/* GStreamer * Copyright (C) <1999> Erik Walthinsen * <2006,2011> Stefan Kost * <2007-2009> Sebastian Dröge * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "gstfastspectrum.h" GST_DEBUG_CATEGORY_STATIC(gst_fastspectrum_debug); namespace { // Spectrum properties constexpr auto DEFAULT_INTERVAL = (GST_SECOND / 10); constexpr auto DEFAULT_BANDS = 128; enum { PROP_0, PROP_INTERVAL, PROP_BANDS }; } // namespace #define gst_fastspectrum_parent_class parent_class #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wold-style-cast" G_DEFINE_TYPE(GstFastSpectrum, gst_fastspectrum, GST_TYPE_AUDIO_FILTER) #pragma GCC diagnostic pop static void gst_fastspectrum_finalize(GObject *object); static void gst_fastspectrum_set_property(GObject *object, guint prop_id, const GValue *value, GParamSpec *pspec); static void gst_fastspectrum_get_property(GObject *object, guint prop_id, GValue *value, GParamSpec *pspec); static gboolean gst_fastspectrum_start(GstBaseTransform *trans); static gboolean gst_fastspectrum_stop(GstBaseTransform *trans); static GstFlowReturn gst_fastspectrum_transform_ip(GstBaseTransform *trans, GstBuffer *buffer); static gboolean gst_fastspectrum_setup(GstAudioFilter *base, const GstAudioInfo *info); static void gst_fastspectrum_class_init(GstFastSpectrumClass *klass) { GObjectClass *gobject_class = G_OBJECT_CLASS(klass); GstElementClass *element_class = GST_ELEMENT_CLASS(klass); GstBaseTransformClass *trans_class = GST_BASE_TRANSFORM_CLASS(klass); GstAudioFilterClass *filter_class = GST_AUDIO_FILTER_CLASS(klass); GstCaps *caps = nullptr; gobject_class->set_property = gst_fastspectrum_set_property; gobject_class->get_property = gst_fastspectrum_get_property; gobject_class->finalize = gst_fastspectrum_finalize; trans_class->start = GST_DEBUG_FUNCPTR(gst_fastspectrum_start); trans_class->stop = GST_DEBUG_FUNCPTR(gst_fastspectrum_stop); trans_class->transform_ip = GST_DEBUG_FUNCPTR(gst_fastspectrum_transform_ip); trans_class->passthrough_on_same_caps = TRUE; filter_class->setup = GST_DEBUG_FUNCPTR(gst_fastspectrum_setup); g_object_class_install_property(gobject_class, PROP_INTERVAL, g_param_spec_uint64("interval", "Interval", "Interval of time between message posts (in nanoseconds)", 1, G_MAXUINT64, DEFAULT_INTERVAL, static_cast(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS))); g_object_class_install_property(gobject_class, PROP_BANDS, g_param_spec_uint("bands", "Bands", "Number of frequency bands", 0, G_MAXUINT, DEFAULT_BANDS, static_cast(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS))); GST_DEBUG_CATEGORY_INIT(gst_fastspectrum_debug, "spectrum", 0, "audio spectrum analyser element"); gst_element_class_set_static_metadata(element_class, "Spectrum analyzer", "Filter/Analyzer/Audio", "Run an FFT on the audio signal, output spectrum data", "Erik Walthinsen , " "Stefan Kost , " "Sebastian Dröge "); #if G_BYTE_ORDER == G_LITTLE_ENDIAN caps = gst_caps_from_string(GST_AUDIO_CAPS_MAKE("{ S16LE, S24LE, S32LE, F32LE, F64LE }") ", layout = (string) interleaved, channels = 1"); #else caps = gst_caps_from_string(GST_AUDIO_CAPS_MAKE("{ S16BE, S24BE, S32BE, F32BE, F64BE }") ", layout = (string) interleaved, channels = 1"); #endif gst_audio_filter_class_add_pad_templates(filter_class, caps); gst_caps_unref(caps); klass->fftw_lock = new QMutex; } static void gst_fastspectrum_init(GstFastSpectrum *spectrum) { spectrum->interval = DEFAULT_INTERVAL; spectrum->bands = DEFAULT_BANDS; spectrum->channel_data_initialized = false; g_mutex_init(&spectrum->lock); } static void gst_fastspectrum_alloc_channel_data(GstFastSpectrum *spectrum) { guint bands = spectrum->bands; guint nfft = 2 * bands - 2; spectrum->input_ring_buffer = new double[nfft]; spectrum->fft_input = reinterpret_cast(fftw_malloc(sizeof(double) * nfft)); spectrum->fft_output = reinterpret_cast(fftw_malloc(sizeof(fftw_complex) * (nfft / 2 + 1))); spectrum->spect_magnitude = new double[bands] {}; GstFastSpectrumClass *klass = reinterpret_cast(G_OBJECT_GET_CLASS(spectrum)); { QMutexLocker l(klass->fftw_lock); spectrum->plan = fftw_plan_dft_r2c_1d(static_cast(nfft), spectrum->fft_input, spectrum->fft_output, FFTW_ESTIMATE); } spectrum->channel_data_initialized = true; } static void gst_fastspectrum_free_channel_data(GstFastSpectrum *spectrum) { GstFastSpectrumClass *klass = reinterpret_cast(G_OBJECT_GET_CLASS(spectrum)); if (spectrum->channel_data_initialized) { { QMutexLocker l(klass->fftw_lock); fftw_destroy_plan(spectrum->plan); } fftw_free(spectrum->fft_input); fftw_free(spectrum->fft_output); delete[] spectrum->input_ring_buffer; delete[] spectrum->spect_magnitude; spectrum->channel_data_initialized = false; } } static void gst_fastspectrum_flush(GstFastSpectrum *spectrum) { spectrum->num_frames = 0; spectrum->num_fft = 0; spectrum->accumulated_error = 0; } static void gst_fastspectrum_reset_state(GstFastSpectrum *spectrum) { GST_DEBUG_OBJECT(spectrum, "resetting state"); gst_fastspectrum_free_channel_data(spectrum); gst_fastspectrum_flush(spectrum); } static void gst_fastspectrum_finalize(GObject *object) { GstFastSpectrum *spectrum = reinterpret_cast(object); gst_fastspectrum_reset_state(spectrum); g_mutex_clear(&spectrum->lock); G_OBJECT_CLASS(parent_class)->finalize(object); } static void gst_fastspectrum_set_property(GObject *object, guint prop_id, const GValue *value, GParamSpec *pspec) { GstFastSpectrum *filter = reinterpret_cast(object); switch (prop_id) { case PROP_INTERVAL: { guint64 interval = g_value_get_uint64(value); g_mutex_lock(&filter->lock); if (filter->interval != interval) { filter->interval = interval; gst_fastspectrum_reset_state(filter); } g_mutex_unlock(&filter->lock); break; } case PROP_BANDS: { guint bands = g_value_get_uint(value); g_mutex_lock(&filter->lock); if (filter->bands != bands) { filter->bands = bands; gst_fastspectrum_reset_state(filter); } g_mutex_unlock(&filter->lock); break; } default: G_OBJECT_WARN_INVALID_PROPERTY_ID(object, prop_id, pspec); break; } } static void gst_fastspectrum_get_property(GObject *object, guint prop_id, GValue *value, GParamSpec *pspec) { GstFastSpectrum *filter = reinterpret_cast(object); switch (prop_id) { case PROP_INTERVAL: g_value_set_uint64(value, filter->interval); break; case PROP_BANDS: g_value_set_uint(value, filter->bands); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID(object, prop_id, pspec); break; } } static gboolean gst_fastspectrum_start(GstBaseTransform *trans) { GstFastSpectrum *spectrum = reinterpret_cast(trans); gst_fastspectrum_reset_state(spectrum); return TRUE; } static gboolean gst_fastspectrum_stop(GstBaseTransform *trans) { GstFastSpectrum *spectrum = reinterpret_cast(trans); gst_fastspectrum_reset_state(spectrum); return TRUE; } // Mixing data readers static void input_data_mixed_float(const guint8 *_in, double *out, guint len, double max_value, guint op, guint nfft) { Q_UNUSED(max_value); const gfloat *in = reinterpret_cast(_in); guint ip = 0; for (guint j = 0; j < len; j++) { out[op] = in[ip++]; op = (op + 1) % nfft; } } static void input_data_mixed_double(const guint8 *_in, double *out, guint len, double max_value, guint op, guint nfft) { Q_UNUSED(max_value); const gdouble *in = reinterpret_cast(_in); guint ip = 0; for (guint j = 0; j < len; j++) { out[op] = in[ip++]; op = (op + 1) % nfft; } } static void input_data_mixed_int32_max(const guint8 *_in, double *out, guint len, double max_value, guint op, guint nfft) { const gint32 *in = reinterpret_cast(_in); guint ip = 0; for (guint j = 0; j < len; j++) { out[op] = in[ip++] / max_value; op = (op + 1) % nfft; } } static void input_data_mixed_int24_max(const guint8 *_in, double *out, guint len, double max_value, guint op, guint nfft) { for (guint j = 0; j < len; j++) { #if G_BYTE_ORDER == G_BIG_ENDIAN guint32 value = GST_READ_UINT24_BE(_in); #else guint32 value = GST_READ_UINT24_LE(_in); #endif if (value & 0x00800000) { value |= 0xff000000; } out[op] = value / max_value; op = (op + 1) % nfft; _in += 3; } } static void input_data_mixed_int16_max(const guint8 *_in, double *out, guint len, double max_value, guint op, guint nfft) { const gint16 *in = reinterpret_cast(_in); guint ip = 0; for (guint j = 0; j < len; j++) { out[op] = in[ip++] / max_value; op = (op + 1) % nfft; } } static gboolean gst_fastspectrum_setup(GstAudioFilter *base, const GstAudioInfo *info) { GstFastSpectrum *spectrum = reinterpret_cast(base); GstFastSpectrumInputData input_data = nullptr; g_mutex_lock(&spectrum->lock); switch (GST_AUDIO_INFO_FORMAT(info)) { case GST_AUDIO_FORMAT_S16: input_data = input_data_mixed_int16_max; break; case GST_AUDIO_FORMAT_S24: input_data = input_data_mixed_int24_max; break; case GST_AUDIO_FORMAT_S32: input_data = input_data_mixed_int32_max; break; case GST_AUDIO_FORMAT_F32: input_data = input_data_mixed_float; break; case GST_AUDIO_FORMAT_F64: input_data = input_data_mixed_double; break; default: g_assert_not_reached(); break; } spectrum->input_data = input_data; gst_fastspectrum_reset_state(spectrum); g_mutex_unlock(&spectrum->lock); return TRUE; } static void gst_fastspectrum_run_fft(GstFastSpectrum *spectrum, guint input_pos) { guint bands = spectrum->bands; guint nfft = 2 * bands - 2; for (guint i = 0; i < nfft; i++) { spectrum->fft_input[i] = spectrum->input_ring_buffer[(input_pos + i) % nfft]; } // Should be safe to execute the same plan multiple times in parallel. fftw_execute(spectrum->plan); // Calculate magnitude in db for (guint i = 0; i < bands; i++) { gdouble val = spectrum->fft_output[i][0] * spectrum->fft_output[i][0]; val += spectrum->fft_output[i][1] * spectrum->fft_output[i][1]; val /= nfft * nfft; spectrum->spect_magnitude[i] += val; } } static GstFlowReturn gst_fastspectrum_transform_ip(GstBaseTransform *trans, GstBuffer *buffer) { GstFastSpectrum *spectrum = reinterpret_cast(trans); guint rate = GST_AUDIO_FILTER_RATE(spectrum); guint bps = GST_AUDIO_FILTER_BPS(spectrum); guint bpf = GST_AUDIO_FILTER_BPF(spectrum); double max_value = static_cast((1UL << ((bps << 3) - 1)) - 1); guint bands = spectrum->bands; guint nfft = 2 * bands - 2; guint input_pos = 0; GstMapInfo map; const guint8 *data = nullptr; gsize size = 0; GstFastSpectrumInputData input_data = nullptr; g_mutex_lock(&spectrum->lock); gst_buffer_map(buffer, &map, GST_MAP_READ); data = map.data; size = map.size; GST_LOG_OBJECT(spectrum, "input size: %" G_GSIZE_FORMAT " bytes", size); if (GST_BUFFER_IS_DISCONT(buffer)) { GST_DEBUG_OBJECT(spectrum, "Discontinuity detected -- flushing"); gst_fastspectrum_flush(spectrum); } // If we don't have a FFT context yet (or it was reset due to parameter changes) get one and allocate memory for everything if (!spectrum->channel_data_initialized) { GST_DEBUG_OBJECT(spectrum, "allocating for bands %u", bands); gst_fastspectrum_alloc_channel_data(spectrum); // Number of sample frames we process before posting a message interval is in ns spectrum->frames_per_interval = gst_util_uint64_scale(spectrum->interval, rate, GST_SECOND); spectrum->frames_todo = spectrum->frames_per_interval; // Rounding error for frames_per_interval in ns, aggregated it in accumulated_error spectrum->error_per_interval = (spectrum->interval * rate) % GST_SECOND; if (spectrum->frames_per_interval == 0) { spectrum->frames_per_interval = 1; } GST_INFO_OBJECT(spectrum, "interval %" GST_TIME_FORMAT ", fpi %" G_GUINT64_FORMAT ", error %" GST_TIME_FORMAT, GST_TIME_ARGS(spectrum->interval), spectrum->frames_per_interval, GST_TIME_ARGS(spectrum->error_per_interval)); spectrum->input_pos = 0; gst_fastspectrum_flush(spectrum); } if (spectrum->num_frames == 0) { spectrum->message_ts = GST_BUFFER_TIMESTAMP(buffer); } input_pos = spectrum->input_pos; input_data = spectrum->input_data; while (size >= bpf) { // Run input_data for a chunk of data guint fft_todo = nfft - (spectrum->num_frames % nfft); guint msg_todo = spectrum->frames_todo - spectrum->num_frames; GST_LOG_OBJECT(spectrum, "message frames todo: %u, fft frames todo: %u, input frames %" G_GSIZE_FORMAT, msg_todo, fft_todo, (size / bpf)); guint block_size = msg_todo; if (block_size > (size / bpf)) { block_size = (size / bpf); } if (block_size > fft_todo) { block_size = fft_todo; } // Move the current frames into our ringbuffers input_data(data, spectrum->input_ring_buffer, block_size, max_value, input_pos, nfft); data += block_size * bpf; size -= block_size * bpf; input_pos = (input_pos + block_size) % nfft; spectrum->num_frames += block_size; gboolean have_full_interval = (spectrum->num_frames == spectrum->frames_todo); GST_LOG_OBJECT(spectrum, "size: %" G_GSIZE_FORMAT ", do-fft = %d, do-message = %d", size, (spectrum->num_frames % nfft == 0), have_full_interval); // If we have enough frames for an FFT or we have all frames required for the interval and we haven't run a FFT, then run an FFT if ((spectrum->num_frames % nfft == 0) || (have_full_interval && !spectrum->num_fft)) { gst_fastspectrum_run_fft(spectrum, input_pos); spectrum->num_fft++; } // Do we have the FFTs for one interval? if (have_full_interval) { GST_DEBUG_OBJECT(spectrum, "nfft: %u frames: %" G_GUINT64_FORMAT " fpi: %" G_GUINT64_FORMAT " error: %" GST_TIME_FORMAT, nfft, spectrum->num_frames, spectrum->frames_per_interval, GST_TIME_ARGS(spectrum->accumulated_error)); spectrum->frames_todo = spectrum->frames_per_interval; if (spectrum->accumulated_error >= GST_SECOND) { spectrum->accumulated_error -= GST_SECOND; spectrum->frames_todo++; } spectrum->accumulated_error += spectrum->error_per_interval; if (spectrum->output_callback) { // Calculate average for (guint i = 0; i < spectrum->bands; i++) { spectrum->spect_magnitude[i] /= static_cast(spectrum->num_fft); } spectrum->output_callback(spectrum->spect_magnitude, static_cast(spectrum->bands)); // Reset spectrum accumulators memset(spectrum->spect_magnitude, 0, spectrum->bands * sizeof(double)); } if (GST_CLOCK_TIME_IS_VALID(spectrum->message_ts)) { spectrum->message_ts += gst_util_uint64_scale(spectrum->num_frames, GST_SECOND, rate); } spectrum->num_frames = 0; spectrum->num_fft = 0; } } spectrum->input_pos = input_pos; gst_buffer_unmap(buffer, &map); g_mutex_unlock(&spectrum->lock); g_assert(size == 0); return GST_FLOW_OK; }