
|
||
p.bytermin = byteaddr(img, Pt(r.min.x, img->r.min.y));
|
||
p.bytey0e = byteaddr(img, Pt(img->r.max.x, img->r.min.y));
|
||
p.bwidth = sizeof(ulong)*img->width;
|
||
|
||
assert(p.bytey0s <= p.bytermin && p.bytermin <= p.bytey0e);
|
||
|
||
if(p.r.min.x == p.img->r.min.x)
|
||
assert(p.bytermin == p.bytey0s);
|
||
|
||
nbuf = 1;
|
||
if((img->flags&Frepl) && Dy(img->r) <= MAXBCACHE && Dy(img->r) < Dy(r)){
|
||
p.replcache = 1;
|
||
nbuf = Dy(img->r);
|
||
}
|
||
p.bufdelta = 4*p.dx;
|
||
p.bufoff = ndrawbuf;
|
||
ndrawbuf += p.bufdelta*nbuf;
|
||
|
||
return p;
|
||
}
|
||
|
||
static void
|
||
clipy(Memimage *img, int *y)
|
||
{
|
||
int dy;
|
||
|
||
dy = Dy(img->r);
|
||
if(*y == dy)
|
||
*y = 0;
|
||
else if(*y == -1)
|
||
*y = dy-1;
|
||
assert(0 <= *y && *y < dy);
|
||
}
|
||
|
||
static void
|
||
dumpbuf(char *s, Buffer b, int n)
|
||
{
|
||
int i;
|
||
uchar *p;
|
||
|
||
print("%s", s);
|
||
for(i=0; i<n; i++){
|
||
print(" ");
|
||
if(p=b.grey){
|
||
print(" k%.2uX", *p);
|
||
b.grey += b.delta;
|
||
}else{
|
||
if(p=b.red){
|
||
print(" r%.2uX", *p);
|
||
b.red += b.delta;
|
||
}
|
||
if(p=b.grn){
|
||
print(" g%.2uX", *p);
|
||
b.grn += b.delta;
|
||
}
|
||
if(p=b.blu){
|
||
print(" b%.2uX", *p);
|
||
b.blu += b.delta;
|
||
}
|
||
}
|
||
if((p=b.alpha) != &ones){
|
||
print(" α%.2uX", *p);
|
||
b.alpha += b.delta;
|
||
}
|
||
}
|
||
print("\n");
|
||
}
|
||
|
||
/*
|
||
* For each scan line, we expand the pixels from source, mask, and destination
|
||
* into byte-aligned red, green, blue, alpha, and grey channels. If buffering is not
|
||
* needed and the channels were already byte-aligned (grey8, rgb24, rgba32, rgb32),
|
||
* the readers need not copy the data: they can simply return pointers to the data.
|
||
* If the destination image is grey and the source is not, it is converted using the NTSC
|
||
* formula.
|
||
*
|
||
* Once we have all the channels, we call either rgbcalc or greycalc, depending on
|
||
* whether the destination image is color. This is allowed to overwrite the dst buffer (perhaps
|
||
* the actual data, perhaps a copy) with its result. It should only overwrite the dst buffer
|
||
* with the same format (i.e. red bytes with red bytes, etc.) A new buffer is returned from
|
||
* the calculator, and that buffer is passed to a function to write it to the destination.
|
||
* If the buffer is already pointing at the destination, the writing function is a no-op.
|
||
*/
|
||
#define DBG if(0)
|
||
static int
|
||
alphadraw(Memdrawparam *par)
|
||
{
|
||
int isgrey, starty, endy, op;
|
||
int needbuf, dsty, srcy, masky;
|
||
int y, dir, dx, dy;
|
||
Buffer bsrc, bdst, bmask;
|
||
Readfn *rdsrc, *rdmask, *rddst;
|
||
Calcfn *calc;
|
||
Writefn *wrdst;
|
||
Memimage *src, *mask, *dst;
|
||
Rectangle r, sr, mr;
|
||
|
||
r = par->r;
|
||
dx = Dx(r);
|
||
dy = Dy(r);
|
||
|
||
ndrawbuf = 0;
|
||
|
||
src = par->src;
|
||
mask = par->mask;
|
||
dst = par->dst;
|
||
sr = par->sr;
|
||
mr = par->mr;
|
||
op = par->op;
|
||
|
||
isgrey = dst->flags&Fgrey;
|
||
|
||
/*
|
||
* Buffering when src and dst are the same bitmap is sufficient but not
|
||
* necessary. There are stronger conditions we could use. We could
|
||
* check to see if the rectangles intersect, and if simply moving in the
|
||
* correct y direction can avoid the need to buffer.
|
||
*/
|
||
needbuf = (src->data == dst->data);
|
||
|
||
spar = getparam(src, sr, isgrey, needbuf);
|
||
dpar = getparam(dst, r, isgrey, needbuf);
|
||
mpar = getparam(mask, mr, 0, needbuf);
|
||
|
||
dir = (needbuf && byteaddr(dst, r.min) > byteaddr(src, sr.min)) ? -1 : 1;
|
||
spar.dir = mpar.dir = dpar.dir = dir;
|
||
|
||
/*
|
||
* If the mask is purely boolean, we can convert from src to dst format
|
||
* when we read src, and then just copy it to dst where the mask tells us to.
|
||
* This requires a boolean (1-bit grey) mask and lack of a source alpha channel.
|
||
*
|
||
* The computation is accomplished by assigning the function pointers as follows:
|
||
* rdsrc - read and convert source into dst format in a buffer
|
||
* rdmask - convert mask to bytes, set pointer to it
|
||
* rddst - fill with pointer to real dst data, but do no reads
|
||
* calc - copy src onto dst when mask says to.
|
||
* wrdst - do nothing
|
||
* This is slightly sleazy, since things aren't doing exactly what their names say,
|
||
* but it avoids a fair amount of code duplication to make this a case here
|
||
* rather than have a separate booldraw.
|
||
*/
|
||
//if(drawdebug) iprint("flag %lud mchan %lux=?%x dd %d\n", src->flags&Falpha, mask->chan, GREY1, dst->depth);
|
||
if(!(src->flags&Falpha) && mask->chan == GREY1 && dst->depth >= 8 && op == SoverD){
|
||
//if(drawdebug) iprint("boolcopy...");
|
||
rdsrc = convfn(dst, &dpar, src, &spar);
|
||
rddst = readptr;
|
||
rdmask = readfn(mask);
|
||
calc = boolcopyfn(dst, mask);
|
||
wrdst = nullwrite;
|
||
}else{
|
||
/* usual alphadraw parameter fetching */
|
||
rdsrc = readfn(src);
|
||
rddst = readfn(dst);
|
||
wrdst = writefn(dst);
|
||
calc = alphacalc[op];
|
||
|
||
/*
|
||
* If there is no alpha channel, we'll ask for a grey channel
|
||
* and pretend it is the alpha.
|
||
*/
|
||
if(mask->flags&Falpha){
|
||
rdmask = readalphafn(mask);
|
||
mpar.alphaonly = 1;
|
||
}else{
|
||
mpar.greymaskcall = readfn(mask);
|
||
mpar.convgrey = 1;
|
||
rdmask = greymaskread;
|
||
|
||
/*
|
||
* Should really be above, but then boolcopyfns would have
|
||
* to deal with bit alignment, and I haven't written that.
|
||
*
|
||
* This is a common case for things like ellipse drawing.
|
||
* When there's no alpha involved and the mask is boolean,
|
||
* we can avoid all the division and multiplication.
|
||
*/
|
||
if(mask->chan == GREY1 && !(src->flags&Falpha))
|
||
calc = boolcalc[op];
|
||
else if(op == SoverD && !(src->flags&Falpha))
|
||
calc = alphacalcS;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If the image has a small enough repl rectangle,
|
||
* we can just read each line once and cache them.
|
||
*/
|
||
if(spar.replcache){
|
||
spar.replcall = rdsrc;
|
||
rdsrc = replread;
|
||
}
|
||
if(mpar.replcache){
|
||
mpar.replcall = rdmask;
|
||
rdmask = replread;
|
||
}
|
||
|
||
if(allocdrawbuf() < 0)
|
||
return 0;
|
||
|
||
/*
|
||
* Before we were saving only offsets from drawbuf in the parameter
|
||
* structures; now that drawbuf has been grown to accomodate us,
|
||
* we can fill in the pointers.
|
||
*/
|
||
spar.bufbase = drawbuf+spar.bufoff;
|
||
mpar.bufbase = drawbuf+mpar.bufoff;
|
||
dpar.bufbase = drawbuf+dpar.bufoff;
|
||
spar.convbuf = drawbuf+spar.convbufoff;
|
||
|
||
if(dir == 1){
|
||
starty = 0;
|
||
endy = dy;
|
||
}else{
|
||
starty = dy-1;
|
||
endy = -1;
|
||
}
|
||
|
||
/*
|
||
* srcy, masky, and dsty are offsets from the top of their
|
||
* respective Rectangles. they need to be contained within
|
||
* the rectangles, so clipy can keep them there without division.
|
||
*/
|
||
srcy = (starty + sr.min.y - src->r.min.y)%Dy(src->r);
|
||
masky = (starty + mr.min.y - mask->r.min.y)%Dy(mask->r);
|
||
dsty = starty + r.min.y - dst->r.min.y;
|
||
|
||
assert(0 <= srcy && srcy < Dy(src->r));
|
||
assert(0 <= masky && masky < Dy(mask->r));
|
||
assert(0 <= dsty && dsty < Dy(dst->r));
|
||
|
||
for(y=starty; y!=endy; y+=dir, srcy+=dir, masky+=dir, dsty+=dir){
|
||
clipy(src, &srcy);
|
||
clipy(dst, &dsty);
|
||
clipy(mask, &masky);
|
||
|
||
bsrc = rdsrc(&spar, spar.bufbase, srcy);
|
||
DBG print("[");
|
||
bmask = rdmask(&mpar, mpar.bufbase, masky);
|
||
DBG print("]\n");
|
||
bdst = rddst(&dpar, dpar.bufbase, dsty);
|
||
DBG dumpbuf("src", bsrc, dx);
|
||
DBG dumpbuf("mask", bmask, dx);
|
||
DBG dumpbuf("dst", bdst, dx);
|
||
bdst = calc(bdst, bsrc, bmask, dx, isgrey, op);
|
||
wrdst(&dpar, dpar.bytermin+dsty*dpar.bwidth, bdst);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
#undef DBG
|
||
|
||
static Buffer
|
||
alphacalc0(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
|
||
{
|
||
USED(grey);
|
||
USED(op);
|
||
memset(bdst.rgba, 0, dx*bdst.delta);
|
||
return bdst;
|
||
}
|
||
|
||
static Buffer
|
||
alphacalc14(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int fd, sadelta;
|
||
int i, sa, ma, q;
|
||
ulong s, t;
|
||
|
||
obdst = bdst;
|
||
sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
|
||
q = bsrc.delta == 4 && bdst.delta == 4;
|
||
|
||
for(i=0; i<dx; i++){
|
||
sa = *bsrc.alpha;
|
||
ma = *bmask.alpha;
|
||
fd = MUL(sa, ma, t);
|
||
if(op == DoutS)
|
||
fd = 255-fd;
|
||
|
||
if(grey){
|
||
*bdst.grey = MUL(fd, *bdst.grey, t);
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(q){
|
||
*bdst.rgba = MUL0123(fd, *bdst.rgba, s, t);
|
||
bsrc.rgba++;
|
||
bdst.rgba++;
|
||
bsrc.alpha += sadelta;
|
||
bmask.alpha += bmask.delta;
|
||
continue;
|
||
}
|
||
*bdst.red = MUL(fd, *bdst.red, t);
|
||
*bdst.grn = MUL(fd, *bdst.grn, t);
|
||
*bdst.blu = MUL(fd, *bdst.blu, t);
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
if(bdst.alpha != &ones){
|
||
*bdst.alpha = MUL(fd, *bdst.alpha, t);
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
bsrc.alpha += sadelta;
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
static Buffer
|
||
alphacalc2810(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int fs, sadelta;
|
||
int i, ma, da, q;
|
||
ulong s, t;
|
||
|
||
obdst = bdst;
|
||
sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
|
||
q = bsrc.delta == 4 && bdst.delta == 4;
|
||
|
||
for(i=0; i<dx; i++){
|
||
ma = *bmask.alpha;
|
||
da = *bdst.alpha;
|
||
if(op == SoutD)
|
||
da = 255-da;
|
||
fs = ma;
|
||
if(op != S)
|
||
fs = MUL(fs, da, t);
|
||
|
||
if(grey){
|
||
*bdst.grey = MUL(fs, *bsrc.grey, t);
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(q){
|
||
*bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t);
|
||
bsrc.rgba++;
|
||
bdst.rgba++;
|
||
bmask.alpha += bmask.delta;
|
||
bdst.alpha += bdst.delta;
|
||
continue;
|
||
}
|
||
*bdst.red = MUL(fs, *bsrc.red, t);
|
||
*bdst.grn = MUL(fs, *bsrc.grn, t);
|
||
*bdst.blu = MUL(fs, *bsrc.blu, t);
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
if(bdst.alpha != &ones){
|
||
*bdst.alpha = MUL(fs, *bsrc.alpha, t);
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
bsrc.alpha += sadelta;
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
static Buffer
|
||
alphacalc3679(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int fs, fd, sadelta;
|
||
int i, sa, ma, da, q;
|
||
ulong s, t, u, v;
|
||
|
||
obdst = bdst;
|
||
sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
|
||
q = bsrc.delta == 4 && bdst.delta == 4;
|
||
|
||
for(i=0; i<dx; i++){
|
||
sa = *bsrc.alpha;
|
||
ma = *bmask.alpha;
|
||
da = *bdst.alpha;
|
||
if(op == SatopD)
|
||
fs = MUL(ma, da, t);
|
||
else
|
||
fs = MUL(ma, 255-da, t);
|
||
if(op == DoverS)
|
||
fd = 255;
|
||
else{
|
||
fd = MUL(sa, ma, t);
|
||
if(op != DatopS)
|
||
fd = 255-fd;
|
||
}
|
||
|
||
if(grey){
|
||
*bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(q){
|
||
*bdst.rgba = MUL0123(fs, *bsrc.rgba, s, t)+MUL0123(fd, *bdst.rgba, u, v);
|
||
bsrc.rgba++;
|
||
bdst.rgba++;
|
||
bsrc.alpha += sadelta;
|
||
bmask.alpha += bmask.delta;
|
||
bdst.alpha += bdst.delta;
|
||
continue;
|
||
}
|
||
*bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
|
||
*bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
|
||
*bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
if(bdst.alpha != &ones){
|
||
*bdst.alpha = MUL(fs, sa, s)+MUL(fd, da, t);
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
bsrc.alpha += sadelta;
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
static Buffer
|
||
alphacalc5(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op)
|
||
{
|
||
USED(dx);
|
||
USED(grey);
|
||
USED(op);
|
||
return bdst;
|
||
}
|
||
|
||
static Buffer
|
||
alphacalc11(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int fd, sadelta;
|
||
int i, sa, ma, q;
|
||
ulong s, t, u, v;
|
||
|
||
USED(op);
|
||
obdst = bdst;
|
||
sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta;
|
||
q = bsrc.delta == 4 && bdst.delta == 4;
|
||
|
||
for(i=0; i<dx; i++){
|
||
sa = *bsrc.alpha;
|
||
ma = *bmask.alpha;
|
||
fd = 255-MUL(sa, ma, t);
|
||
|
||
if(grey){
|
||
*bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(q){
|
||
*bdst.rgba = MUL0123(ma, *bsrc.rgba, s, t)+MUL0123(fd, *bdst.rgba, u, v);
|
||
bsrc.rgba++;
|
||
bdst.rgba++;
|
||
bsrc.alpha += sadelta;
|
||
bmask.alpha += bmask.delta;
|
||
continue;
|
||
}
|
||
*bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
|
||
*bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
|
||
*bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
if(bdst.alpha != &ones){
|
||
*bdst.alpha = MUL(ma, sa, s)+MUL(fd, *bdst.alpha, t);
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
bsrc.alpha += sadelta;
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
/*
|
||
not used yet
|
||
source and mask alpha 1
|
||
static Buffer
|
||
alphacalcS0(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int i;
|
||
|
||
USED(op);
|
||
obdst = bdst;
|
||
if(bsrc.delta == bdst.delta){
|
||
memmove(bdst.rgba, bsrc.rgba, dx*bdst.delta);
|
||
return obdst;
|
||
}
|
||
for(i=0; i<dx; i++){
|
||
if(grey){
|
||
*bdst.grey = *bsrc.grey;
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
*bdst.red = *bsrc.red;
|
||
*bdst.grn = *bsrc.grn;
|
||
*bdst.blu = *bsrc.blu;
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
if(bdst.alpha != &ones){
|
||
*bdst.alpha = 255;
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
}
|
||
return obdst;
|
||
}
|
||
*/
|
||
|
||
/* source alpha 1 */
|
||
static Buffer
|
||
alphacalcS(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int fd;
|
||
int i, ma;
|
||
ulong s, t;
|
||
|
||
USED(op);
|
||
obdst = bdst;
|
||
|
||
for(i=0; i<dx; i++){
|
||
ma = *bmask.alpha;
|
||
fd = 255-ma;
|
||
|
||
if(grey){
|
||
*bdst.grey = MUL(ma, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
*bdst.red = MUL(ma, *bsrc.red, s)+MUL(fd, *bdst.red, t);
|
||
*bdst.grn = MUL(ma, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
|
||
*bdst.blu = MUL(ma, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
if(bdst.alpha != &ones){
|
||
*bdst.alpha = ma+MUL(fd, *bdst.alpha, t);
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
static Buffer
|
||
boolcalc14(Buffer bdst, Buffer b1, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int i, ma, zero;
|
||
|
||
obdst = bdst;
|
||
|
||
for(i=0; i<dx; i++){
|
||
ma = *bmask.alpha;
|
||
zero = ma ? op == DoutS : op == DinS;
|
||
|
||
if(grey){
|
||
if(zero)
|
||
*bdst.grey = 0;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(zero)
|
||
*bdst.red = *bdst.grn = *bdst.blu = 0;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
if(bdst.alpha != &ones){
|
||
if(zero)
|
||
*bdst.alpha = 0;
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
static Buffer
|
||
boolcalc236789(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int fs, fd;
|
||
int i, ma, da, zero;
|
||
ulong s, t;
|
||
|
||
obdst = bdst;
|
||
zero = !(op&1);
|
||
|
||
for(i=0; i<dx; i++){
|
||
ma = *bmask.alpha;
|
||
da = *bdst.alpha;
|
||
fs = da;
|
||
if(op&2)
|
||
fs = 255-da;
|
||
fd = 0;
|
||
if(op&4)
|
||
fd = 255;
|
||
|
||
if(grey){
|
||
if(ma)
|
||
*bdst.grey = MUL(fs, *bsrc.grey, s)+MUL(fd, *bdst.grey, t);
|
||
else if(zero)
|
||
*bdst.grey = 0;
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(ma){
|
||
*bdst.red = MUL(fs, *bsrc.red, s)+MUL(fd, *bdst.red, t);
|
||
*bdst.grn = MUL(fs, *bsrc.grn, s)+MUL(fd, *bdst.grn, t);
|
||
*bdst.blu = MUL(fs, *bsrc.blu, s)+MUL(fd, *bdst.blu, t);
|
||
}
|
||
else if(zero)
|
||
*bdst.red = *bdst.grn = *bdst.blu = 0;
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
if(bdst.alpha != &ones){
|
||
if(ma)
|
||
*bdst.alpha = fs+MUL(fd, da, t);
|
||
else if(zero)
|
||
*bdst.alpha = 0;
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
}
|
||
return obdst;
|
||
}
|
||
|
||
static Buffer
|
||
boolcalc1011(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op)
|
||
{
|
||
Buffer obdst;
|
||
int i, ma, zero;
|
||
|
||
obdst = bdst;
|
||
zero = !(op&1);
|
||
|
||
for(i=0; i<dx; i++){
|
||
ma = *bmask.alpha;
|
||
|
||
if(grey){
|
||
if(ma)
|
||
*bdst.grey = *bsrc.grey;
|
||
else if(zero)
|
||
*bdst.grey = 0;
|
||
bsrc.grey += bsrc.delta;
|
||
bdst.grey += bdst.delta;
|
||
}else{
|
||
if(ma){
|
||
*bdst.red = *bsrc.red;
|
||
*bdst.grn = *bsrc.grn;
|
||
*bdst.blu = *bsrc.blu;
|
||
}
|
||
else if(zero)
|
||
*bdst.red = *bdst.grn = *bdst.blu = 0;
|
||
bsrc.red += bsrc.delta;
|
||
bsrc.blu += bsrc.delta;
|
||
bsrc.grn += bsrc.delta;
|
||
bdst.red += bdst.delta;
|
||
bdst.blu += bdst.delta;
|
||
bdst.grn += bdst.delta;
|
||
}
|
||
bmask.alpha += bmask.delta;
|
||
if(bdst.alpha != &ones){
|
||
if(ma)
|
||
*bdst.alpha = 255;
|
||
else if(zero)
|
||
*bdst.alpha = 0;
|
||
bdst.alpha += bdst.delta;
|
||
}
|
||
}
|
||
return obdst;
|
||
}
|
||
/*
|
||
* Replicated cached scan line read. Call the function listed in the Param,
|
||
* but cache the result so that for replicated images we only do the work once.
|
||
*/
|
||
static Buffer
|
||
replread(Param *p, uchar *s, int y)
|
||
{
|
||
Buffer *b;
|
||
|
||
USED(s);
|
||
b = &p->bcache[y];
|
||
if((p->bfilled & (1<<y)) == 0){
|
||
p->bfilled |= 1<<y;
|
||
*b = p->replcall(p, p->bufbase+y*p->bufdelta, y);
|
||
}
|
||
return *b;
|
||
}
|
||
|
||
/*
|
||
* Alpha reading function that simply relabels the grey pointer.
|
||
*/
|
||
static Buffer
|
||
greymaskread(Param *p, uchar *buf, int y)
|
||
{
|
||
Buffer b;
|
||
|
||
b = p->greymaskcall(p, buf, y);
|
||
b.alpha = b.grey;
|
||
return b;
|
||
}
|
||
|
||
#define DBG if(0)
|
||
static Buffer
|
||
readnbit(Param *p, uchar *buf, int y)
|
||
{
|
||
Buffer b;
|
||
Memimage *img;
|
||
uchar *repl, *r, *w, *ow, bits;
|
||
int i, n, sh, depth, x, dx, npack, nbits;
|
||
|
||
b.rgba = (ulong*)buf;
|
||
b.grey = w = buf;
|
||
b.red = b.blu = b.grn = w;
|
||
b.alpha = &ones;
|
||
b.delta = 1;
|
||
|
||
dx = p->dx;
|
||
img = p->img;
|
||
depth = img->depth;
|
||
repl = &replbit[depth][0];
|
||
npack = 8/depth;
|
||
sh = 8-depth;
|
||
|
||
/* copy from p->r.min.x until end of repl rectangle */
|
||
x = p->r.min.x;
|
||
n = dx;
|
||
if(n > p->img->r.max.x - x)
|
||
n = p->img->r.max.x - x;
|
||
|
||
r = p->bytermin + y*p->bwidth;
|
||
DBG print("readnbit dx %d %p=%p+%d*%d, *r=%d fetch %d ", dx, r, p->bytermin, y, p->bwidth, *r, n);
|
||
bits = *r++;
|
||
nbits = 8;
|
||
if(i=x&(npack-1)){
|
||
DBG print("throwaway %d...", i);
|
||
bits <<= depth*i;
|
||
nbits -= depth*i;
|
||
}
|
||
for(i=0; i<n; i++){
|
||
if(nbits == 0){
|
||
DBG print("(%.2ux)...", *r);
|
||
bits = *r++;
|
||
nbits = 8;
|
||
}
|
||
*w++ = repl[bits>>sh];
|
||
DBG print("bit %x...", repl[bits>>sh]);
|
||
bits <<= depth;
|
||
nbits -= depth;
|
||
}
|
||
dx -= n;
|
||
if(dx == 0)
|
||
return b;
|
||
|
||
assert(x+i == p->img->r.max.x);
|
||
|
||
/* copy from beginning of repl rectangle until where we were before. */
|
||
x = p->img->r.min.x;
|
||
n = dx;
|
||
if(n > p->r.min.x - x)
|
||
n = p->r.min.x - x;
|
||
|
||
r = p->bytey0s + y*p->bwidth;
|
||
DBG print("x=%d r=%p...", x, r);
|
||
bits = *r++;
|
||
nbits = 8;
|
||
if(i=x&(npack-1)){
|
||
bits <<= depth*i;
|
||
nbits -= depth*i;
|
||
}
|
||
DBG print("nbits=%d...", nbits);
|
||
for(i=0; i<n; i++){
|
||
if(nbits == 0){
|
||
bits = *r++;
|
||
nbits = 8;
|
||
}
|
||
*w++ = repl[bits>>sh];
|
||
DBG print("bit %x...", repl[bits>>sh]);
|
||
bits <<= depth;
|
||
nbits -= depth;
|
||
DBG print("bits %x nbits %d...", bits, nbits);
|
||
}
|
||
dx -= n;
|
||
if(dx == 0)
|
||
return b;
|
||
|
||
assert(dx > 0);
|
||
/* now we have exactly one full scan line: just replicate the buffer itself until we are done */
|
||
ow = buf;
|
||
while(dx--)
|
||
*w++ = *ow++;
|
||
|
||
return b;
|
||
}
|
||
#undef DBG
|
||
|
||
#define DBG if(0)
|
||
static void
|
||
writenbit(Param *p, uchar *w, Buffer src)
|
||
{
|
||
uchar *r;
|
||
ulong bits;
|
||
int i, sh, depth, npack, nbits, x, ex;
|
||
|
||
assert(src.grey != nil && src.delta == 1);
|
||
|
||
x = p->r.min.x;
|
||
ex = x+p->dx;
|
||
depth = p->img->depth;
|
||
npack = 8/depth;
|
||
|
||
i=x&(npack-1);
|
||
bits = i ? (*w >> (8-depth*i)) : 0;
|
||
nbits = depth*i;
|
||
sh = 8-depth;
|
||
r = src.grey;
|
||
|
||
for(; x<ex; x++){
|
||
bits <<= depth;
|
||
DBG print(" %x", *r);
|
||
bits |= (*r++ >> sh);
|
||
nbits += depth;
|
||
if(nbits == 8){
|
||
*w++ = bits;
|
||
nbits = 0;
|
||
}
|
||
}
|
||
|
||
if(nbits){
|
||
sh = 8-nbits;
|
||
bits <<= sh;
|
||
bits |= *w & ((1<<sh)-1);
|
||
*w = bits;
|
||
}
|
||
DBG print("\n");
|
||
return;
|
||
}
|
||
#undef DBG
|
||
|
||
static Buffer
|
||
readcmap(Param *p, uchar *buf, int y)
|
||
{
|
||
Buffer b;
|
||
int a, convgrey, copyalpha, dx, i, m;
|
||
uchar *q, *cmap, *begin, *end, *r, *w;
|
||
|
||
begin = p->bytey0s + y*p->bwidth;
|
||
r = p->bytermin + y*p->bwidth;
|
||
end = p->bytey0e + y*p->bwidth;
|
||
cmap = p->img->cmap->cmap2rgb;
|
||
convgrey = p->convgrey;
|
||
copyalpha = (p->img->flags&Falpha) ? 1 : 0;
|
||
|
||
w = buf;
|
||
dx = p->dx;
|
||
if(copyalpha){
|
||
b.alpha = buf++;
|
||
a = p->img->shift[CAlpha]/8;
|
||
m = p->img->shift[CMap]/8;
|
||
for(i=0; i<dx; i++){
|
||
*w++ = r[a];
|
||
q = cmap+r[m]*3;
|
||
r += 2;
|
||
if(r == end)
|
||
r = begin;
|
||
if(convgrey){
|
||
*w++ = RGB2K(q[0], q[1], q[2]);
|
||
}else{
|
||
*w++ = q[2]; /* blue */
|
||
*w++ = q[1]; /* green */
|
||
*w++ = q[0]; /* red */
|
||
}
|
||
}
|
||
}else{
|
||
b.alpha = &ones;
|
||
for(i=0; i<dx; i++){
|
||
q = cmap+*r++*3;
|
||
if(r == end)
|
||
r = begin;
|
||
if(convgrey){
|
||
*w++ = RGB2K(q[0], q[1], q[2]);
|
||
}else{
|
||
*w++ = q[2]; /* blue */
|
||
*w++ = q[1]; /* green */
|
||
*w++ = q[0]; /* red */
|
||
}
|
||
}
|
||
}
|
||
|
||
b.rgba = (ulong*)(buf-copyalpha);
|
||
|
||
if(convgrey){
|
||
b.grey = buf;
|
||
b.red = b.blu = b.grn = buf;
|
||
b.delta = 1+copyalpha;
|
||
}else{
|
||
b.blu = buf;
|
||
b.grn = buf+1;
|
||
b.red = buf+2;
|
||
b.grey = nil;
|
||
b.delta = 3+copyalpha;
|
||
}
|
||
return b;
|
||
}
|
||
|
||
static void
|
||
writecmap(Param *p, uchar *w, Buffer src)
|
||
{
|
||
uchar *cmap, *red, *grn, *blu;
|
||
int i, dx, delta;
|
||
|
||
cmap = p->img->cmap->rgb2cmap;
|
||
|
||
delta = src.delta;
|
||
red= src.red;
|
||
grn = src.grn;
|
||
blu = src.blu;
|
||
|
||
dx = p->dx;
|
||
for(i=0; i<dx; i++, red+=delta, grn+=delta, blu+=delta)
|
||
*w++ = cmap[(*red>>4)*256+(*grn>>4)*16+(*blu>>4)];
|
||
}
|
||
|
||
#define DBG if(0)
|
||
static Buffer
|
||
readbyte(Param *p, uchar *buf, int y)
|
||
{
|
||
Buffer b;
|
||
Memimage *img;
|
||
int dx, isgrey, convgrey, alphaonly, copyalpha, i, nb;
|
||
uchar *begin, *end, *r, *w, *rrepl, *grepl, *brepl, *arepl, *krepl;
|
||
uchar ured, ugrn, ublu;
|
||
ulong u;
|
||
|
||
img = p->img;
|
||
begin = p->bytey0s + y*p->bwidth;
|
||
r = p->bytermin + y*p->bwidth;
|
||
end = p->bytey0e + y*p->bwidth;
|
||
|
||
w = buf;
|
||
dx = p->dx;
|
||
nb = img->depth/8;
|
||
|
||
convgrey = p->convgrey; /* convert rgb to grey */
|
||
isgrey = img->flags&Fgrey;
|
||
alphaonly = p->alphaonly;
|
||
copyalpha = (img->flags&Falpha) ? 1 : 0;
|
||
|
||
DBG print("copyalpha %d alphaonly %d convgrey %d isgrey %d\n", copyalpha, alphaonly, convgrey, isgrey);
|
||
/* if we can, avoid processing everything */
|
||
if(!(img->flags&Frepl) && !convgrey && (img->flags&Fbytes)){
|
||
memset(&b, 0, sizeof b);
|
||
if(p->needbuf){
|
||
memmove(buf, r, dx*nb);
|
||
r = buf;
|
||
}
|
||
b.rgba = (ulong*)r;
|
||
if(copyalpha)
|
||
b.alpha = r+img->shift[CAlpha]/8;
|
||
else
|
||
b.alpha = &ones;
|
||
if(isgrey){
|
||
b.grey = r+img->shift[CGrey]/8;
|
||
b.red = b.grn = b.blu = b.grey;
|
||
}else{
|
||
b.red = r+img->shift[CRed]/8;
|
||
b.grn = r+img->shift[CGreen]/8;
|
||
b.blu = r+img->shift[CBlue]/8;
|
||
}
|
||
b.delta = nb;
|
||
return b;
|
||
}
|
||
|
||
DBG print("2\n");
|
||
rrepl = replbit[img->nbits[CRed]];
|
||
grepl = replbit[img->nbits[CGreen]];
|
||
brepl = replbit[img->nbits[CBlue]];
|
||
arepl = replbit[img->nbits[CAlpha]];
|
||
krepl = replbit[img->nbits[CGrey]];
|
||
|
||
for(i=0; i<dx; i++){
|
||
u = r[0] | (r[1]<<8) | (r[2]<<16) | (r[3]<<24);
|
||
if(copyalpha) {
|
||
*w++ = arepl[(u>>img->shift[CAlpha]) & img->mask[CAlpha]];
|
||
DBG print("a %x\n", w[-1]);
|
||
}
|
||
|
||
if(isgrey)
|
||
*w++ = krepl[(u >> img->shift[CGrey]) & img->mask[CGrey]];
|
||
else if(!alphaonly){
|
||
ured = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
|
||
ugrn = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
|
||
ublu = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
|
||
if(convgrey){
|
||
DBG print("g %x %x %x\n", ured, ugrn, ublu);
|
||
*w++ = RGB2K(ured, ugrn, ublu);
|
||
DBG print("%x\n", w[-1]);
|
||
}else{
|
||
*w++ = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]];
|
||
*w++ = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]];
|
||
*w++ = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]];
|
||
}
|
||
}
|
||
r += nb;
|
||
if(r == end)
|
||
r = begin;
|
||
}
|
||
|
||
b.alpha = copyalpha ? buf : &ones;
|
||
b.rgba = (ulong*)buf;
|
||
if(alphaonly){
|
||
b.red = b.grn = b.blu = b.grey = nil;
|
||
if(!copyalpha)
|
||
b.rgba = nil;
|
||
b.delta = 1;
|
||
}else if(isgrey || convgrey){
|
||
b.grey = buf+copyalpha;
|
||
b.red = b.grn = b.blu = buf+copyalpha;
|
||
b.delta = copyalpha+1;
|
||
DBG print("alpha %x grey %x\n", b.alpha ? *b.alpha : 0xFF, *b.grey);
|
||
}else{
|
||
b.blu = buf+copyalpha;
|
||
b.grn = buf+copyalpha+1;
|
||
b.grey = nil;
|
||
b.red = buf+copyalpha+2;
|
||
b.delta = copyalpha+3;
|
||
}
|
||
return b;
|
||
}
|
||
#undef DBG
|
||
|
||
#define DBG if(0)
|
||
static void
|
||
writebyte(Param *p, uchar *w, Buffer src)
|
||
{
|
||
Memimage *img;
|
||
int i, isalpha, isgrey, nb, delta, dx, adelta;
|
||
uchar ff, *red, *grn, *blu, *grey, *alpha;
|
||
ulong u, mask;
|
||
|
||
img = p->img;
|
||
|
||
red = src.red;
|
||
grn = src.grn;
|
||
blu = src.blu;
|
||
alpha = src.alpha;
|
||
delta = src.delta;
|
||
grey = src.grey;
|
||
dx = p->dx;
|
||
|
||
nb = img->depth/8;
|
||
mask = (nb==4) ? 0 : ~((1<<img->depth)-1);
|
||
|
||
isalpha = img->flags&Falpha;
|
||
isgrey = img->flags&Fgrey;
|
||
adelta = src.delta;
|
||
|
||
if(isalpha && (alpha == nil || alpha == &ones)){
|
||
ff = 0xFF;
|
||
alpha = &ff;
|
||
adelta = 0;
|
||
}
|
||
|
||
for(i=0; i<dx; i++){
|
||
u = w[0] | (w[1]<<8) | (w[2]<<16) | (w[3]<<24);
|
||
DBG print("u %.8lux...", u);
|
||
u &= mask;
|
||
DBG print("&mask %.8lux...", u);
|
||
if(isgrey){
|
||
u |= ((*grey >> (8-img->nbits[CGrey])) & img->mask[CGrey]) << img->shift[CGrey];
|
||
DBG print("|grey %.8lux...", u);
|
||
grey += delta;
|
||
}else{
|
||
u |= ((*red >> (8-img->nbits[CRed])) & img->mask[CRed]) << img->shift[CRed];
|
||
u |= ((*grn >> (8-img->nbits[CGreen])) & img->mask[CGreen]) << img->shift[CGreen];
|
||
u |= ((*blu >> (8-img->nbits[CBlue])) & img->mask[CBlue]) << img->shift[CBlue];
|
||
red += delta;
|
||
grn += delta;
|
||
blu += delta;
|
||
DBG print("|rgb %.8lux...", u);
|
||
}
|
||
|
||
if(isalpha){
|
||
u |= ((*alpha >> (8-img->nbits[CAlpha])) & img->mask[CAlpha]) << img->shift[CAlpha];
|
||
alpha += adelta;
|
||
DBG print("|alpha %.8lux...", u);
|
||
}
|
||
|
||
w[0] = u;
|
||
w[1] = u>>8;
|
||
w[2] = u>>16;
|
||
w[3] = u>>24;
|
||
w += nb;
|
||
}
|
||
}
|
||
#undef DBG
|
||
|
||
static Readfn*
|
||
readfn(Memimage *img)
|
||
{
|
||
if(img->depth < 8)
|
||
return readnbit;
|
||
if(img->nbits[CMap] == 8)
|
||
return readcmap;
|
||
return readbyte;
|
||
}
|
||
|
||
static Readfn*
|
||
readalphafn(Memimage *m)
|
||
{
|
||
USED(m);
|
||
return readbyte;
|
||
}
|
||
|
||
static Writefn*
|
||
writefn(Memimage *img)
|
||
{
|
||
if(img->depth < 8)
|
||
return writenbit;
|
||
if(img->chan == CMAP8)
|
||
return writecmap;
|
||
return writebyte;
|
||
}
|
||
|
||
static void
|
||
nullwrite(Param *p, uchar *s, Buffer b)
|
||
{
|
||
USED(p);
|
||
USED(s);
|
||
}
|
||
|
||
static Buffer
|
||
readptr(Param *p, uchar *s, int y)
|
||
{
|
||
Buffer b;
|
||
uchar *q;
|
||
|
||
USED(s);
|
||
q = p->bytermin + y*p->bwidth;
|
||
b.red = q; /* ptr to data */
|
||
b.grn = b.blu = b.grey = b.alpha = nil;
|
||
b.rgba = (ulong*)q;
|
||
b.delta = p->img->depth/8;
|
||
return b;
|
||
}
|
||
|
||
static Buffer
|
||
boolmemmove(Buffer bdst, Buffer bsrc, Buffer b1, int dx, int i, int o)
|
||
{
|
||
USED(i);
|
||
USED(o);
|
||
memmove(bdst.red, bsrc.red, dx*bdst.delta);
|
||
return bdst;
|
||
}
|
||
|
||
static Buffer
|
||
boolcopy8(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
|
||
{
|
||
uchar *m, *r, *w, *ew;
|
||
|
||
USED(i);
|
||
USED(o);
|
||
m = bmask.grey;
|
||
w = bdst.red;
|
||
r = bsrc.red;
|
||
ew = w+dx;
|
||
for(; w < ew; w++,r++)
|
||
if(*m++)
|
||
*w = *r;
|
||
return bdst; /* not used */
|
||
}
|
||
|
||
static Buffer
|
||
boolcopy16(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
|
||
{
|
||
uchar *m;
|
||
ushort *r, *w, *ew;
|
||
|
||
USED(i);
|
||
USED(o);
|
||
m = bmask.grey;
|
||
w = (ushort*)bdst.red;
|
||
r = (ushort*)bsrc.red;
|
||
ew = w+dx;
|
||
for(; w < ew; w++,r++)
|
||
if(*m++)
|
||
*w = *r;
|
||
return bdst; /* not used */
|
||
}
|
||
|
||
static Buffer
|
||
boolcopy24(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
|
||
{
|
||
uchar *m;
|
||
uchar *r, *w, *ew;
|
||
|
||
USED(i);
|
||
USED(o);
|
||
m = bmask.grey;
|
||
w = bdst.red;
|
||
r = bsrc.red;
|
||
ew = w+dx*3;
|
||
while(w < ew){
|
||
if(*m++){
|
||
*w++ = *r++;
|
||
*w++ = *r++;
|
||
*w++ = *r++;
|
||
}else{
|
||
w += 3;
|
||
r += 3;
|
||
}
|
||
}
|
||
return bdst; /* not used */
|
||
}
|
||
|
||
static Buffer
|
||
boolcopy32(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o)
|
||
{
|
||
uchar *m;
|
||
ulong *r, *w, *ew;
|
||
|
||
USED(i);
|
||
USED(o);
|
||
m = bmask.grey;
|
||
w = (ulong*)bdst.red;
|
||
r = (ulong*)bsrc.red;
|
||
ew = w+dx;
|
||
for(; w < ew; w++,r++)
|
||
if(*m++)
|
||
*w = *r;
|
||
return bdst; /* not used */
|
||
}
|
||
|
||
static Buffer
|
||
genconv(Param *p, uchar *buf, int y)
|
||
{
|
||
Buffer b;
|
||
int nb;
|
||
uchar *r, *w, *ew;
|
||
|
||
/* read from source into RGB format in convbuf */
|
||
b = p->convreadcall(p, p->convbuf, y);
|
||
|
||
/* write RGB format into dst format in buf */
|
||
p->convwritecall(p->convdpar, buf, b);
|
||
|
||
if(p->convdx){
|
||
nb = p->convdpar->img->depth/8;
|
||
r = buf;
|
||
w = buf+nb*p->dx;
|
||
ew = buf+nb*p->convdx;
|
||
while(w<ew)
|
||
*w++ = *r++;
|
||
}
|
||
|
||
b.red = buf;
|
||
b.blu = b.grn = b.grey = b.alpha = nil;
|
||
b.rgba = (ulong*)buf;
|
||
b.delta = 0;
|
||
|
||
return b;
|
||
}
|
||
|
||
static Readfn*
|
||
convfn(Memimage *dst, Param *dpar, Memimage *src, Param *spar)
|
||
{
|
||
if(dst->chan == src->chan && !(src->flags&Frepl)){
|
||
//if(drawdebug) iprint("readptr...");
|
||
return readptr;
|
||
}
|
||
|
||
if(dst->chan==CMAP8 && (src->chan==GREY1||src->chan==GREY2||src->chan==GREY4)){
|
||
/* cheat because we know the replicated value is exactly the color map entry. */
|
||
//if(drawdebug) iprint("Readnbit...");
|
||
return readnbit;
|
||
}
|
||
|
||
spar->convreadcall = readfn(src);
|
||
spar->convwritecall = writefn(dst);
|
||
spar->convdpar = dpar;
|
||
|
||
/* allocate a conversion buffer */
|
||
spar->convbufoff = ndrawbuf;
|
||
ndrawbuf += spar->dx*4;
|
||
|
||
if(spar->dx > Dx(spar->img->r)){
|
||
spar->convdx = spar->dx;
|
||
spar->dx = Dx(spar->img->r);
|
||
}
|
||
|
||
//if(drawdebug) iprint("genconv...");
|
||
return genconv;
|
||
}
|
||
|
||
ulong
|
||
_pixelbits(Memimage *i, Point pt)
|
||
{
|
||
uchar *p;
|
||
ulong val;
|
||
int off, bpp, npack;
|
||
|
||
val = 0;
|
||
p = byteaddr(i, pt);
|
||
switch(bpp=i->depth){
|
||
case 1:
|
||
case 2:
|
||
case 4:
|
||
npack = 8/bpp;
|
||
off = pt.x%npack;
|
||
val = p[0] >> bpp*(npack-1-off);
|
||
val &= (1<<bpp)-1;
|
||
break;
|
||
case 8:
|
||
val = p[0];
|
||
break;
|
||
case 16:
|
||
val = p[0]|(p[1]<<8);
|
||
break;
|
||
case 24:
|
||
val = p[0]|(p[1]<<8)|(p[2]<<16);
|
||
break;
|
||
case 32:
|
||
val = p[0]|(p[1]<<8)|(p[2]<<16)|(p[3]<<24);
|
||
break;
|
||
}
|
||
while(bpp<32){
|
||
val |= val<<bpp;
|
||
bpp *= 2;
|
||
}
|
||
return val;
|
||
}
|
||
|
||
static Calcfn*
|
||
boolcopyfn(Memimage *img, Memimage *mask)
|
||
{
|
||
if(mask->flags&Frepl && Dx(mask->r)==1 && Dy(mask->r)==1 && pixelbits(mask, mask->r.min)==~0)
|
||
return boolmemmove;
|
||
|
||
switch(img->depth){
|
||
case 8:
|
||
return boolcopy8;
|
||
case 16:
|
||
return boolcopy16;
|
||
case 24:
|
||
return boolcopy24;
|
||
case 32:
|
||
return boolcopy32;
|
||
default:
|
||
assert(0 /* boolcopyfn */);
|
||
}
|
||
return nil;
|
||
}
|
||
|
||
/*
|
||
* Optimized draw for filling and scrolling; uses memset and memmove.
|
||
*/
|
||
static void
|
||
memsetb(void *vp, uchar val, int n)
|
||
{
|
||
uchar *p, *ep;
|
||
|
||
p = vp;
|
||
ep = p+n;
|
||
while(p<ep)
|
||
*p++ = val;
|
||
}
|
||
|
||
static void
|
||
memsets(void *vp, ushort val, int n)
|
||
{
|
||
ushort *p, *ep;
|
||
|
||
p = vp;
|
||
ep = p+n;
|
||
while(p<ep)
|
||
*p++ = val;
|
||
}
|
||
|
||
static void
|
||
memsetl(void *vp, ulong val, int n)
|
||
{
|
||
ulong *p, *ep;
|
||
|
||
p = vp;
|
||
ep = p+n;
|
||
while(p<ep)
|
||
*p++ = val;
|
||
}
|
||
|
||
static void
|
||
memset24(void *vp, ulong val, int n)
|
||
{
|
||
uchar *p, *ep;
|
||
uchar a,b,c;
|
||
|
||
p = vp;
|
||
ep = p+3*n;
|
||
a = val;
|
||
b = val>>8;
|
||
c = val>>16;
|
||
while(p<ep){
|
||
*p++ = a;
|
||
*p++ = b;
|
||
*p++ = c;
|
||
}
|
||
}
|
||
|
||
ulong
|
||
_imgtorgba(Memimage *img, ulong val)
|
||
{
|
||
uchar r, g, b, a;
|
||
int nb, ov, v;
|
||
ulong chan;
|
||
uchar *p;
|
||
|
||
a = 0xFF;
|
||
r = g = b = 0xAA; /* garbage */
|
||
for(chan=img->chan; chan; chan>>=8){
|
||
nb = NBITS(chan);
|
||
ov = v = val&((1<<nb)-1);
|
||
val >>= nb;
|
||
|
||
while(nb < 8){
|
||
v |= v<<nb;
|
||
nb *= 2;
|
||
}
|
||
v >>= (nb-8);
|
||
|
||
switch(TYPE(chan)){
|
||
case CRed:
|
||
r = v;
|
||
break;
|
||
case CGreen:
|
||
g = v;
|
||
break;
|
||
case CBlue:
|
||
b = v;
|
||
break;
|
||
case CAlpha:
|
||
a = v;
|
||
break;
|
||
case CGrey:
|
||
r = g = b = v;
|
||
break;
|
||
case CMap:
|
||
p = img->cmap->cmap2rgb+3*ov;
|
||
r = *p++;
|
||
g = *p++;
|
||
b = *p;
|
||
break;
|
||
}
|
||
}
|
||
return (r<<24)|(g<<16)|(b<<8)|a;
|
||
}
|
||
|
||
ulong
|
||
_rgbatoimg(Memimage *img, ulong rgba)
|
||
{
|
||
ulong chan;
|
||
int d, nb;
|
||
ulong v;
|
||
uchar *p, r, g, b, a, m;
|
||
|
||
v = 0;
|
||
r = rgba>>24;
|
||
g = rgba>>16;
|
||
b = rgba>>8;
|
||
a = rgba;
|
||
d = 0;
|
||
for(chan=img->chan; chan; chan>>=8){
|
||
nb = NBITS(chan);
|
||
switch(TYPE(chan)){
|
||
case CRed:
|
||
v |= (r>>(8-nb))<<d;
|
||
break;
|
||
case CGreen:
|
||
v |= (g>>(8-nb))<<d;
|
||
break;
|
||
case CBlue:
|
||
v |= (b>>(8-nb))<<d;
|
||
break;
|
||
case CAlpha:
|
||
v |= (a>>(8-nb))<<d;
|
||
break;
|
||
case CMap:
|
||
p = img->cmap->rgb2cmap;
|
||
m = p[(r>>4)*256+(g>>4)*16+(b>>4)];
|
||
v |= (m>>(8-nb))<<d;
|
||
break;
|
||
case CGrey:
|
||
m = RGB2K(r,g,b);
|
||
v |= (m>>(8-nb))<<d;
|
||
break;
|
||
}
|
||
d += nb;
|
||
}
|
||
// print("rgba2img %.8lux = %.*lux\n", rgba, 2*d/8, v);
|
||
return v;
|
||
}
|
||
|
||
#define DBG if(0)
|
||
static int
|
||
memoptdraw(Memdrawparam *par)
|
||
{
|
||
int m, y, dy, dx, op;
|
||
ulong v;
|
||
Memimage *src;
|
||
Memimage *dst;
|
||
|
||
dx = Dx(par->r);
|
||
dy = Dy(par->r);
|
||
src = par->src;
|
||
dst = par->dst;
|
||
op = par->op;
|
||
|
||
DBG print("state %lux mval %lux dd %d\n", par->state, par->mval, dst->depth);
|
||
/*
|
||
* If we have an opaque mask and source is one opaque pixel we can convert to the
|
||
* destination format and just replicate with memset.
|
||
*/
|
||
m = Simplesrc|Simplemask|Fullmask;
|
||
if((par->state&m)==m && (par->srgba&0xFF) == 0xFF && (op ==S || op == SoverD)){
|
||
uchar *dp, p[4];
|
||
int d, dwid, ppb, np, nb;
|
||
uchar lm, rm;
|
||
|
||
DBG print("memopt, dst %p, dst->data->bdata %p\n", dst, dst->data->bdata);
|
||
dwid = dst->width*sizeof(ulong);
|
||
dp = byteaddr(dst, par->r.min);
|
||
v = par->sdval;
|
||
DBG print("sdval %lud, depth %d\n", v, dst->depth);
|
||
switch(dst->depth){
|
||
case 1:
|
||
case 2:
|
||
case 4:
|
||
for(d=dst->depth; d<8; d*=2)
|
||
v |= (v<<d);
|
||
ppb = 8/dst->depth; /* pixels per byte */
|
||
m = ppb-1;
|
||
/* left edge */
|
||
np = par->r.min.x&m; /* no. pixels unused on left side of word */
|
||
dx -= (ppb-np);
|
||
nb = 8 - np * dst->depth; /* no. bits used on right side of word */
|
||
lm = (1<<nb)-1;
|
||
DBG print("np %d x %d nb %d lm %ux ppb %d m %ux\n", np, par->r.min.x, nb, lm, ppb, m);
|
||
|
||
/* right edge */
|
||
np = par->r.max.x&m; /* no. pixels used on left side of word */
|
||
dx -= np;
|
||
nb = 8 - np * dst->depth; /* no. bits unused on right side of word */
|
||
rm = ~((1<<nb)-1);
|
||
DBG print("np %d x %d nb %d rm %ux ppb %d m %ux\n", np, par->r.max.x, nb, rm, ppb, m);
|
||
|
||
DBG print("dx %d Dx %d\n", dx, Dx(par->r));
|
||
/* lm, rm are masks that are 1 where we should touch the bits */
|
||
if(dx < 0){ /* just one byte */
|
||
lm &= rm;
|
||
for(y=0; y<dy; y++, dp+=dwid)
|
||
*dp ^= (v ^ *dp) & lm;
|
||
}else if(dx == 0){ /* no full bytes */
|
||
if(lm)
|
||
dwid--;
|
||
|
||
for(y=0; y<dy; y++, dp+=dwid){
|
||
if(lm){
|
||
DBG print("dp %p v %lux lm %ux (v ^ *dp) & lm %lux\n", dp, v, lm, (v^*dp)&lm);
|
||
*dp ^= (v ^ *dp) & lm;
|
||
dp++;
|
||
}
|
||
*dp ^= (v ^ *dp) & rm;
|
||
}
|
||
}else{ /* full bytes in middle */
|
||
dx /= ppb;
|
||
if(lm)
|
||
dwid--;
|
||
dwid -= dx;
|
||
|
||
for(y=0; y<dy; y++, dp+=dwid){
|
||
if(lm){
|
||
*dp ^= (v ^ *dp) & lm;
|
||
dp++;
|
||
}
|
||
memset(dp, v, dx);
|
||
dp += dx;
|
||
*dp ^= (v ^ *dp) & rm;
|
||
}
|
||
}
|
||
return 1;
|
||
case 8:
|
||
for(y=0; y<dy; y++, dp+=dwid)
|
||
memset(dp, v, dx);
|
||
return 1;
|
||
case 16:
|
||
p[0] = v; /* make little endian */
|
||
p[1] = v>>8;
|
||
v = *(ushort*)p;
|
||
DBG print("dp=%p; dx=%d; for(y=0; y<%d; y++, dp+=%d)\nmemsets(dp, v, dx);\n",
|
||
dp, dx, dy, dwid);
|
||
for(y=0; y<dy; y++, dp+=dwid)
|
||
memsets(dp, v, dx);
|
||
return 1;
|
||
case 24:
|
||
for(y=0; y<dy; y++, dp+=dwid)
|
||
memset24(dp, v, dx);
|
||
return 1;
|
||
case 32:
|
||
p[0] = v; /* make little endian */
|
||
p[1] = v>>8;
|
||
p[2] = v>>16;
|
||
p[3] = v>>24;
|
||
v = *(ulong*)p;
|
||
for(y=0; y<dy; y++, dp+=dwid)
|
||
memsetl(dp, v, dx);
|
||
return 1;
|
||
default:
|
||
assert(0 /* bad dest depth in memoptdraw */);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If no source alpha, an opaque mask, we can just copy the
|
||
* source onto the destination. If the channels are the same and
|
||
* the source is not replicated, memmove suffices.
|
||
*/
|
||
m = Simplemask|Fullmask;
|
||
if((par->state&(m|Replsrc))==m && src->depth >= 8
|
||
&& src->chan == dst->chan && !(src->flags&Falpha) && (op == S || op == SoverD)){
|
||
uchar *sp, *dp;
|
||
long swid, dwid, nb;
|
||
int dir;
|
||
|
||
if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min))
|
||
dir = -1;
|
||
else
|
||
dir = 1;
|
||
|
||
swid = src->width*sizeof(ulong);
|
||
dwid = dst->width*sizeof(ulong);
|
||
sp = byteaddr(src, par->sr.min);
|
||
dp = byteaddr(dst, par->r.min);
|
||
if(dir == -1){
|
||
sp += (dy-1)*swid;
|
||
dp += (dy-1)*dwid;
|
||
swid = -swid;
|
||
dwid = -dwid;
|
||
}
|
||
nb = (dx*src->depth)/8;
|
||
for(y=0; y<dy; y++, sp+=swid, dp+=dwid)
|
||
memmove(dp, sp, nb);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* If we have a 1-bit mask, 1-bit source, and 1-bit destination, and
|
||
* they're all bit aligned, we can just use bit operators. This happens
|
||
* when we're manipulating boolean masks, e.g. in the arc code.
|
||
*/
|
||
if((par->state&(Simplemask|Simplesrc|Replmask|Replsrc))==0
|
||
&& dst->chan==GREY1 && src->chan==GREY1 && par->mask->chan==GREY1
|
||
&& (par->r.min.x&7)==(par->sr.min.x&7) && (par->r.min.x&7)==(par->mr.min.x&7)){
|
||
uchar *sp, *dp, *mp;
|
||
uchar lm, rm;
|
||
long swid, dwid, mwid;
|
||
int i, x, dir;
|
||
|
||
sp = byteaddr(src, par->sr.min);
|
||
dp = byteaddr(dst, par->r.min);
|
||
mp = byteaddr(par->mask, par->mr.min);
|
||
swid = src->width*sizeof(ulong);
|
||
dwid = dst->width*sizeof(ulong);
|
||
mwid = par->mask->width*sizeof(ulong);
|
||
|
||
if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min)){
|
||
dir = -1;
|
||
}else
|
||
dir = 1;
|
||
|
||
lm = 0xFF>>(par->r.min.x&7);
|
||
rm = 0xFF<<(8-(par->r.max.x&7));
|
||
dx -= (8-(par->r.min.x&7)) + (par->r.max.x&7);
|
||
|
||
if(dx < 0){ /* one byte wide */
|
||
lm &= rm;
|
||
if(dir == -1){
|
||
dp += dwid*(dy-1);
|
||
sp += swid*(dy-1);
|
||
mp += mwid*(dy-1);
|
||
dwid = -dwid;
|
||
swid = -swid;
|
||
mwid = -mwid;
|
||
}
|
||
for(y=0; y<dy; y++){
|
||
*dp ^= (*dp ^ *sp) & *mp & lm;
|
||
dp += dwid;
|
||
sp += swid;
|
||
mp += mwid;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
dx /= 8;
|
||
if(dir == 1){
|
||
i = (lm!=0)+dx+(rm!=0);
|
||
mwid -= i;
|
||
swid -= i;
|
||
dwid -= i;
|
||
for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
|
||
if(lm){
|
||
*dp ^= (*dp ^ *sp++) & *mp++ & lm;
|
||
dp++;
|
||
}
|
||
for(x=0; x<dx; x++){
|
||
*dp ^= (*dp ^ *sp++) & *mp++;
|
||
dp++;
|
||
}
|
||
if(rm){
|
||
*dp ^= (*dp ^ *sp++) & *mp++ & rm;
|
||
dp++;
|
||
}
|
||
}
|
||
return 1;
|
||
}else{
|
||
/* dir == -1 */
|
||
i = (lm!=0)+dx+(rm!=0);
|
||
dp += dwid*(dy-1)+i-1;
|
||
sp += swid*(dy-1)+i-1;
|
||
mp += mwid*(dy-1)+i-1;
|
||
dwid = -dwid+i;
|
||
swid = -swid+i;
|
||
mwid = -mwid+i;
|
||
for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){
|
||
if(rm){
|
||
*dp ^= (*dp ^ *sp--) & *mp-- & rm;
|
||
dp--;
|
||
}
|
||
for(x=0; x<dx; x++){
|
||
*dp ^= (*dp ^ *sp--) & *mp--;
|
||
dp--;
|
||
}
|
||
if(lm){
|
||
*dp ^= (*dp ^ *sp--) & *mp-- & lm;
|
||
dp--;
|
||
}
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
#undef DBG
|
||
|
||
/*
|
||
* Boolean character drawing.
|
||
* Solid opaque color through a 1-bit greyscale mask.
|
||
*/
|
||
#define DBG if(0)
|
||
static int
|
||
chardraw(Memdrawparam *par)
|
||
{
|
||
ulong bits;
|
||
int i, ddepth, dy, dx, x, bx, ex, y, npack, bsh, depth, op;
|
||
ulong v, maskwid, dstwid;
|
||
uchar *wp, *rp, *q, *wc;
|
||
ushort *ws;
|
||
ulong *wl;
|
||
uchar sp[4];
|
||
Rectangle r, mr;
|
||
Memimage *mask, *src, *dst;
|
||
|
||
if(0) if(drawdebug) iprint("chardraw? mf %lux md %d sf %lux dxs %d dys %d dd %d ddat %p sdat %p\n",
|
||
par->mask->flags, par->mask->depth, par->src->flags,
|
||
Dx(par->src->r), Dy(par->src->r), par->dst->depth, par->dst->data, par->src->data);
|
||
|
||
mask = par->mask;
|
||
src = par->src;
|
||
dst = par->dst;
|
||
r = par->r;
|
||
mr = par->mr;
|
||
op = par->op;
|
||
|
||
if((par->state&(Replsrc|Simplesrc|Replmask)) != (Replsrc|Simplesrc)
|
||
|| mask->depth != 1 || src->flags&Falpha || dst->depth<8 || dst->data==src->data
|
||
|| op != SoverD)
|
||
return 0;
|
||
|
||
//if(drawdebug) iprint("chardraw...");
|
||
|
||
depth = mask->depth;
|
||
maskwid = mask->width*sizeof(ulong);
|
||
rp = byteaddr(mask, mr.min);
|
||
npack = 8/depth;
|
||
bsh = (mr.min.x % npack) * depth;
|
||
|
||
wp = byteaddr(dst, r.min);
|
||
dstwid = dst->width*sizeof(ulong);
|
||
DBG print("bsh %d\n", bsh);
|
||
dy = Dy(r);
|
||
dx = Dx(r);
|
||
|
||
ddepth = dst->depth;
|
||
|
||
/*
|
||
* for loop counts from bsh to bsh+dx
|
||
*
|
||
* we want the bottom bits to be the amount
|
||
* to shift the pixels down, so for n≡0 (mod 8) we want
|
||
* bottom bits 7. for n≡1, 6, etc.
|
||
* the bits come from -n-1.
|
||
*/
|
||
|
||
bx = -bsh-1;
|
||
ex = -bsh-1-dx;
|
||
SET(bits);
|
||
v = par->sdval;
|
||
|
||
/* make little endian */
|
||
sp[0] = v;
|
||
sp[1] = v>>8;
|
||
sp[2] = v>>16;
|
||
sp[3] = v>>24;
|
||
|
||
//print("sp %x %x %x %x\n", sp[0], sp[1], sp[2], sp[3]);
|
||
for(y=0; y<dy; y++, rp+=maskwid, wp+=dstwid){
|
||
q = rp;
|
||
if(bsh)
|
||
bits = *q++;
|
||
switch(ddepth){
|
||
case 8:
|
||
//if(drawdebug) iprint("8loop...");
|
||
wc = wp;
|
||
for(x=bx; x>ex; x--, wc++){
|
||
i = x&7;
|
||
if(i == 8-1)
|
||
bits = *q++;
|
||
DBG print("bits %lux sh %d...", bits, i);
|
||
if((bits>>i)&1)
|
||
*wc = v;
|
||
}
|
||
break;
|
||
case 16:
|
||
ws = (ushort*)wp;
|
||
v = *(ushort*)sp;
|
||
for(x=bx; x>ex; x--, ws++){
|
||
i = x&7;
|
||
if(i == 8-1)
|
||
bits = *q++;
|
||
DBG print("bits %lux sh %d...", bits, i);
|
||
if((bits>>i)&1)
|
||
*ws = v;
|
||
}
|
||
break;
|
||
case 24:
|
||
wc = wp;
|
||
for(x=bx; x>ex; x--, wc+=3){
|
||
i = x&7;
|
||
if(i == 8-1)
|
||
bits = *q++;
|
||
DBG print("bits %lux sh %d...", bits, i);
|
||
if((bits>>i)&1){
|
||
wc[0] = sp[0];
|
||
wc[1] = sp[1];
|
||
wc[2] = sp[2];
|
||
}
|
||
}
|
||
break;
|
||
case 32:
|
||
wl = (ulong*)wp;
|
||
v = *(ulong*)sp;
|
||
for(x=bx; x>ex; x--, wl++){
|
||
i = x&7;
|
||
if(i == 8-1)
|
||
bits = *q++;
|
||
DBG iprint("bits %lux sh %d...", bits, i);
|
||
if((bits>>i)&1)
|
||
*wl = v;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
DBG print("\n");
|
||
return 1;
|
||
}
|
||
#undef DBG
|
||
|
||
|
||
/*
|
||
* Fill entire byte with replicated (if necessary) copy of source pixel,
|
||
* assuming destination ldepth is >= source ldepth.
|
||
*
|
||
* This code is just plain wrong for >8bpp.
|
||
*
|
||
ulong
|
||
membyteval(Memimage *src)
|
||
{
|
||
int i, val, bpp;
|
||
uchar uc;
|
||
|
||
unloadmemimage(src, src->r, &uc, 1);
|
||
bpp = src->depth;
|
||
uc <<= (src->r.min.x&(7/src->depth))*src->depth;
|
||
uc &= ~(0xFF>>bpp);
|
||
/* pixel value is now in high part of byte. repeat throughout byte
|
||
val = uc;
|
||
for(i=bpp; i<8; i<<=1)
|
||
val |= val>>i;
|
||
return val;
|
||
}
|
||
*
|
||
*/
|
||
|
||
void
|
||
_memfillcolor(Memimage *i, ulong val)
|
||
{
|
||
ulong bits;
|
||
int d, y;
|
||
uchar p[4];
|
||
|
||
if(val == DNofill)
|
||
return;
|
||
|
||
bits = _rgbatoimg(i, val);
|
||
switch(i->depth){
|
||
case 24: /* 24-bit images suck */
|
||
for(y=i->r.min.y; y<i->r.max.y; y++)
|
||
memset24(byteaddr(i, Pt(i->r.min.x, y)), bits, Dx(i->r));
|
||
break;
|
||
default: /* 1, 2, 4, 8, 16, 32 */
|
||
for(d=i->depth; d<32; d*=2)
|
||
bits = (bits << d) | bits;
|
||
p[0] = bits; /* make little endian */
|
||
p[1] = bits>>8;
|
||
p[2] = bits>>16;
|
||
p[3] = bits>>24;
|
||
bits = *(ulong*)p;
|
||
memsetl(wordaddr(i, i->r.min), bits, i->width*Dy(i->r));
|
||
break;
|
||
}
|
||
}
|
||
|