ubgpsuite/lonetix/numlib_atof.c

562 lines
9.4 KiB
C
Raw Normal View History

2021-06-07 16:55:13 +02:00
// SPDX-License-Identifier: LGPL-3.0-or-later
/**
* \file numlib_atof.c
*
* Implements ASCII to float conversion.
*
* \copyright The Plan9 Authors
* \copyright The DoubleFourteen Code Forge (C) All Rights Reserved
* \author Lorenzo Cogotti
*
* Algorithm based on Plan9 strtod(), licensed under LUCENT PUBLIC LICENSE:
* Copyright (C) 2003, Lucent Technologies Inc. and others. All Rights Reserved.
*
* Original source code available at: https://9p.io/sources/plan9/
*/
#include "numlib.h"
#include <math.h>
#include <string.h>
/*
* This routine will convert to arbitrary precision
* floating point entirely in multi-precision fixed.
* The answer is the closest floating point number to
* the given decimal number. Exactly half way are
* rounded ala IEEE rules.
* Method is to scale input decimal between .500 and .999...
* with external power of 2, then binary search for the
* closest mantissa to this decimal number.
* Nmant is is the required precision. (53 for ieee dp)
* Nbits is the max number of bits/word. (must be <= 28)
* Prec is calculated - the number of words of fixed mantissa.
*/
#define Nbits 28 // bits safely represented in an unsigned long
#define Nmant 53 // bits of precision required
#define Bias 1022
#define Prec ((Nmant+Nbits+1) / Nbits) // words of Nbits each to represent mantissa
#define Sigbit (1uLL << (Prec*Nbits-Nmant)) // first significant bit of Prec-th word
#define Ndig 1500
#define One (1uL << Nbits)
#define Half (One >> 1)
#define Maxe 310
#define Fsign BIT(0) // found -
#define Fesign BIT(1) // found e-
#define Fdpoint BIT(2) // found .
enum {
S0 = 0, // _ _S0 +S1 #S2 .S3
S1, // _+ #S2 .S3
S2, // _+# #S2 .S4 eS5
S3, // _+. #S4
S4, // _+#.# #S4 eS5
S5, // _+#.#e +S6 #S7
S6, // _+#.#e+ #S7
S7, // _+#.#e+# #S7
};
typedef struct {
int bp;
int siz;
const char *cmp;
} Tab;
static unsigned long umuldiv(unsigned long a, unsigned long b, unsigned long c)
{
return ((unsigned long long) a * (unsigned long long) b) / c;
}
static void frnorm(unsigned long *f)
{
int i, c;
c = 0;
for (i = Prec-1; i > 0; i--) {
f[i] += c;
c = f[i] >> Nbits;
f[i] &= One-1;
}
f[0] += c;
}
static int fpcmp(char *a, unsigned long *f)
{
unsigned long tf[Prec];
int i, d, c;
for (i = 0; i < Prec; i++)
tf[i] = f[i];
while (TRUE) {
// tf *= 10
for (i = 0; i < Prec; i++)
tf[i] = tf[i] * 10;
frnorm(tf);
d = (tf[0] >> Nbits) + '0';
tf[0] &= One-1;
// Compare next digit
c = *a;
if (c == 0) {
if ('0' < d)
return -1;
if (tf[0] != 0)
goto cont;
for (i = 1; i < Prec; i++) {
if (tf[i] != 0)
goto cont;
}
return 0;
}
if (c > d)
return +1;
if (c < d)
return -1;
a++;
cont:;
}
}
static void _divby(char *a, int *na, int b)
{
int n, c;
char *p;
p = a;
n = 0;
while (n >> b == 0) {
c = *a++;
if (c == 0) {
while (n) {
c = n * 10;
if (c>>b)
break;
n = c;
}
goto xx;
}
n = n*10 + c-'0';
(*na)--;
}
while (TRUE) {
c = n >> b;
n -= c << b;
*p++ = c + '0';
c = *a++;
if (c == 0)
break;
n = n*10 + c-'0';
}
(*na)++;
xx:
while (n) {
n = n * 10;
c = n >> b;
n -= c << b;
*p++ = c + '0';
(*na)++;
}
*p = '\0';
}
static void divby(char *a, int *na, int b)
{
while (b > 9) {
_divby(a, na, 9);
a[*na] = 0;
b -= 9;
}
if (b > 0)
_divby(a, na, b);
}
static const Tab tab1[] = {
{ 1, 0, "" },
{ 3, 1, "7" },
{ 6, 2, "63" },
{ 9, 3, "511" },
{ 13, 4, "8191" },
{ 16, 5, "65535" },
{ 19, 6, "524287" },
{ 23, 7, "8388607" },
{ 26, 8, "67108863" },
{ 27, 9, "134217727" }
};
static void divascii(char *a, int *na, int *dp, int *bp)
{
int b, d;
const Tab *t;
d = *dp;
if (d >= (int) ARRAY_SIZE(tab1))
d = ARRAY_SIZE(tab1)-1;
t = tab1 + d;
b = t->bp;
if (memcmp(a, t->cmp, t->siz) > 0)
d--;
*dp -= d;
*bp += b;
divby(a, na, b);
}
static void mulby(char *a, char *p, char *q, int b)
{
int n, c;
n = 0;
*p = 0;
while (TRUE) {
q--;
if (q < a)
break;
c = *q - '0';
c = (c << b) + n;
n = c/10;
c -= n*10;
p--;
*p = c + '0';
}
while (n) {
c = n;
n = c/10;
c -= n*10;
p--;
*p = c + '0';
}
}
static const Tab tab2[] = {
{ 1, 1, "" }, // dp = 0-0
{ 3, 3, "125" },
{ 6, 5, "15625" },
{ 9, 7, "1953125" },
{ 13, 10, "1220703125" },
{ 16, 12, "152587890625" },
{ 19, 14, "19073486328125" },
{ 23, 17, "11920928955078125" },
{ 26, 19, "1490116119384765625" },
{ 27, 19, "7450580596923828125" } // dp 8-9
};
static void mulascii(char *a, int *na, int *dp, int *bp)
{
char *p;
int d, b;
const Tab *t;
d = -*dp;
if (d >= (int) ARRAY_SIZE(tab2))
d = ARRAY_SIZE(tab2) - 1;
t = tab2 + d;
b = t->bp;
if (memcmp(a, t->cmp, t->siz) < 0)
d--;
p = a + *na;
*bp -= b;
*dp += d;
*na += d;
mulby(a, p+d, p, b);
}
static Boolean xcmp(const char *a, const char *b)
{
int c1, c2;
while ((c1 = *b++) != '\0') {
c2 = *a++;
// Make c2 lowercase
c2 |= ((c2 >= 'A' && c2 <= 'Z') << 5);
if (c1 != c2)
return FALSE;
}
return TRUE;
}
double Atof(const char *s, char **endp, NumConvRet *outcome)
{
NumConvRet result;
unsigned long low[Prec], hig[Prec], mid[Prec];
unsigned long num, den;
const char *sp;
double d;
int ona, bp, c, i;
char a[Ndig];
unsigned flag = 0; // Fsign, Fesign, Fdpoint
int na = 0; // number of digits of a[]
int dp = 0; // na of decimal point
int ex = 0; // exponent
int state = S0;
if (!outcome)
outcome = &result;
*outcome = NCVENOERR; // assume conversion is successful
for (sp = s;; sp++) {
c = *sp;
if (c >= '0' && c <= '9') {
switch (state) {
default:
UNREACHABLE;
break;
case S0:
case S1:
case S2:
state = S2;
break;
case S3:
case S4:
state = S4;
break;
case S5:
case S6:
case S7:
state = S7;
ex = ex*10 + (c-'0');
continue;
}
if (na == 0 && c == '0') {
dp--;
continue;
}
if (na < Ndig-50)
a[na++] = c;
continue;
}
switch (c) {
case '-':
if (state == S0)
flag |= Fsign;
else
flag |= Fesign;
// FALLTHROUGH
case '+':
if (state == S0)
state = S1;
else if (state == S5)
state = S6;
else
break; // syntax
continue;
case '.':
flag |= Fdpoint;
dp = na;
if (state == S0 || state == S1) {
state = S3;
continue;
}
if (state == S2) {
state = S4;
continue;
}
break;
case 'e':
case 'E':
if (state == S2 || state == S4) {
state = S5;
continue;
}
break;
default:
break;
}
break;
}
// Clean up return char-pointer
switch (state) {
case S0:
if (xcmp(sp, "nan")) {
if (endp)
*endp = (char *) sp + 3;
goto retnan;
}
// FALLTHROUGH
case S1:
if (xcmp(sp, "infinity")) {
if (endp)
*endp = (char *) sp + 8;
goto retinf;
}
if (xcmp(sp, "inf")) {
if (endp)
*endp = (char *) sp + 3;
goto retinf;
}
// FALLTHROUGH
case S3:
if (endp)
*endp = (char *) sp;
*outcome = NCVENOTHING;
goto ret0; // no digits found
case S6:
sp--; // back over +-
// FALLTHROUGH
case S5:
sp--; // back over e
break;
}
if (endp)
*endp = (char *) sp;
if (flag & Fdpoint) {
while (na > 0 && a[na-1] == '0')
na--;
}
if (na == 0)
goto ret0; // zero
a[na] = 0;
if (!(flag & Fdpoint))
dp = na;
if (flag & Fesign)
ex = -ex;
dp += ex;
if (dp < -Maxe-Nmant/3) // actually -Nmant*log(2)/log(10), but Nmant/3 close enough
goto ret0; // underflow by exp
else if (dp > +Maxe)
goto retinf; // overflow by exp
// Normalize the decimal ascii number
// to range .[5-9][0-9]* e0
bp = 0; // binary exponent
while (dp > 0)
divascii(a, &na, &dp, &bp);
while (dp < 0 || a[0] < '5')
mulascii(a, &na, &dp, &bp);
a[na] = '\0';
// Very small numbers are represented using
// bp = -Bias+1. adjust accordingly.
if (bp < -Bias+1) {
ona = na;
divby(a, &na, -bp-Bias+1);
if (na < ona) {
memmove(a+ona-na, a, na);
memset(a, '0', ona-na);
na = ona;
}
a[na] = '\0';
bp = -Bias+1;
}
// Close approx by naive conversion
num = 0;
den = 1;
for (i = 0; i < 9 && (c = a[i]) != '\0'; i++) {
num = num*10 + (c - '0');
den *= 10;
}
low[0] = umuldiv(num, One, den);
hig[0] = umuldiv(num+1, One, den);
for (i = 1; i < Prec; i++) {
low[i] = 0;
hig[i] = One-1;
}
// Binary search for closest mantissa
while (TRUE) {
// mid = (hig + low) / 2
c = 0;
for (i = 0; i < Prec; i++) {
mid[i] = hig[i] + low[i];
if (c)
mid[i] += One;
c = mid[i] & 1;
mid[i] >>= 1;
}
frnorm(mid);
// Compare
c = fpcmp(a, mid);
if (c > 0) {
c = 1;
for (i = 0; i < Prec; i++) {
if (low[i] != mid[i]) {
c = 0;
low[i] = mid[i];
}
}
if (c)
break; // between mid and hig
continue;
}
if (c < 0) {
for (i = 0; i < Prec; i++)
hig[i] = mid[i];
continue;
}
// Only hard part is if even/odd roundings wants to go up
c = mid[Prec-1] & (Sigbit-1);
if (c == Sigbit/2 && (mid[Prec-1] & Sigbit) == 0)
mid[Prec-1] -= c;
break; // exactly mid
}
// Normal rounding applies
c = mid[Prec-1] & (Sigbit-1);
mid[Prec-1] -= c;
if (c >= (int) Sigbit/2) {
mid[Prec-1] += Sigbit;
frnorm(mid);
}
d = 0;
for (i = 0; i < Prec; i++)
d = d*One + mid[i];
if (flag & Fsign)
d = -d;
d = ldexp(d, bp - Prec*Nbits);
return d;
ret0:
return 0;
retnan:
return NAN;
retinf:
return (flag & Fsign) ? -INFINITY : INFINITY;
}