/*************************************************************************** copyright : (C) 2002 - 2008 by Scott Wheeler email : wheeler@kde.org ***************************************************************************/ /*************************************************************************** * This library is free software; you can redistribute it and/or modify * * it under the terms of the GNU Lesser General Public License version * * 2.1 as published by the Free Software Foundation. * * * * This library is distributed in the hope that it will be useful, but * * WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the Free Software * * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * * 02110-1301 USA * * * * Alternatively, this file is available under the Mozilla Public * * License Version 1.1. You may obtain a copy of the License at * * http://www.mozilla.org/MPL/ * ***************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "tbytevector.h" // This is a bit ugly to keep writing over and over again. // A rather obscure feature of the C++ spec that I hadn't thought of that makes // working with C libs much more efficient. There's more here: // // http://www.informit.com/isapi/product_id~{9C84DAB4-FE6E-49C5-BB0A-FB50331233EA}/content/index.asp namespace TagLib { template int findChar( const TIterator dataBegin, const TIterator dataEnd, char c, unsigned int offset, int byteAlign) { const size_t dataSize = dataEnd - dataBegin; if(offset + 1 > dataSize) return -1; // n % 0 is invalid if(byteAlign == 0) return -1; for(TIterator it = dataBegin + offset; it < dataEnd; it += byteAlign) { if(*it == c) return static_cast(it - dataBegin); } return -1; } template int findVector( const TIterator dataBegin, const TIterator dataEnd, const TIterator patternBegin, const TIterator patternEnd, unsigned int offset, int byteAlign) { const size_t dataSize = dataEnd - dataBegin; const size_t patternSize = patternEnd - patternBegin; if(patternSize == 0 || offset + patternSize > dataSize) return -1; // Special case that pattern contains just single char. if(patternSize == 1) return findChar(dataBegin, dataEnd, *patternBegin, offset, byteAlign); // n % 0 is invalid if(byteAlign == 0) return -1; // We don't use sophisticated algorithms like Knuth-Morris-Pratt here. // In the current implementation of TagLib, data and patterns are too small // for such algorithms to work effectively. for(TIterator it = dataBegin + offset; it < dataEnd - patternSize + 1; it += byteAlign) { TIterator itData = it; TIterator itPattern = patternBegin; while(*itData == *itPattern) { ++itData; ++itPattern; if(itPattern == patternEnd) return static_cast(it - dataBegin); } } return -1; } template T toNumber(const ByteVector &v, size_t offset, size_t length, bool mostSignificantByteFirst) { if(offset >= v.size()) { debug("toNumber() -- No data to convert. Returning 0."); return 0; } length = std::min(length, v.size() - offset); T sum = 0; for(size_t i = 0; i < length; i++) { const size_t shift = (mostSignificantByteFirst ? length - 1 - i : i) * 8; sum |= static_cast(static_cast(v[static_cast(offset + i)])) << shift; } return sum; } template T toNumber(const ByteVector &v, size_t offset, bool mostSignificantByteFirst) { const bool isBigEndian = (Utils::systemByteOrder() == Utils::BigEndian); const bool swap = (mostSignificantByteFirst != isBigEndian); if(offset + sizeof(T) > v.size()) return toNumber(v, offset, v.size() - offset, mostSignificantByteFirst); // Uses memcpy instead of reinterpret_cast to avoid an alignment exception. T tmp; ::memcpy(&tmp, v.data() + offset, sizeof(T)); if(swap) return Utils::byteSwap(tmp); else return tmp; } template ByteVector fromNumber(T value, bool mostSignificantByteFirst) { const bool isBigEndian = (Utils::systemByteOrder() == Utils::BigEndian); const bool swap = (mostSignificantByteFirst != isBigEndian); if(swap) value = Utils::byteSwap(value); return ByteVector(reinterpret_cast(&value), sizeof(T)); } template TFloat toFloat(const ByteVector &v, size_t offset) { if(offset > v.size() - sizeof(TInt)) { debug("toFloat() - offset is out of range. Returning 0."); return 0.0; } union { TInt i; TFloat f; } tmp; ::memcpy(&tmp, v.data() + offset, sizeof(TInt)); if(ENDIAN != Utils::systemByteOrder()) tmp.i = Utils::byteSwap(tmp.i); return tmp.f; } template ByteVector fromFloat(TFloat value) { union { TInt i; TFloat f; } tmp; tmp.f = value; if(ENDIAN != Utils::systemByteOrder()) tmp.i = Utils::byteSwap(tmp.i); return ByteVector(reinterpret_cast(&tmp), sizeof(TInt)); } template long double toFloat80(const ByteVector &v, size_t offset) { using std::swap; if(offset > v.size() - 10) { debug("toFloat80() - offset is out of range. Returning 0."); return 0.0; } unsigned char bytes[10]; ::memcpy(bytes, v.data() + offset, 10); if(ENDIAN == Utils::LittleEndian) { swap(bytes[0], bytes[9]); swap(bytes[1], bytes[8]); swap(bytes[2], bytes[7]); swap(bytes[3], bytes[6]); swap(bytes[4], bytes[5]); } // 1-bit sign const bool negative = ((bytes[0] & 0x80) != 0); // 15-bit exponent const int exponent = ((bytes[0] & 0x7F) << 8) | bytes[1]; // 64-bit fraction. Leading 1 is explicit. const unsigned long long fraction = (static_cast(bytes[2]) << 56) | (static_cast(bytes[3]) << 48) | (static_cast(bytes[4]) << 40) | (static_cast(bytes[5]) << 32) | (static_cast(bytes[6]) << 24) | (static_cast(bytes[7]) << 16) | (static_cast(bytes[8]) << 8) | (static_cast(bytes[9])); long double val; if(exponent == 0 && fraction == 0) val = 0; else { if(exponent == 0x7FFF) { debug("toFloat80() - can't handle the infinity or NaN. Returning 0."); return 0.0; } else val = ::ldexp(static_cast(fraction), exponent - 16383 - 63); } if(negative) return -val; else return val; } class ByteVector::ByteVectorPrivate { public: ByteVectorPrivate(unsigned int l, char c) : counter(new RefCounter()), data(new std::vector(l, c)), offset(0), length(l) {} ByteVectorPrivate(const char *s, unsigned int l) : counter(new RefCounter()), data(new std::vector(s, s + l)), offset(0), length(l) {} ByteVectorPrivate(const ByteVectorPrivate &d, unsigned int o, unsigned int l) : counter(d.counter), data(d.data), offset(d.offset + o), length(l) { counter->ref(); } ~ByteVectorPrivate() { if(counter->deref()) { delete counter; delete data; } } RefCounter *counter; std::vector *data; unsigned int offset; unsigned int length; }; //////////////////////////////////////////////////////////////////////////////// // static members //////////////////////////////////////////////////////////////////////////////// ByteVector ByteVector::null; ByteVector ByteVector::fromCString(const char *s, unsigned int length) { if(length == 0xffffffff) return ByteVector(s, static_cast(::strlen(s))); else return ByteVector(s, length); } ByteVector ByteVector::fromUInt(unsigned int value, bool mostSignificantByteFirst) { return fromNumber(value, mostSignificantByteFirst); } ByteVector ByteVector::fromShort(short value, bool mostSignificantByteFirst) { return fromNumber(value, mostSignificantByteFirst); } ByteVector ByteVector::fromLongLong(long long value, bool mostSignificantByteFirst) { return fromNumber(value, mostSignificantByteFirst); } ByteVector ByteVector::fromFloat32LE(float value) { return fromFloat(value); } ByteVector ByteVector::fromFloat32BE(float value) { return fromFloat(value); } ByteVector ByteVector::fromFloat64LE(double value) { return fromFloat(value); } ByteVector ByteVector::fromFloat64BE(double value) { return fromFloat(value); } //////////////////////////////////////////////////////////////////////////////// // public members //////////////////////////////////////////////////////////////////////////////// ByteVector::ByteVector() : d(new ByteVectorPrivate(0, '\0')) { } ByteVector::ByteVector(unsigned int size, char value) : d(new ByteVectorPrivate(size, value)) { } ByteVector::ByteVector(const ByteVector &v) : d(new ByteVectorPrivate(*v.d, 0, v.d->length)) { } ByteVector::ByteVector(const ByteVector &v, unsigned int offset, unsigned int length) : d(new ByteVectorPrivate(*v.d, offset, length)) { } ByteVector::ByteVector(char c) : d(new ByteVectorPrivate(1, c)) { } ByteVector::ByteVector(const char *data, unsigned int length) : d(new ByteVectorPrivate(data, length)) { } ByteVector::ByteVector(const char *data) : d(new ByteVectorPrivate(data, static_cast(::strlen(data)))) { } ByteVector::~ByteVector() { delete d; } ByteVector &ByteVector::setData(const char *s, unsigned int length) { ByteVector(s, length).swap(*this); return *this; } ByteVector &ByteVector::setData(const char *data) { ByteVector(data).swap(*this); return *this; } char *ByteVector::data() { detach(); return (size() > 0) ? (&(*d->data)[d->offset]) : 0; } const char *ByteVector::data() const { return (size() > 0) ? (&(*d->data)[d->offset]) : 0; } ByteVector ByteVector::mid(unsigned int index, unsigned int length) const { index = std::min(index, size()); length = std::min(length, size() - index); return ByteVector(*this, index, length); } char ByteVector::at(unsigned int index) const { return (index < size()) ? (*d->data)[d->offset + index] : 0; } int ByteVector::find(const ByteVector &pattern, unsigned int offset, int byteAlign) const { return findVector( begin(), end(), pattern.begin(), pattern.end(), offset, byteAlign); } int ByteVector::find(char c, unsigned int offset, int byteAlign) const { return findChar(begin(), end(), c, offset, byteAlign); } int ByteVector::rfind(const ByteVector &pattern, unsigned int offset, int byteAlign) const { if(offset > 0) { offset = size() - offset - pattern.size(); if(offset >= size()) offset = 0; } const int pos = findVector( rbegin(), rend(), pattern.rbegin(), pattern.rend(), offset, byteAlign); if(pos == -1) return -1; else return size() - pos - pattern.size(); } bool ByteVector::containsAt(const ByteVector &pattern, unsigned int offset, unsigned int patternOffset, unsigned int patternLength) const { if(pattern.size() < patternLength) patternLength = pattern.size(); // do some sanity checking -- all of these things are needed for the search to be valid const unsigned int compareLength = patternLength - patternOffset; if(offset + compareLength > size() || patternOffset >= pattern.size() || patternLength == 0) return false; return (::memcmp(data() + offset, pattern.data() + patternOffset, compareLength) == 0); } bool ByteVector::startsWith(const ByteVector &pattern) const { return containsAt(pattern, 0); } bool ByteVector::endsWith(const ByteVector &pattern) const { return containsAt(pattern, size() - pattern.size()); } ByteVector &ByteVector::replace(char oldByte, char newByte) { detach(); for(ByteVector::Iterator it = begin(); it != end(); ++it) { if(*it == oldByte) *it = newByte; } return *this; } ByteVector &ByteVector::replace(const ByteVector &pattern, const ByteVector &with) { if(pattern.size() == 1 && with.size() == 1) return replace(pattern[0], with[0]); // Check if there is at least one occurrence of the pattern. int offset = find(pattern, 0); if(offset == -1) return *this; if(pattern.size() == with.size()) { // We think this case might be common enough to optimize it. detach(); do { ::memcpy(data() + offset, with.data(), with.size()); offset = find(pattern, offset + pattern.size()); } while(offset != -1); } else { // Loop once to calculate the result size. unsigned int dstSize = size(); do { dstSize += with.size() - pattern.size(); offset = find(pattern, offset + pattern.size()); } while(offset != -1); // Loop again to copy modified data to the new vector. ByteVector dst(dstSize); int dstOffset = 0; offset = 0; while(true) { const int next = find(pattern, offset); if(next == -1) { ::memcpy(dst.data() + dstOffset, data() + offset, size() - offset); break; } ::memcpy(dst.data() + dstOffset, data() + offset, next - offset); dstOffset += next - offset; ::memcpy(dst.data() + dstOffset, with.data(), with.size()); dstOffset += with.size(); offset = next + pattern.size(); } swap(dst); } return *this; } int ByteVector::endsWithPartialMatch(const ByteVector &pattern) const { if(pattern.size() > size()) return -1; const int startIndex = size() - pattern.size(); // try to match the last n-1 bytes from the vector (where n is the pattern // size) -- continue trying to match n-2, n-3...1 bytes for(unsigned int i = 1; i < pattern.size(); i++) { if(containsAt(pattern, startIndex + i, 0, pattern.size() - i)) return startIndex + i; } return -1; } ByteVector &ByteVector::append(const ByteVector &v) { if(v.isEmpty()) return *this; detach(); const unsigned int originalSize = size(); const unsigned int appendSize = v.size(); resize(originalSize + appendSize); ::memcpy(data() + originalSize, v.data(), appendSize); return *this; } ByteVector &ByteVector::append(char c) { resize(size() + 1, c); return *this; } ByteVector &ByteVector::clear() { ByteVector().swap(*this); return *this; } unsigned int ByteVector::size() const { return d->length; } ByteVector &ByteVector::resize(unsigned int size, char padding) { if(size != d->length) { detach(); // Remove the excessive length of the internal buffer first to pad correctly. // This doesn't reallocate the buffer, since std::vector::resize() doesn't // reallocate the buffer when shrinking. d->data->resize(d->offset + d->length); d->data->resize(d->offset + size, padding); d->length = size; } return *this; } ByteVector::Iterator ByteVector::begin() { detach(); return d->data->begin() + d->offset; } ByteVector::ConstIterator ByteVector::begin() const { return d->data->begin() + d->offset; } ByteVector::Iterator ByteVector::end() { detach(); return d->data->begin() + d->offset + d->length; } ByteVector::ConstIterator ByteVector::end() const { return d->data->begin() + d->offset + d->length; } ByteVector::ReverseIterator ByteVector::rbegin() { detach(); return d->data->rbegin() + (d->data->size() - (d->offset + d->length)); } ByteVector::ConstReverseIterator ByteVector::rbegin() const { // Workaround for the Solaris Studio 12.4 compiler. // We need a const reference to the data vector so we can ensure the const version of rbegin() is called. const std::vector &v = *d->data; return v.rbegin() + (v.size() - (d->offset + d->length)); } ByteVector::ReverseIterator ByteVector::rend() { detach(); return d->data->rbegin() + (d->data->size() - d->offset); } ByteVector::ConstReverseIterator ByteVector::rend() const { // Workaround for the Solaris Studio 12.4 compiler. // We need a const reference to the data vector so we can ensure the const version of rbegin() is called. const std::vector &v = *d->data; return v.rbegin() + (v.size() - d->offset); } bool ByteVector::isNull() const { return (d == null.d); } bool ByteVector::isEmpty() const { return (d->length == 0); } unsigned int ByteVector::checksum() const { static const unsigned int crcTable[256] = { 0x00000000, 0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd, 0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039, 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95, 0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16, 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba, 0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e, 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb, 0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff, 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3, 0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640, 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec, 0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18, 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4 }; unsigned int sum = 0; for(ByteVector::ConstIterator it = begin(); it != end(); ++it) sum = (sum << 8) ^ crcTable[((sum >> 24) & 0xff) ^ static_cast(*it)]; return sum; } unsigned int ByteVector::toUInt(bool mostSignificantByteFirst) const { return toNumber(*this, 0, mostSignificantByteFirst); } unsigned int ByteVector::toUInt(unsigned int offset, bool mostSignificantByteFirst) const { return toNumber(*this, offset, mostSignificantByteFirst); } unsigned int ByteVector::toUInt(unsigned int offset, unsigned int length, bool mostSignificantByteFirst) const { return toNumber(*this, offset, length, mostSignificantByteFirst); } short ByteVector::toShort(bool mostSignificantByteFirst) const { return toNumber(*this, 0, mostSignificantByteFirst); } short ByteVector::toShort(unsigned int offset, bool mostSignificantByteFirst) const { return toNumber(*this, offset, mostSignificantByteFirst); } unsigned short ByteVector::toUShort(bool mostSignificantByteFirst) const { return toNumber(*this, 0, mostSignificantByteFirst); } unsigned short ByteVector::toUShort(unsigned int offset, bool mostSignificantByteFirst) const { return toNumber(*this, offset, mostSignificantByteFirst); } long long ByteVector::toLongLong(bool mostSignificantByteFirst) const { return toNumber(*this, 0, mostSignificantByteFirst); } long long ByteVector::toLongLong(unsigned int offset, bool mostSignificantByteFirst) const { return toNumber(*this, offset, mostSignificantByteFirst); } float ByteVector::toFloat32LE(size_t offset) const { return toFloat(*this, offset); } float ByteVector::toFloat32BE(size_t offset) const { return toFloat(*this, offset); } double ByteVector::toFloat64LE(size_t offset) const { return toFloat(*this, offset); } double ByteVector::toFloat64BE(size_t offset) const { return toFloat(*this, offset); } long double ByteVector::toFloat80LE(size_t offset) const { return toFloat80(*this, offset); } long double ByteVector::toFloat80BE(size_t offset) const { return toFloat80(*this, offset); } const char &ByteVector::operator[](int index) const { return (*d->data)[d->offset + index]; } char &ByteVector::operator[](int index) { detach(); return (*d->data)[d->offset + index]; } bool ByteVector::operator==(const ByteVector &v) const { if(size() != v.size()) return false; return (::memcmp(data(), v.data(), size()) == 0); } bool ByteVector::operator!=(const ByteVector &v) const { return !(*this == v); } bool ByteVector::operator==(const char *s) const { if(size() != ::strlen(s)) return false; return (::memcmp(data(), s, size()) == 0); } bool ByteVector::operator!=(const char *s) const { return !(*this == s); } bool ByteVector::operator<(const ByteVector &v) const { const int result = ::memcmp(data(), v.data(), std::min(size(), v.size())); if(result != 0) return result < 0; else return size() < v.size(); } bool ByteVector::operator>(const ByteVector &v) const { return (v < *this); } ByteVector ByteVector::operator+(const ByteVector &v) const { ByteVector sum(*this); sum.append(v); return sum; } ByteVector &ByteVector::operator=(const ByteVector &v) { ByteVector(v).swap(*this); return *this; } ByteVector &ByteVector::operator=(char c) { ByteVector(c).swap(*this); return *this; } ByteVector &ByteVector::operator=(const char *data) { ByteVector(data).swap(*this); return *this; } void ByteVector::swap(ByteVector &v) { using std::swap; swap(d, v.d); } ByteVector ByteVector::toHex() const { static const char hexTable[17] = "0123456789abcdef"; ByteVector encoded(size() * 2); char *p = encoded.data(); for(unsigned int i = 0; i < size(); i++) { unsigned char c = data()[i]; *p++ = hexTable[(c >> 4) & 0x0F]; *p++ = hexTable[(c ) & 0x0F]; } return encoded; } ByteVector ByteVector::fromBase64(const ByteVector & input) { static const unsigned char base64[256] = { 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x3e,0x80,0x80,0x80,0x3f, 0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e, 0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x80,0x80,0x80,0x80,0x80, 0x80,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28, 0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,0x30,0x31,0x32,0x33,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80 }; unsigned int len = input.size(); ByteVector output(len); const unsigned char * src = (const unsigned char*) input.data(); unsigned char * dst = (unsigned char*) output.data(); while(4 <= len) { // Check invalid character if(base64[src[0]] == 0x80) break; // Check invalid character if(base64[src[1]] == 0x80) break; // Decode first byte *dst++ = ((base64[src[0]] << 2) & 0xfc) | ((base64[src[1]] >> 4) & 0x03); if(src[2] != '=') { // Check invalid character if(base64[src[2]] == 0x80) break; // Decode second byte *dst++ = ((base64[src[1]] & 0x0f) << 4) | ((base64[src[2]] >> 2) & 0x0f); if(src[3] != '=') { // Check invalid character if(base64[src[3]] == 0x80) break; // Decode third byte *dst++ = ((base64[src[2]] & 0x03) << 6) | (base64[src[3]] & 0x3f); } else { // assume end of data len -= 4; break; } } else { // assume end of data len -= 4; break; } src += 4; len -= 4; } // Only return output if we processed all bytes if(len == 0) { output.resize(static_cast(dst - (unsigned char*) output.data())); return output; } return ByteVector(); } ByteVector ByteVector::toBase64() const { static const char alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; if(!isEmpty()) { unsigned int len = size(); ByteVector output(4 * ((len - 1) / 3 + 1)); // note roundup const char * src = data(); char * dst = output.data(); while(3 <= len) { *dst++ = alphabet[(src[0] >> 2) & 0x3f]; *dst++ = alphabet[((src[0] & 0x03) << 4) | ((src[1] >> 4) & 0x0f)]; *dst++ = alphabet[((src[1] & 0x0f) << 2) | ((src[2] >> 6) & 0x03)]; *dst++ = alphabet[src[2] & 0x3f]; src += 3; len -= 3; } if(len) { *dst++ = alphabet[(src[0] >> 2) & 0x3f]; if(len>1) { *dst++ = alphabet[((src[0] & 0x03) << 4) | ((src[1] >> 4) & 0x0f)]; *dst++ = alphabet[((src[1] & 0x0f) << 2)]; } else { *dst++ = alphabet[(src[0] & 0x03) << 4]; *dst++ = '='; } *dst++ = '='; } return output; } return ByteVector(); } //////////////////////////////////////////////////////////////////////////////// // protected members //////////////////////////////////////////////////////////////////////////////// void ByteVector::detach() { if(d->counter->count() > 1) { if(!isEmpty()) ByteVector(&d->data->front() + d->offset, d->length).swap(*this); else ByteVector().swap(*this); } } } //////////////////////////////////////////////////////////////////////////////// // related functions //////////////////////////////////////////////////////////////////////////////// std::ostream &operator<<(std::ostream &s, const TagLib::ByteVector &v) { for(unsigned int i = 0; i < v.size(); i++) s << v[i]; return s; }