38 lines
749 B
C
38 lines
749 B
C
|
#include "os.h"
|
||
|
#include <mp.h>
|
||
|
#include <libsec.h>
|
||
|
|
||
|
// decrypt rsa using garner's algorithm for the chinese remainder theorem
|
||
|
// seminumerical algorithms, knuth, pp 253-254
|
||
|
// applied cryptography, menezes et al, pg 612
|
||
|
mpint*
|
||
|
rsadecrypt(RSApriv *rsa, mpint *in, mpint *out)
|
||
|
{
|
||
|
mpint *v1, *v2;
|
||
|
|
||
|
if(out == nil)
|
||
|
out = mpnew(0);
|
||
|
|
||
|
// convert in to modular representation
|
||
|
v1 = mpnew(0);
|
||
|
mpmod(in, rsa->p, v1);
|
||
|
v2 = mpnew(0);
|
||
|
mpmod(in, rsa->q, v2);
|
||
|
|
||
|
// exponentiate the modular rep
|
||
|
mpexp(v1, rsa->kp, rsa->p, v1);
|
||
|
mpexp(v2, rsa->kq, rsa->q, v2);
|
||
|
|
||
|
// out = v1 + p*((v2-v1)*c2 mod q)
|
||
|
mpsub(v2, v1, v2);
|
||
|
mpmul(v2, rsa->c2, v2);
|
||
|
mpmod(v2, rsa->q, v2);
|
||
|
mpmul(v2, rsa->p, out);
|
||
|
mpadd(v1, out, out);
|
||
|
|
||
|
mpfree(v1);
|
||
|
mpfree(v2);
|
||
|
|
||
|
return out;
|
||
|
}
|