bioRxiv Subject Collection: Plant Biology
http://biorxiv.org
This feed contains articles for bioRxiv Subject Collection "Plant Biology"
bioRxivbioRxiv
http://biorxiv.org
http://biorxiv.org/cgi/content/short/743294v1?rss=1
2019-08-27doi:10.1101/743294Cold Spring Harbor Laboratory2019-08-27
http://biorxiv.org/cgi/content/short/746628v1?rss=1
2019-08-24doi:10.1101/746628Cold Spring Harbor Laboratory2019-08-24
http://biorxiv.org/cgi/content/short/745653v1?rss=1
2019-08-24doi:10.1101/745653Cold Spring Harbor Laboratory2019-08-24
http://biorxiv.org/cgi/content/short/745463v1?rss=1
2019-08-24doi:10.1101/745463Cold Spring Harbor Laboratory2019-08-24
http://biorxiv.org/cgi/content/short/744177v1?rss=1
2019-08-24doi:10.1101/744177Cold Spring Harbor Laboratory2019-08-24
http://biorxiv.org/cgi/content/short/742742v1?rss=1
2019-08-24doi:10.1101/742742Cold Spring Harbor Laboratory2019-08-24
http://biorxiv.org/cgi/content/short/745364v1?rss=1
2019-08-24doi:10.1101/745364Cold Spring Harbor Laboratory2019-08-24
http://biorxiv.org/cgi/content/short/744003v1?rss=1
2019-08-22doi:10.1101/744003Cold Spring Harbor Laboratory2019-08-22
http://biorxiv.org/cgi/content/short/743898v1?rss=1
2019-08-22doi:10.1101/743898Cold Spring Harbor Laboratory2019-08-22
http://biorxiv.org/cgi/content/short/744326v1?rss=1
2019-08-22doi:10.1101/744326Cold Spring Harbor Laboratory2019-08-22
http://biorxiv.org/cgi/content/short/742429v1?rss=1
2019-08-22doi:10.1101/742429Cold Spring Harbor Laboratory2019-08-22
http://biorxiv.org/cgi/content/short/741314v1?rss=1
2019-08-21doi:10.1101/741314Cold Spring Harbor Laboratory2019-08-21
http://biorxiv.org/cgi/content/short/742114v1?rss=1
2019-08-21doi:10.1101/742114Cold Spring Harbor Laboratory2019-08-21
http://biorxiv.org/cgi/content/short/740043v1?rss=1
2019-08-20doi:10.1101/740043Cold Spring Harbor Laboratory2019-08-20
http://biorxiv.org/cgi/content/short/740126v1?rss=1
2019-08-20doi:10.1101/740126Cold Spring Harbor Laboratory2019-08-20
http://biorxiv.org/cgi/content/short/740167v1?rss=1
2019-08-19doi:10.1101/740167Cold Spring Harbor Laboratory2019-08-19
http://biorxiv.org/cgi/content/short/740001v1?rss=1
2019-08-19doi:10.1101/740001Cold Spring Harbor Laboratory2019-08-19
http://biorxiv.org/cgi/content/short/736363v1?rss=1
2019-08-19doi:10.1101/736363Cold Spring Harbor Laboratory2019-08-19
http://biorxiv.org/cgi/content/short/738971v1?rss=1
2019-08-19doi:10.1101/738971Cold Spring Harbor Laboratory2019-08-19
http://biorxiv.org/cgi/content/short/738914v1?rss=1
20% variance) were attributed to NC 3033 and located in a single linkage group, LG B06_1. In contrast, the most consistent QTL for kernel percentage were located on A07/B07 and derived from Tifrunner.
]]>2019-08-18doi:10.1101/738914Cold Spring Harbor Laboratory2019-08-18
http://biorxiv.org/cgi/content/short/738070v1?rss=1
90% B73 genetic background and multiple Mo17 introgressions were grown in 16 different environments. These environments included five geographical locations with multiple planting dates and multiple planting densities. The phenotypic impact of the introgressions was evaluated for up to 26 traits that span different growth stages in each environment to assess allele-by-environment interactions. Results from this study showed that small portions of the genome can drive significant genotype-by-environment interaction across a wide range of vegetative and reproductive traits, and the magnitude of the allele-by-environment interaction varies across traits. Some introgressed segments were more prone to genotype-by-environment interaction than others when evaluating the interaction on a whole plant basis throughout developmental time, indicating variation in phenotypic plasticity throughout the genome. Understanding the profile of allele-by-environment interaction is useful in considerations of how small introgressions of QTL or transgene containing regions might be expected to impact traits in diverse environments.nnKey MessageSignificant allele-by-environment interactions are observed for traits throughout development from small introgressed segments of the genome.
]]>2019-08-16doi:10.1101/738070Cold Spring Harbor Laboratory2019-08-16
http://biorxiv.org/cgi/content/short/738021v1?rss=1
2019-08-16doi:10.1101/738021Cold Spring Harbor Laboratory2019-08-16
http://biorxiv.org/cgi/content/short/736793v1?rss=1
2019-08-15doi:10.1101/736793Cold Spring Harbor Laboratory2019-08-15
http://biorxiv.org/cgi/content/short/736439v1?rss=1
2019-08-15doi:10.1101/736439Cold Spring Harbor Laboratory2019-08-15
http://biorxiv.org/cgi/content/short/736397v1?rss=1
2019-08-15doi:10.1101/736397Cold Spring Harbor Laboratory2019-08-15
http://biorxiv.org/cgi/content/short/734525v1?rss=1
2019-08-15doi:10.1101/734525Cold Spring Harbor Laboratory2019-08-15
http://biorxiv.org/cgi/content/short/736199v1?rss=1
2019-08-15doi:10.1101/736199Cold Spring Harbor Laboratory2019-08-15
http://biorxiv.org/cgi/content/short/736249v1?rss=1
2019-08-15doi:10.1101/736249Cold Spring Harbor Laboratory2019-08-15
http://biorxiv.org/cgi/content/short/733857v1?rss=1
2019-08-14doi:10.1101/733857Cold Spring Harbor Laboratory2019-08-14
http://biorxiv.org/cgi/content/short/726125v1?rss=1
2019-08-14doi:10.1101/726125Cold Spring Harbor Laboratory2019-08-14